硬盘参数详解方方面面

硬盘参数详解方方面面
硬盘参数详解方方面面

硬盘参数详解方方面面

硬盘-英文名:Hard Disc Drive 简称HDD是电脑主要的存储媒介

一:硬盘的组成

1、接口

IDE:IDE是指把控制器与盘体集成在一起的硬盘驱动器,我们常说的的IDE接口,也叫ATA 接口,PATA接口、并行ATA接口,并口。

SCSI:SCSI是一种总线型的系统接口,它不是专门为硬盘设计的,SCSI接口的优势在于它支持多种设备,传输速度比ATA高,CPU的占用率很低,一般应用于服务器

SAS:即串行连接SCSI、兼容SATA、一般也是用于服务器。

Serial ATA:Serial ATA称为串行ATA接口(SATA接口),这是相对于IDE的并行接口来说的,与IDE接口比SATA接口有无可比拟的优势。

如图从左至右分别为IDE-SCSI-SATA

2、控制电路板

包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、控制与接口电路等。如下图!

3、硬盘内部结构

磁头组件:磁头组件是硬盘中最精密的部位之一,有读写磁头、传动手臂、传动轴三部分组成。

磁头驱动机构:磁头驱动机构由声圈电动机和磁头驱动小车组成,新型大容量盘有防震动机构。

磁盘片:磁盘片是硬盘存储数据的载体。硬盘的盘体有一个或多个重叠在一起并由垫圈隔开的磁盘片组成。

主轴组件:主轴组件包括主轴部件,如轴承和马达等。如下图所示:

4、硬盘逻辑结构盘面

盘面:硬盘的每一个盘片都有两个盘面,即上、下两面,一般每个盘面都会利用,都可以存储数据,成为有效盘面,也有个别的硬盘盘面数为单数的。每一个这样的有效盘面都有一个盘面号,按从上到下的顺序从“0”开始编号。在硬盘系统中,盘面号又叫磁头号,因为每一个有效盘面都有一个对应的读写磁头。

磁道:磁盘在格式化时被划分成许多同心圆,这些同心圆轨迹叫做磁道。磁道从外向内从0开始编号。

柱面:所有盘面上的同一磁道构成一个圆柱,通常称为柱面,柱面和磁道一样,由外向内从0开始编号。数据的读写按柱面进行。即首先在同一柱面内从0磁头开始进行读/写操作,依次向下直到同一柱面所有的磁头都读写过数据将柱面读完写满之后,才移到下一个柱面扇区:操作系统以扇区形式将信息存储在硬盘上。在磁道上,按照一定的数据位长度截取的圆弧就是扇区,扇区从1开始编号。扇区中的数据作为一个单元同时的读出或写入。

簇:操作系统都是以簇为单位的文件来分配磁盘空间、每个簇只能由一个文件所占用、及时这个簇只有几字节、决不允许两个文件以上的文件公用一个簇、否则会造成数据的混乱。如下图!

5、硬盘数据结构

硬盘在存储数据之前,需要经过低级格式化、分区和高级格式化这三个步骤之后才能使用。作用是在物理硬盘上建立一定的数据逻辑结构。

主引导扇区:主引导扇区位于整个磁盘的0柱面0磁头1扇区、包括MBR、DPT和结束标记。MBR,即主引导记录区,存放引导程序。

操作系统引导扇区:操作系统引导扇区是操作系统可以直接访问的第一个扇区、通常位于0柱面1磁头1扇区。它包括一个引导程序和一个被成为BPB的本分区参数记录表。BPB参数块记录着本分区的起始扇区、结束扇区、文件存储格式、硬盘介质描述符、根目录大小、FAT 个数、分配单元的大小等重要参数。

文件分配表区:同一个文件的数据不是一定完整的存放在磁盘的一个连续的区域内,往往会分成若干段,像一条链子一样存放。这种存储方式成为链式存储。为了实现链式存储,硬盘上必须准确地记录哪些簇已经被文件占用,还必须为每个已经占用的簇指明存储后继内容的下一个簇的簇号,对一个文件的最后一簇,则要指明本簇无后继簇,这些都有FAT表来保存。

文件目录区:DIR也称文件目录表,是根目录区,紧接着第二FAT表(即备份的FAT表)之后,记录着根目录下每个文件的起始单元、文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以确定文件在硬盘中的具体位置和大小。

数据区:数据区,是真正意义上的数据存储的地方,位于DIR区之后,占用硬盘绝大部分的空间。

二:硬盘的参数

容量:1GB=1024MB、但厂商通常标称时算为1GB=1000MB、所以通常我们的硬盘实际容量都比标注的小。

未格式化容量:物理特性最大容量、低级格式化后其容量会适当减小

格式化容量:实际可使用容量

单碟容量:单碟容量是硬盘相当重要的参数之一。硬盘是由多个存储碟片组合而成,而单碟容量就是指一个存储碟所能存储的最大数据量。硬盘单碟容量提高不仅仅可以带来总容量提升,有利于降低生产成,提高工作稳定性;而且单碟容量越大其内部数据传输速率就越快。

转速:硬盘通常是按每分钟转速计算:该指标代表了硬盘主轴马达带动磁盘的转速。

平均寻道时间:平均寻道时间指硬盘在盘面上移动读写磁头到指定磁道寻找相应目标数据所用的时间,单位为毫秒。当单碟容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘访问速度。

外部数据传输率:外部数据传输率是指计算机通过接口将数据交给硬盘的传输速度。

内部数据传输率:内部传输率是指硬盘磁头与缓存之间的数据传输率,简单说就是硬盘将数据从盘片上读取出来,然后存储在缓存上的速度。内部传输率可以明确表现出硬盘的读写速度,它的高低才是评价一个硬盘整体性能的决定性因素。

缓存:缓存是硬盘与外部交换数据的临时场所。提高硬盘与外部数据的传输速度、硬盘读写数据时,通过缓存一次次地填充与清空,再填充,再清空,就像一个中转仓库一样。

三:硬盘的保养

防震动:虽然硬盘加入了防震抗摔功能,但碰撞和震动依然是硬盘的几大杀手之一。过度的碰撞和长期工作在震动的环境下极易造成硬盘盘片与磁头结合不严密,磁头断裂的现象,特别是在硬盘工作中,后果将会更加的严重。因此,一定要将硬盘紧密的固定的机箱内部,上紧每一颗螺丝。另外工作过程不要直接移动硬盘和移动机箱,需要将电脑移动位置时轻拿轻放。

防灰尘:硬盘的磁头与盘片接触是十分紧密的,不允许有半点的灰尘,如果灰尘落入硬盘盘片上后,那么就意识着硬盘离损坏为期不晚。如果在灰尘严重的环境下长期工作,硬盘很容易吸引空气中的灰尘颗粒,使其长期积累在硬盘的内部电路元器件上,会影响电子元器件的

热量散发,使得电路元器件的温度上升,产生漏电或烧坏元件。灰尘也可能吸收水分,腐蚀硬盘内部的电子线路。切记普通用户不可自行拆开硬盘。

防非法关机:当硬盘在工作中是,盘片处于高速运转状态,磁头停留在盘片的不同位置读取磁盘中存放的数据。如果中途突然断电,磁头便会迅速做归位动作,则可能导致磁头与盘片猛烈磨擦而损坏硬盘盘片。做到尽量避免突然断电导致非法关机,再者WINDOS自带重新启动功能也尽量少用,因为这一功能会使硬盘在瞬间突然断电加电,也极容易引起硬盘的各种故障,如果需要重新启动,则正确的方法是在电脑关闭10秒钟以后再按开机按钮打开电脑。

防静电:对于硬盘而言,其背部的电路版同样会受到静电的伤害。因些,不能用手随便地触摸硬盘背面的电路板。有些类型的硬盘会在其外部包上一层护膜,它除具备防震功能外,更把电路板保护其中,这样我们就可以不用担心什么静电了。

防高温低温:硬盘工作时会产生一定热量,使用中当然存在散热问题。过高或过低都会使晶体振荡器的时钟主频发生改变。温度还会造成硬盘电路元器件失灵,磁介质也会因热胀效应而造成记录错误。温度过低,空气中的水分会被凝结在集成电路元器件上,造成短路。而湿度过高时电子元器件表面可能会吸附一层水膜,氧化、腐蚀电子线路,以致接触不良,甚至短路,还会使磁介质的磁力发生变化,造成数据的读写错误、湿度过低容易积累大量的因机器转动而产生的静电荷,从而烧坏CMOS电路,吸附灰尘而损坏磁头、划伤磁盘片。

电压不稳定也会造成硬盘损坏。至于磁盘碎片整理建议不要经常做、不做也不行、额、我也不知道经常整理碎片有没有影响、几个月做一次吧、额个人意见可以无视!!!

低格不到万不得已也不要做、做之前要有报废的思想准备。

附:在这解说一下硬盘检测工具HD Tune在“健康”测试中个参数的含义(仅作参考,因为原始数据的含义为硬盘厂家保密的,不同厂家可能不同)以西部数据为例

下面我们先大概了解一下S.M.A.R.T属性表:

S.M.A.R.T.包含很多个属性,每个属性值只有两种含义,超过阈值和没有超过阈值。一旦有属性值超过了阈值,表明“硬盘快不行了”。每个硬盘的S.M.A.R.T.信息中,都注明了这些属性的阈值,不同厂家的阀值是不同的。不同的属性值对于阈值的对比关系也有两种情况,应大于阈值和应小于阈值。

下面列出几个笔者觉得比较重要的属性进行说明:

(01) 读取错误率 Read Error Rate (应小于阈值)

硬件读取错误率,在从磁盘表面读取数据发生错误时记录。任何大于0的数据表明在磁盘表面或者读写柱头发生过问题。这项的最差值很低的话,则提示硬盘多半有坏道。某些二手硬盘检测这个数值不正常的话,有可能是被修复或屏蔽过坏道。

(03) 马达旋转到标准转速所需时间:此项的“当前≥最差”值属于正常,数据值大表明硬盘启动较慢,环境温度有点影响(理想的工作温度应在10℃~35℃,相对湿度应为30%~80%)。数据值XXXX指启动后到开始读取硬盘信息所需时间XXXX毫秒。

(04) 马达重启/停止计数:“数据”值表示硬盘的重启次数。

(05) 重新映射扇区计数 Reallocated Sectors Count (应小于阈值)

重新映射扇区的计数值。硬盘发现一个读、写或校验错误时,会将这个扇区重新映射并将数据转移到一个特殊的保留的空闲区域,这些区域就称为重新映射扇区。也就是说,硬盘是无法通过检测来发现“坏块”的,所有的坏块都被隐藏到了重新映射的扇区里面了,当然这样

读写速度会有影响变慢。

(07) 寻道错误率:(数据值越小性能越好,通常无阈值)

(09) 通电时间计数 Power-On Hours Count,POH (越小越好,通常无阈值)

通电状态下的小时计数。这个值表示了硬盘通电状态下总计的小时计数,不过不同厂家这个值的单位有所不同,也有以分钟、秒钟为单位的。新买回的硬盘应该小于10小时吧,不然有可能是被JS掉包的问题产品。

(0A) 马达重试计数 Spin Retry Count (应小于阈值)

马达尝试启动的重试计数。这个属性存储了马达为了达到标准转速而进行的启动尝试的总计数,即第一次启动并不能成功达到标准转速。数值高可能电路或是硬盘的保留区有问题,说明硬盘的机械系统出现了问题。

(0C) 通电周期计数 Power Cycle Count (越小越好,通常无阈值)

这个属性表明了整个硬盘通电/去电周期的次数,即开关次数。

(C0) 断电磁头缩回计数 (越小越好,通常无阈值)

这个属性表明了整个硬盘非正常通电/去电时磁头动作的次数,即非安全开关次数。比如突然停电或者死机按热启键就会增加。

(C2) 温度Temperature (越小越好,通常无阈值)

当前内部温度。一般不应超过45摄氏度。

(C4) 重新映射事件计数 Reallocetion Event Count (应小于阈值)

重新映射操作的计数值。这个属性值表明了将重新映射扇区的数据转移到空闲区域的尝试总次数。成功的转移和不成功的转移都会被计数。

(C5) 当前待映射扇区计数 Current Pending Sector Count (应小于阈值)

“不稳定的”扇区数量,即等待被映射的扇区数量。如果不稳定的扇区随后被读写成功,这个值会降低,扇区也不会重新映射。扇区读取错误不会造成重新映射,扇区只会在写入失败时发生重新映射。这个值有时候会有问题,因为带缓存写入不会重新映射扇区,只有直接读写才会真正写入磁盘。假如这个数值异常,则可能预示硬盘快挂了。

(C6) 无法校正扇区计数 Uncorrectable Sector Count (应小于阈值)

读写扇区时发生的无法校正的错误总计数。这个值上升表明硬盘表明有缺损或者机械系统有问题。

(C7) 直接内存访问校验错误计数 UltraDMA CRC Error Count (应小于阈值)

通过接口循环冗余校验(Interface Cyclic Redundancy Check,ICRC)发现的通过接口电缆进行数据传输的错误。

(C8) 写入错误率 Write Error Rate (应小于阈值)

写入一个扇区时发生错误的总数。

如果上述某项或几项出现“变红”,那问题可能比较严重,请赶快进行数据备份处理,不然一旦硬盘坏掉可能会给你造成重大的损失。

● 有关扇区编号的基本知识:

介绍一下有关硬盘扇区编号规则的3个易混淆的术语“物理扇区编号”、“绝对扇区编号”和“逻辑扇区编号”。

我们都知道硬盘扇区的定位有两种办法:

1.直接按柱面、磁头、扇区3者的组合来定位(按这种编号方式得到的扇区编号称为物理扇区编号);

2.按扇区编号来定位(又分“绝对扇区编号”和“逻辑扇区编号”两种)。

这两种定位办法的换算关系如下图:(设图中所示硬盘每道扇区数均为63)

如图所示,由于目前大多数硬盘采用的是一种“垂直分区结构“,故左图一磁头数为2、盘片数为1的硬盘,图中0磁头所对扇区的表示方法就有2种,即:0柱面0磁头1扇区=绝对0扇区,而1磁头所对扇区的表示方法也有2种,即:1柱面0磁头1扇区=绝对63扇区。如果是如右图所示磁头数为4、盘片数为2的硬盘,那么则顺着垂直于盘片的箭头线方向进行如图的绝对扇区的编号。

上面,我们说了物理扇区、绝对扇区的编号方式,而逻辑扇区编号由于是操作系统采用的扇区编号方式,而操作系统只能读取分区内部的数据内容,故逻辑扇区是从各分区内的第一个扇区开始编号,如我们下文对mbr的说明可以知道:mbr这个扇区所在硬盘磁道是不属于分区范围内的,紧接着它后面的才是分区的内容,因此一般来说绝对63扇区= c:分区逻辑1扇区。好,让我们列个表总结一下3种编号方式的不同:

需要说明的是:本文假设所使用的硬盘每道扇区数都为63。各位手头上所使用的硬盘具体的每道扇区数则可以在BIOS设置内有关硬盘参数的设置内查到。

● 有关MBR、分区表、DBR的基本知识:

硬盘MBR(硬盘主引导记录)及硬盘分区表介绍

硬盘MBR就是我们经常说的“硬盘主引导记录”,简单地说,它是由FDISK等磁盘分区命令写在硬盘

绝对0扇区的一段数据,它由主引导程序、硬盘分区表及扇区结束标志字(55AA)这3个部分组成,如下表:

这3部分的大小加起来正好是512字节=1个扇区(硬盘每扇区固定为512个字节),因此,人们又形象地把MBR称为“硬盘主引导扇区”。

这个扇区所在硬盘磁道上的其它扇区一般均空出,且这个扇区所在硬盘磁道是不属于分区范围内的,紧接着它后面的才是分区的内容(也就是说假如该盘每磁道扇区数为63,那

么从绝对63扇区开始才是分区的内容)。

硬盘DBR(硬盘分区引导记录)介绍

DBR是各个分区自己的引导记录,又称“分区引导记录”,它是由FORMAT高级格式化命令写在各个分区开始处第一个扇区(比如说:主分区C:从1磁头0柱面1扇区=逻辑1扇区=绝对63扇区)开始,那么C:区逻辑1扇区就是DBR所存放的位置)的一段数据.这段数据主要由以下几个部分组成:

1.占3个字节的跳转指令;

2.占8个字节的操作系统厂商标识及版本号;

3.占19个字节的分区参数表(又称BPB),里面存放着对该分区进行读写操作时所必备的参数(如该分区内每扇区所包含的字节数、每簇扇区数、每个磁道的扇区数、该分区FAT份数等);

4.占480个字节的DOS引导代码,它负责把DOS引导文件IO.SYS、MSDOS.SYS装入内存;

5.占2个字节的结束标志字”55AA”.

以上5个部分也正好占1个扇区;和MBR有所不同的是:DBR扇区后面一般就紧接着存放该分区的FAT(文件分配表,共2份)。

综上所述,我们知道硬盘MBR负责总管硬盘分区,只有分区工具才能对它进行读写(如FDISK);而DBR则负责管理某个具体的分区,它是用操作系统的高级格式化命令(如FORMAT)来写入硬盘的。在系统启动时,最先读取的硬盘信息是MBR,然后由MBR内的主引导程序读出DBR,最后才由DBR内的DOS引导代码读取操作系统的引导程序,其中任何一个环节出了问题,操作系统都无法正常启动成功,如果是MBR部分出了问题,即使只是“55AA”标志字丢失或被改为其他值,通常都会出现“无效分区表”、“逻辑盘丢失”、“启动死机等现象”;而如果是DBR部分出了问题,通常会出现“未格式化的分区”的错误提示。

CDMA参数指标说明

CDMA 1、CDMA Radio窗口 参数名称参数描述 RX Power(dBm)手机的接收功率 TX Power(dBm)手机的发射功率 TX Adj.(dB)发射功率调整 Total Ec /Io(dB)搜索到的多径的Ec/Io总和 Reference Ec/Io(dB)主导频的Ec/Io Max Ec/Io(dB)多径中Ec/Io的最高值。 Total Ec(dBm)导频功率的总和 Reference Ec(dBm)主导频的Ec Max Ec(dBm)导频功率的最大值 Reference PN主导频的PN Max Ec/Io PN多径中Ec/Io最高的导频PN FFER(%)前向误帧率 ActiveSet Number激活集导频个数 Frequency主服务导频的频点 2、CDMA Markov窗口 参数名称参数描述 Full预期的马尔可夫帧全速率 D1/2马尔可夫半速率下的接收帧的实际速率D1/4马尔可夫1/4速率下的接收帧的实际速率D1/8马尔可夫1/8速率下的接收帧的实际速率BSig带有信令信息的帧数 Half预期的马尔可夫帧半速率 Quarter预期的马尔可夫帧1/4速率 Eight预期的马尔可夫帧1/8速率 Eras接收时有删除记号的帧数 FError接收时有误码的帧数 BError每次呼叫中误码的总数

Ferr.%误帧率 3、CDMA Finger窗口 参数名称参数描述 PN多径信号的PN Sector多径信号所在的扇区 Distance(m)与服务扇区的距离 Ec/Io(dB)多径信号的Ec/Io OffSet多径信号PN偏置 4、CDMA System Parameters窗口 参数名称参数描述 SID移动业务本地网ID NID网络ID BID基站ID Win_A切换类参数,用来设定Active Set和Candidate Set的搜索窗口长度Win_N切换类参数,用来设定neighbor set的搜索窗口长度 Win_R切换类参数,用来设定remaining set的搜索窗口长度 Pilot Inc.导频增量,即相邻两个导频相位偏置之差(PILOT_INC×64chip)T_Add导频信号强度门限 T_Comp Active Set与Candidate Set导频信号强度的比较门限 T_Drop导频信号去除门限 T_TDrop导频去除计时器值 Soft Slope切换斜率 Ec Threshold导频信号功率 Ec/Io Threshold导频Ec/Io Neighbor Max Age相邻导频集最大保留时间 5、Access Params窗口

hortonworks测试环境离线安装与配置

目录 目录 0 1.基础环境 (2) 2.准备工作 (3) 2.1配置环境 (4) 2.1.1配置hosts文件 (4) 2.1.2 SSH无密码登入 (4) 2.1.3 NTP 时间同步 (5) 2.1.4 SELinux & iptables 关闭 (6) 2.2Java环境安装 (7) 2.2.1 安装JDK (7) 2.2.2 配置环境变量 (7) 3.Ambari安装配置 (9) 3.1配置本地源 (9) 3.1.1 建立本地资源库 (9) 3.1.2 配置repo文件 (10) 3.1.3 配置Media源 (12) 3.1.4 安装必要工具 (12) 3.1.5 配置Media的http源 (12) 3.1.6 安装ambari-server服务 (17)

3.1.7 安装ambari客户端 (46) 3.2ambari服务器配置与管理 (20) 4.常见问题 (50) 4.1mapreduce (50) 4.2oozie安装 (51)

1.基础环境 本人配置 操作系统:redhat6.4 内核版本: 内存大小: 处理器: Ambari版本:ambari-1.6.0 HDP版本:HDP-2.1-latest-centos6-rpm.tar.gz HDP-UTILS版本:HDP-UTILS-1.1.0.17-centos6.tar.gz JDK版本:jdk-7u45-linux-x64

Ambari安装的环境路径(选择安装所有服务的情况): 2.准备工作 本次配置使用hdp-m2作为主master节点

2.1配置环境 2.1.1配置hosts文件 所有机器都得执行,使用root用户 1)@ hostname hdp-m2(该命令可用于临时修改主机名) 2)@ vi /etc/hosts(该命令可用于配置主机名和IP的对应信息) 10.242.157.115 hdp-m1 10.242.157.117 hdp-m2 10.242.157.122 hdp-s1 3)@ vi /etc/sysconfig/network(该命令可用于修改网络主机名) 2.1.2SSH无密码登入 所有机器都得执行,使用root用户 @ yum install ssh(安装SSH协议) @ yum install rsync(rsync是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件) @ service sshd restart (启动服务) 注:如果系统中没有安装SSH,需要进行以上操作。 @ssh-keygen(该命令生成指定公私秘钥的名字,id_dsa及id_dsa.pub)

VRay材质教程(材质属性的介绍)

创建最优化的材质 VrayMtl材质是我们利用Vray渲染器进行渲染时用得最多的材质类型,本章第一小节对VrayMtl材质的各个参数都做了 详细讲解。第二小节还讲解了用Vray渲染器进行渲染时常用到 的其他材质类型。对于做效果图时常用材质的设置方法在第三 小节做了非常详细的讲解。 本章重点: 1、熟悉VrayMtl材质的参数。 2、熟练掌握常用材质的设置方法。 .1 VrayMtl材质参数详解 .1.1 调整渲染参数 为了在测试VrayMtl材质参数时,都有一个统一的结果,我们有必要在一个统一的环境下面进行,按F10键,打开渲染设置对话框,按如下进行渲染设置: ①VRAY为当前渲染器; ②输出大小为640*480像素; 图.1 ③在渲染器的“全局开关”卷展栏,关闭默认灯光;

图.2 ④图像采样器设置为:自适应准蒙特卡洛; ⑤抗锯尺过滤器:Mitchell-Netravali; 图.3 ⑥打开间接照明(GI); 图.4 ⑦发光贴图设置成“非常低”;

图.5 ⑧环境里面这两个颜色都设置成纯白色; 图.6 ⑨创建如下图位置的一盏“目标聚光灯”; 图.7 ⑩目标聚光灯的参数如下:

图.8 .1.2 参数详解 打开材质编辑器,装载一个VRayMtl材质类型;

图.9 Vray的标准材质(VrayMtl)是专门配合Vray渲染器使用的材质,因此当使用Vray渲染器时候,使用这个材质会比Max的标准材质(Standard)在渲染速度和细节质量上高很多。其次,他们有一个重要的区别,就是Max的标准材质(Standard)可以制作假高光(即没有反射现象而只有高光,但是这种现象在真实世界是不可能实现的)而Vray的高光则是和反射的强度息息相关的。还有在使用Vray渲染器的时候只有配合Vray 的材质(Vray标准材质或其他Vray材质)是可以产生焦散效果的,而在使用Max的标准材质(Standard)的时候这种效果是无法产生的。 将该材质命名为“茶壶1”,表面颜色为黄颜色,旁边的小方块是一贴图通道,可以装载位图或其他格式的图来给模型做贴图。

Nokia指标参数公式

(一)评估内容-指标部分 (3) ◆移动接入性 (3) 1.1 平均RACH负荷率(Average RACH Load %) (3) 1.2 RACH总拒绝率(Total RACH Rejection Ratio) (3) 1.3 AGCH拥塞率(AG blocking rate) (4) 1.4 平均PCH负荷(Average Paging Buffer Space) (4) 1.5 寻呼消息删除(Delete paging command) (5) 1.6 SDCCH拥塞率(SDCCH blocking rate) (6) 1.7 TCH拥塞率(TCH blocking rate,blck_8d) (6) 1.8 随机接入成功率(Random access successful rate) (7) 1.9 业务信道分配成功率(TCH assignment successful rate) (7) ◆移动保持性 (7) 1.10 切换失败率(Total HO Failure %) (8) 1.11 SDCCH掉话率(SDCCH drop rate) (8) 1.12 Dcr_3j掉话率 (9) 1.13 2071掉话率 (9) ◆资源利用情况 (10) 1.14 SDCCH可用率 (10) 1.15 TCH可用率 (10) 1.16 BCSU负荷 (10) ◆网络质量 (11) 1.17 上下行链路平衡 (11) 1.18 强干扰(Boundary3-Boundary5) (11) ◆重要网络事件 (11) 1.19 主被叫呼叫比例: (12) 1.20 Average call length, S1 (trf_2d) (12) ◆数据业务指标 (13) 1.21 无线信道充足率(TSL Assignment Fulfill rate) (13) 1.22 TBF成功率(tbf_34a) (14) 1.23 PCU拥塞率(BLCK_32) (15) 1.24 MCS6-9编码占用比例(按照流量计算) (15) 1.25 RLC层每时隙吞吐量(trf_236) (15) (二)投诉处理 (16) ◆每万用户客户投诉比 (16) ◆TOP10投诉区域处理解决状况 (16) (三)告警处理及设备维护 (17) ◆告警处理 (17) ◆直放站告警处理 (18) ◆天馈线检查 (18)

CDH-HDP-MAPR-DKH-星环组件比较

一、组件比较:

二、组件简介:

1、Hadoop 简介:集群基础组件,分为存储(HDFS)和计算(Mapreduce)两大部分。apache社区开源。技术来源于2、Hbase 简介:键-值非关系型数据库,apache 3、Zookeeper 4、Spark 简介:内存计算框架,伯克利首先提出,现已开源。 5、Hive 简介:基于HDFS的SQL工具,facebook开发,后开源。 6、Hue 简介:图形化集群工具,cloudera开发,后开源。 7、Impala 简介:基于HDFS的SQL工具,cloudera开发,后开源。 8、Sqoop 简介:用于关系型数据库与NOSQL数据库之间的数据导入导出。Cloudera开发,已开源。 9、Flume 简介:用于数据流的导入, Cloudera开发,已开源。 10、Oozie 简介:工作流系统,用于提交、监控集群作业。Cloudera开发,已开源。 11、Solr 简介:基于Lucene的全文搜索服务器。已开源。 12、Isilon 简介:基于OneFs操作系统的存储产品,美国赛龙公司开发,后属于EMC,一种集群存储方案。 13、K-V store indexer 简介:为HBase到solr的索引中间件,为NGDATA公司开发,已开源。

14、Cloudera Manager 简介:CDH集群安装管理工具。Cloudera开发。 15、kafka 简介:消息队列组件。已经开源。 16、Storm 简介:流数据处理组件。 17、Elasticsearch 简介:基于Lucene的全文搜索服务器。已开源。 18、ESSQL 简介:基于Elasticsearch的SQL工具,大快开发。 19、DK-NLP 简介:自然语言处理组件。大快开发,已开源。 20、DK-SPIDER 简介:分布式爬虫组件。大快开发。 21、DKM 简介:集群安装管理工具。大快开发。 22、DK-DMYSQL 简介:分布式MYSQL组件,大快改写。 23、Apache Falcon 简介:Falcon 是一个面向Hadoop的、新的数据处理和管理平台,设计用于数据移动、数据管道协调、生命周期管理和数据发现。 24、Apache Knox 简介:Apache knox是一个访问hadoop集群的restapi网关,它为所有rest访问提供了一个简单的访问接口点。 25、Apache Phoenix

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

数字无线直放站技术规范书

中国移动通信集团北京有限公司数字无线直放站技术规范书 中国移动通信集团北京有限公司 2010年5月

本技术规范书是中国移动通信集团北京有限公司就向其提供数字无线 直放站的投标人提出的技术要求,作为投标人制定技术应答书的依据。 投标人提供的系统天线、馈线应满足中国移动天线、馈线技术规范书的要求。 第一部分:总则 1、总体要求 1.1本规范书为中国移动通信集团北京有限公司(项目业主,以下简称“买方”)购买资本性优化项目所需设备的主要技术、业务功能和供货要求,供厂商(投标人,以下简称“卖方”)编写建议书和报价之用,卖方建议书的内容格式应符合本规范书的要求。 1.2 卖方应为从事无线通信设备研发和制造的企业,对GSM网络及GSM技术有深刻理解。在数字无线直放站等的生产、工程设计、工程施工和网络优化方面有良好的经验和充足的技术实力。企业具有稳定的组织机构,良好的信誉,足够的经济实力,充足的技术队伍,长久的生命力和延续性。卖方需向买方出示有效的企业资质证明(详见技术规范书第1.18点)。 1.3对本规范书各条目的应答为“满足并优于”、“满足”和“不满足”,“部分满足”视为“不满足”,对于相关技术参数指标等内容,投标人应在性能要求表格中每一项指标下方的空格内做逐项应答,说明能否满足要求,并填写具体数值,要求以产品标称值应答,应答用蓝色粗体字。此外要求提供相应软、硬件的详细技术资料和所运行环境的详细要求。对本规范书各条目的应答不得使用“明白”、“理解”等词语。卖方若对本规范书中的部分要求不能满足或者有不同于本规范书相关要求的其它建议,也应在建议书中详细说明。 1.4卖方应按照本文件的要求提供报价和详细的技术建议。卖方提供的各项设备、软件产品和系统的功能、性能应完全符合买方指明的标准,并满足或高于买方的要求。对于本文件未规定的有关系统性能,卖方应提出建议,并陈述其理由。 1.5卖方应该按照技术规范书的要求,在技术建议书中提供详细的总体方案、设备供货、安装调测、系统集成、实施计划、人员配备、验收测试、技术服务和培

VERY材质参数调整

一)、木质类材质 木地板1(印象):漫反射:木地板材质,反射:木地板的黑白贴图黑调偏暗,高光光泽度:0.78 ,反射光泽度:0.85,细分:15 ,凹凸:60%木地板的黑白贴图黑调偏亮。木地板2(印象):(漫反射):木地板材质,反射:衰减,高光光泽度:0.9,反光光泽度:0.7,凹凸:10%木地板材质。 木纹3亮面清漆木材(黑石):漫反射:木纹贴图,反射;49,高光光泽度-0.84,反射光泽度:1。 2、木地板哑面实木-黑石:漫反射:木纹贴图,模糊值0.01,反射:34,高光光泽度:0.87,反射光泽度:0.82,凹凸:11,与漫反射贴图相关联,模糊值0.85 2、木纹(EV):漫反射:木纹贴图材质,反射:30-50高光光泽度:锁定,反射光泽度:0.7-0.8。 3、木材(EV):漫反射:木纹贴图材质,反射:40,高光光泽度:0.65,反射光泽度:0.7-0.8,凹凸:25%木纹贴图材质 (二)、石材类: 1、镜面石材:表面较光滑,有反射,高光较小-黑石:漫反射:石材纹理贴图,反射:40 高光光泽度:0.9反射光泽度:1,细分:9 2、柔面表面较光滑,有模糊,高光较小-黑石):漫反射:石材纹理贴图,反射:40,高光光泽度:锁定,反射光泽度:0.85 ,细分25 3、凹凸面表面较光滑,有凹凸,高光较小:漫反射:石材纹理贴图,反射:40,高光光泽度:锁定,反射光泽度:1,细分9,(凹凸:15%同漫反射贴图相关联 4、漫反射:石材纹理贴图,反射:40,高光光泽度:锁定,反射光泽度:0.85,凹凸:15%同漫反射贴图相关联 5、瓷质材质-印象:表面光涌带有反射,有很亮的高光:漫反射:瓷质贴图(白瓷250)反射:衰减(也可直接设为133,要打开菲涅尔,也有只给40左右),高光光泽度:0. 85, 反射光泽度:0.95(反射给40只改这里为0.85),细分:15,最大深度:10,BRDF-WARD(如果不用衰减可以改为PONG),各向异性:0.5,旋转值为70,环境:OUTP UT,输出量为3.0。 5、瓷质材质-EV:表面光涌带有反射,有很亮的高光:漫反射:白250,反射:35,高光光泽度:锁定,反射光泽度:0.8-0.9,细分:15 (三)、玻璃: 1、玻璃-印象:漫反射:黑0,反射:255 勾选菲涅尔反射,高光光泽度:锁定,反射光泽度:1,细分:8,折射光泽度:252,细分:8,折射率:1.6 ,雾颜色:252,雾倍增:0.8,注意勾选影响阴影,窗户用要勾选影响ALPH。 2、玻璃-EV:漫反射:黑0,反射:衰减,高光光泽度:锁定,反射光泽度、平滑度:1 细分:3,折射光泽度:255,细分:8 ,折射率:1.517,雾倍增:1.0,细分:50,注意勾选影响阴影,窗户用要勾选影响ALPH 3、玻璃1-印象:漫反射:128,反射:衰减,衰减中反射系数2.0,让反射不太强,高光光泽度0.9,反射光泽度:1,折射光泽度:250 ,细分:8 ,折射率:1.5 ,注意勾选影响阴影,窗户用要勾选影响ALPH

VR材质参数详解——折射参数!【精选】

VR材质折射参数详解 译:zslztxwd 这篇文章只介绍了VR材质中的折射参数,其他参数请参考VR材质反射参数详解及VR材质扩展参数详解!(原文链接) 1、设置渲染参数(Render settings) 设置参数如下: 输出分辨率为480*360 Global switches(全局开关) ---Default lights(默认灯光):关闭 Image sampler(图像采样) ---Image sampler:Adaptive QMC ---Antialising filter(抗锯齿):mitchell-netravali Indirect illumination(间接照明) ---Second bounces (二次反弹):0.85 Irradiance map(发光贴图) ---Current preset(当前预置):Low ---Hsph subdivs (模型细分):20 Environment(环境) ---GI Environment(全局光环境):纯白 ---反射/折射:纯黑倍增值:1.0 System(系统) ---frame stamp:将其他文本删除只保留render time 2、建立测试场景(Create the testscene) 测试模型我建议最好和我的一样,茶壶在这个场景里就不太合适了,因为它不像这个物体中间有镂空的地方。我把torus knot(环形结)给编辑了一下,这样就

会有更好的曲面来体现材质的特性,并且所有的曲面都会有不同厚度的阴影。 这个是这个环形结的具体参数 3、设定材质(Create materials) 调出一个但蓝色材质来附给地面,再为环形结调出一个浅灰色的材质,渲染一下你应该会得到一个和我差不多的图像 4、折射参数(Refraction parameters)

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

中国电信CDMA直放站使用技术交流

CDMA 系列直放站开通使用 培 训 资 料 深圳市皓华网络通讯有限公司

目录 1.使用安全须知 2.原理框图 3.安装调试说明 4.直放站的主要指标调测 5.常见故障排除方法 6.直放站的使用应注意的事项 7.直放站的网络优化 8.典型案例

1. 安全使用须知 1.1安全须知 在安装和操作本公司直放站之前,请务必仔细通读本安全须知,认真遵守以下安全事项: A、直放站是用来无线转发,双向放大基站上、 下行链路信号,扩展移动通信信号覆盖范 围、填补移动通信的覆盖盲区的。正常使用不 会损坏基站,但直放站在扩大基站信号覆盖范 围的同时,其上行输出噪声电平也可能会影响 基站灵敏度,工程设计中应综合考虑。

B. 为保证设备的正常运行,在设备上电时, 严禁设备开路(即在设备ANT 端口未接天线或设备内部的功放模块射频端口未接电缆或负载时就给设备上电加信号),要求接 入设备的负载(如天线等)的驻波比小于1.5,否则长期使用也会导致设备内部功放模块的损毁。 C.接地:近端机和远端机外壳均有保护接地端子,在安 装时应采用黄绿双色导线与建筑物保护地可靠连接,也可以采用接地编织线连接;天线、馈线必须接地良好。 1. 安全使用须知

D.供电: 光纤直放站(标配):近端机采用DC:-48V直流电源供电,远端机采用交流:AC220V交流电源供电,无线直放站和干放采用交流:AC220V交流电源供电。 当采用交流供电时请确认: 公共电网的交流电源额定电压范围为155~ 285VAC,额定频率范围为45~55Hz。在该设备安 装现场使用的三芯电源插座,其接地端子必须与 建筑物保护地可靠连接。

VR材质反射参数详解

1、设置渲染参数(Render settings) 设置参数如下: 输出分辨率为480*360 Global switches(全局开关) - Default lights(默认灯光):关闭 Image sampler(图像采样) - Image sampler:Adaptive QMC - Antialising filter(抗锯齿):mitchell-netravali Indirect illumination(间接照明) - Second bounces (二次反弹):0.85 Irradiance map(发光贴图) - Current preset(当前预置):Low - Hsph subdivs (模型细分):30 Environment(环境) - GI Environment(全局光环境):纯白 - 反射/折射:纯白倍增值:1.2 2、建立一个测试场景(Test sence) 尽量简单,茶壶是材质测试的好东西,因为它有很好的曲面来反应材质的特性,这也是它成为最早的3D模型的原因。如果你的测试场景想和这篇教程尽量相近的话那就拉出2个茶壶放在一个大的平面上,如下图: 3、打开材质编辑器(Open the material editor)

你可以按“M”键来打开 4、建立一个VR材质(Load a VRayMtl) 点击材质面板上的Standard 按钮,从列表中选中VRayMtl,然后双击 5、给材质命名和改颜色(Rename and color) 将材质的名称改为teapot1。在面板的基本参数里第一个是漫射通道(diffuse),这是材质里的主要颜色。颜色旁边的方块是一个贴图通道,你可以在这里加载位图或是其他格式的图片来附到材质上。这里我们把颜色调成一种明快的桔黄色,然后附给大的茶壶~ 6、另一个材质(Second mat) 重复上面的步骤调出一个颜色非常浅的灰色材质。将其命名为groundplan,然后将其附给地面和小的茶壶。

磁性材料的基本特性16505

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B ~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料; ?合理确定磁芯的几何形状及尺寸;

大数据平台技术框架选型分析

大数据平台框架选型分析 一、需求 城市大数据平台,首先是作为一个数据管理平台,核心需求是数据的存和取,然后因为海量数据、多数据类型的信息需要有丰富的数据接入能力和数据标准化处理能力,有了技术能力就需要纵深挖掘附加价值更好的服务,如信息统计、分析挖掘、全文检索等,考虑到面向的客户对象有的是上层的应用集成商,所以要考虑灵活的数据接口服务来支撑。 二、平台产品业务流程

三、选型思路 必要技术组件服务: ETL >非/关系数据仓储>大数据处理引擎>服务协调>分析BI >平台监管

四、选型要求 1.需要满足我们平台的几大核心功能需求,子功能不设局限性。如不满足全部,需要对未满足的其它核心功能的开放使用服务支持 2.国内外资料及社区尽量丰富,包括组件服务的成熟度流行度较高 3.需要对选型平台自身所包含的核心功能有较为深入的理解,易用其API或基于源码开发

4.商业服务性价比高,并有空间脱离第三方商业技术服务 5.一些非功能性需求的条件标准清晰,如承载的集群节点、处理数据量及安全机制等 五、选型需要考虑 简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装,集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。自己来了解使用大数据套件的容易程度——仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。 广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAP和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展?是否存在一个含有文档、论坛、博客和交流会的大社区? 特性:是否支持所有需要的特性?Hadoop的发行版本(如果你已经使用了某一个)?你想要使用的Hadoop生态系统的所有部分?你想要集成的所有接口、技术、产品?请注意过多的特性可能会大大增加复杂性和费用。所以请查证你是否真正需要一个非常重量级的解决方案。是否你真的需要它的所有特性? 陷阱:请注意某些陷阱。某些大数据套件采用数据驱动的付费方式(“数据税”),也就是说,你得为自己处理的每个数据行付费。因为我们是在谈论大数据,所以这会变得非常昂贵。并不是所有的大数据套件都会生成本地Apache Hadoop代码,通常要在每个Hadoop集群的服务器上安装一个私有引擎,而这样就会解除对于软件提供商的独立性。还要考虑你使用大数据套件真正想做的事情。某些解决方案仅支持将Hadoop用于ETL来填充数据至数据仓库,而其他一些解决方案还提供了诸如后处理、转换或Hadoop集群上的大数据分析。ETL仅是Apache Hadoop和其生态系统的一种使用情形。 六、方案分析

3dmax材质参数设置

3DMAX材质参数 玻璃的反光率15% 折射率90%~100% 金属一般反射率60%~70% 至于地版和大理石只要有bitmap就可以了 大理石加10%的反光打蜡的地板有5%的反光 这里是一些物质的物理特征,希望能帮到各位。 金属颜色RGB 色彩亮度光亮度慢射镜面光泽度反射 BMP(分形噪声)单位:英寸凹凸% 铝箔 180,180,180 有 0 32 90 中 65 .0002,.00002,.0002 8 铝箔(钝) 180,180,180 有 0 50 45 低 35 .0002,.00002,.0002 15 铝 220,223,227 有 0 35 25 低 40 .0002,.00002,.0002 15 磨亮的铝 220,223,227 有 0 35 65 中 50 .0002,.00002,.0002 12 黄铜 191,173,111 有 0 40 40 中 40 .0002,.00002,.0002 20 磨亮的黄铜 191,173,111 有 0 40 65 中 50 .0002,.00002,.0002 10 镀铬合金 150,150,150 无 0 40 40 低 25 .0002,.00002,.0002 35 镀铬合金2 220,230,240 有 0 25 30 低 50 .0002,.00002,.0002 20 镀铬铝 220,230,240 有 0 15 60 中 65 .0002,.00002,.0002 15 镀铬塑料 220,230,240 有 0 15 60 低 50 .0002,.00002,.0002 15 镀铬钢 220,230,240 有 0 15 60 中 70 .0002,.00002,.0002 5 纯铬 220,230,240 有 0 15 60 低 85 .0002,.00002,.0002 5 铜 186,110,64 有 0 45 50 中 40 .0002,.00002,.0002 10 18K金 234,199,135 有 0 45 50 中 65 .0002,.00002,.0002 10 24K金 218,178,115 有 0 35 50 中 65 .0002,.00002,.0002 10 未精练的金 255,180,66 有 0 35 50 中 45 .0002,.00002,.0002 25 黄金 242,192,86 有 0 45 50 中 65 .0002,.00002,.0002 10 石墨 87,33,77 无 0 42 90 中 15 .0001,.0001,.0001 10 铁 118,119,120 有 0 35 50 低 25 .0002,.00002,.0002 20 铅锡锑合金 250,250,250 有 0 30 40 低 15 .0002,.00002,.0002 10 银 233,233,216 有 0 15 90 中 45 .0002,.00002,.0002 15 钠 250,250,250 有 0 50 90 低 25 .0002,.00002,.0002 10 废白铁罐 229,223,206 有 0 30 40 低 45 .0002,.00002,.0002 30 不锈钢 128,128,126 有 0 40 50 中 35 .0002,.00002,.0002 20 磨亮的不锈钢 220,220,220 有 0 35 50 低 25 .0002,.00002,.0002 35 锡 220,223,227 有 0 50 90 低 35 .0001,.0001,.0001 20 透明材质的折射率 材质折射率 真空 10000 空气 10003 液态二氧化碳 12000 冰 13090 水 13333 丙酮 13600 乙醇 13600 糖溶液(30%) 13800

直放站指标参数详解

直放站设备指标参数详解 1.工作频段 工作频段是指直放站在线性输出状态下的实际工作频率范围,根据需要设备可使用工作频段的全部和部分。 对应于900MHz/1800MHz频段: 上行 885~909MHz/1710~1730MHz 下行 930~954MHz/1805~1825MHz 2.标称最大输出功率 2. 1定义 标称(最大)输出功率是指直放站在线性工作区内所能达到的最大输出功率,此最大输出功率应满足以下条件: (a)输入信号为GSM连续波信号; (b)增益为最大增益; (c) 在网络应用中不应超过此功率 2.2 测量方法 1.按图1所示连接测试系统; 图1:标称(最大)输出功率测试 2.将GSM信号发生器输出通过电缆接至被测设备输入端口,再将功率衰减器及连接电缆总损耗值作为偏置输入GSM分析仪或功率计中; 3.关闭反向链路(测量前向输出功率)或关闭前向链路(测量反向输出功率);

4.将GSM信号发生器设置为该直放站工作频率范围内的中心频率或指配信道的中心频率;将被测直放站增益调到最大; 5.调节GSM信号发生器的输出电平直至ALC启控点,GSM分析仪或功率计上直接显示的每信道功率应在被测直放站厂商声明的最大输出功率的容差范围内; 6.记录被测直放站的输出功率电平L out(dBm)及输入电平(GSM信号发生器输出电平减去连接电缆的损耗值)L in(dBm); 7. 对于移频直放站应对近端单元和远端单元分别测量。 3.增益 3. 1最大增益及误差 3.1.1 定义 最大增益是指直放站在线性工作范围内对输入信号的最大放大能力。 最大增益误差是指最大增益的实测值与卖方声明值之间的差值。 3.1.2 测量方法 1.测试系统及测试步骤同2.2图1; 2.最大增益为Gmax= Lout-Lin(dB)(1) (dB)(2)3.增益误差为△= Gmax-G 厂声明 4. 对于移频直放站应对近端单元和远端单元分别测量。 3.2增益调节范围 3.2.1 定义 增益调节范围是指当直放站增益可调时,其最大增益和最小增益的差值。 3.2.2 测量方法 1.测试系统及测试步骤同2.2图1; 2.调被测直放站增益为最小,从GSM分析仪或功率计读出被测直放站的输出功率电平 L 。 outmin 3.调被测直放站增益为最大,从GSM分析仪或功率计读出被测直放站的输出功率电平 L 。 outmax

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

直放站试题4

直放站考试试题 一、单选题 1. 2.以下关于直放站施主天线的描述,哪个是正确 的? D (1分) A.位置越高越好 B.位置越低越好 C.尽量使用全向天线 D. 尽量使用方向性好的天线 3.直放站三阶互调指标的测试,哪个说法是错误 的? D (1分) A.在2f1-f2处测量 B.在2f2-f1处测量 C.在(f1+f2)/2处 测量 D.A和B 4.直放站上行噪声电平到达施主基站(CDU端)的噪声电平小 于: C (1分) A.–36dBm B.–30dBm C.–120dBm D.–124dBm 5.室内天线的发射功率不大于: B (1分) A.–13dBm/载波 B.–15dBm/载波 C.–20dBm/载波 1.直放站覆盖天线与施主天线之间的隔离度应大于直放站实际 工作增益加上 A (1分)冗余储备。 A.10dB B.20dB C.30dB D.36dB 6.直放站天线隔离度不足会引起: B (1分) A.消坏直放机模块 B.直放站自激不工作 C.堵塞基站 D. 业务天线发射功率过大 7.对于选频直放站的频点改变是由 C (1分)操作。 A.BSC终端 B.自动随施主信号频率变化而变化 C.本地终端 设置 8.1/2普通馈线100米线损为: C (1分) A.3dB B.5dB C.7dB D.9dB 9.900M信号在30米自由空间传输损耗为: D (1分) (32.44+20lgD+20lgf+Lw,Lw为隔墙损耗) A.30dB B.36dB C.54dB D.62dB 10. 室内分布无源器件的接头是: A (1分) A.N型母头 B.N型公头 C.K型母头 D.K型公头

Apache atlas使用说明文档

Apache atlas 第一章:Apache atlas简介 为寻求数据治理的开源解决方案,Hortonworks公司联合其他厂商与用户于2015年发起数据治理倡议,包括数据分类、集中策略引擎、数据血缘、安全和生命周期管理等方面。Apache Atlas 项目就是这个倡议的结果,社区伙伴持续的为该项目提供新的功能和特性。该项目用于管理共享元数据、数据分级、审计、安全性以及数据保护等方面,努力与Apache Ranger整合,用于数据权限控制策略。目前最新版本是2.0.0. .1apache atlas 架构介绍 1.1.1核心组件Core Type System: Apache Atlas 允许用户为他们想要管理的元数据对象定义一个模型,该模型被叫做“类型”。类型的实例被称为“实体”,实体用来表示被管理的实际元数据对象类型系统是允许用户定义和管理类型和实体的组件。。 例如:Atlas 本身自带的hive_table类 Name: hive_table TypeCategory: Entity SuperTypes: DataSet Attributes: name: string db: hive_db owner: string createTime: date

lastAccessTime: date comment: string retention: int sd: hive_storagedesc partitionKeys: array aliases: array columns: array parameters: map viewOriginalText: string viewExpandedText: string tableType: string temporary: boolean 从上面示例中可以看出,类由名称name唯一标识 类型具有元类型。Atlas具有以下元类型: ?基本元类型:boolean, byte, short, int, long, float, double, biginteger, bigdecimal, string, date ?枚举 ?集合元类型:array, map ?复合元类型:Entity, Struct, Classification, Relationship Hive_table类的一个实体 guid: "9ba387dd-fa76-429c-b791-ffc338d3c91f" typeName: "hive_table" status: "ACTIVE" values: name: “customers” db: { "guid": "b42c6cfc-c1e7-42fd-a9e6-890e0adf33bc", "typeName": "hive_db" } owner: “admin” createTime: 1490761686029 updateTime: 1516298102877 comment: null retention: 0 sd: { "guid": "ff58025f-6854-4195-9f75-3a3058dd8dcf", "typeName": "hive_storagedesc" } partitionKeys: null aliases: null columns: [ { "guid": "65e2204f-6a23-4130-934a-9679af6a211f", "typeName": "hive_column" }, { "guid": "d726de70-faca-46fb-9c99-cf04f6b579a6", "typeName": "hive_column" }, ... ]

相关文档
最新文档