Session 2 生物医学传感技术(王平)

生物医学传感技术

王平

浙江大学

生物医学工程与仪器科学学院

生物医学传感器的需求

生物医学传感技术的概念

生物医学传感器的分类

生物医学传感器的特殊要求

生物医学传感器的特点

生物医学传感器的现状

人体生理信息的研究现状

人体生理信息的研究现状

人体生理信息的研究现状

传感器的集成制造技术

传感器的集成制造技术

物理类传感器举例

物理类传感器举例

物理类传感器举例

物理类传感器举例

生物医学传感器与检测技术教学

《生物医学传感器与检测技术实验》教案大纲 张日欣李元斌 一、课程名称:生物医学传感器与检测技术实验 Experiments in Biomedical Sensor & Detecting Techniques 二、课程编码:0702831 三、学时与学分:24/1.5 四、先修课程:数字电子技术,模拟电子技术,项目生理学,电子测试与实验,生物医学测量与仪器实验。 五、课程教案目标 1.本课程是生物医学项目专业的一门专业课,它应用电子技术,传感器测量技术和计算机技术,解决生物医学领域中的信号提取,检测和处理以及生物医学仪器的设计等问题; 2.使学生了解典型医学仪器的原理、特点和性能指标,学习正确使用传感器,设计检测电路,掌握基本测量技术; 3.为医学仪器设计奠定基础。 六、适用学科专业 生物医学项目 七、基本教案内容与学时安排 ●热敏器件及温度传感器特性实验<4学时) ●压力传感器性能实验<4学时) ●气敏传感器特性实验<4学时) ●光电式脉搏探测器<4学时) ● ECG前置放大器<4学时) ●陷波器仿真、制作与调试<4学时) ●安全隔离设计与调试<4学时) ● ECG放大器的整体调试<4学时) ● 12导联心电工作站的原理及使用<4学时) 八、教材及参考书: 教材:生物医学电子技术与信号处理实验指导书,张日欣、李元斌、邹昂等自编教材,武汉:华中科技大学教材科,2004年9月 参考文献: 1.生物医学检测技术讲义,杨玉星自编教材,1998年 2.生物医学电子学,蔡建新,张唯真,北京大学出版社,1997年 3.传感器原理与应用,黄贤钨,电子科技大学出版社,1999年 4.生物医学测量,陈延航,人民卫生出版社,1986年 5.医学物理,刘普和,人民卫生出版社,1986年 6.医学仪器-应用与设计,约翰G.韦伯斯特,新时代出版社,1985年 7.Protel 98 for windows 电路设计应用指南,程凡等,人民邮电出版社,1999年 九、考核方式 实验报告+实践表现 《生物医学测量与仪器实验》教案大纲

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

最新重庆大学《生物医学传感器原理与应用》第二章--传感器基础

第二章 传感器基础 §2-1 传感器的静态特性 医用传感器的输入量可以分为静态量与动态量两大类。 静态量:是指固定状态的信号或变化极其缓慢的信号(准静态量)。 动态量:通常是指周期信号、瞬变信号或随机信号。 无论对动态量或静态量,传感器输出量都应不失真地复现输入生理量的变化,其关健决定于传感器的静态特性与动态特性。 一.传感器的静态特性 传感器的静特性—表示传感器在被测量处于稳定状态,输入量为恒定值而不随时间变化时,其相应输出量亦不随时间变化,这时输出量与输入量之间的关系称为静态特性。 这种关系一般根据物理、化学、生物学的“效应”和“反应定律”得到,具有各种函数关系。 传感器的输出输入关系或多或少的存在非线性问题。在不考虑迟滞蠕变不稳定性等因素的情况下,其静态特性可用下列多项式代数方程表示: n n x a x a x a x a a y +++++= 332210 (2-1) 式中 y — 输出量; x — 输入量; 0a — 零位输出(零偏); 1a — 传感器的灵敏度,常用K 表示; n a a a ,,,32 — 非线性项系数 各项系数不同,决定了特性曲线的具体形式。 由式(2—1)可知,如果0a =0,表示静态特性通过原点,这时静态特性是由线性项和非线性的高次项迭加而成。这种多项式代数方程可能有四种情况,表现了传感器的四种静态特性,如图2-1所示。 1.线性特性 在理想情况下,式(2—1)中的零偏0a 被校准(0a =0).且x 的高次项为零。

0,,,32=n a a a 线性方程为: x a y 1= 如图2—1(a )所示。 此时, K x y a ==/1 K 称为传感器的灵敏度。 2.非线性项仅有奇次项的特性 当式(2—1)中只有x 的奇次项,即: +++=5 53 31x a x a x a y 时,特性如图2—1(b )所示。在这种情况下,在原点附近相当范围内输出、输入特性基本成线性,对应的曲线有如下特性: y (x )=-y(-x ) 3.非线性项仅有偶次项的特性 当式(2—1)中只有x 的偶次非线性项时.所得曲线不对称,如图2-1(c )所示。 4.一般情况 对应的曲线如2—1(d )所示。在实际应用中,如果非线性项的x 方次不高,则在输入量变化不大的范围内,可以用切线或割线来代替实际静态特性的某一段,使得传感器的静态特性近于线性,称之为传感器静态特性的线性化。只要传感器非线性系数较小,测量范围又不大时,即可这样处理。当没计传感器时,把测量范围选择在最接近直线的那一小段,可 使传感器的静态特性近于线性。 传感器的静态特性实际上是非线性的,所以它的输出不可能丝毫不差地反映被测量的变化,对动态特性也会有一定的影响。 传感器的静态特性是在静态标准条件下进行校准的。静态标准条件是指没有加速度、振动、冲击,环境温度一般在室温20℃±5 ℃,相对湿度不大于85%,大气压为101.3士8 kPa 。在这种标准工作条件下,利用一定等级的校准设备,对传感器进行反复的测试,将得到的输出-输入数据列成表格或画成曲线。把被测量值的正行程输出值和反行程输出值的平均值连接起来的曲线称为传感器的静态校准曲线。 二.传感器的静态特性指标 1.线性度 传感器的线性度也叫作传感器特性曲线的非线性误差。 它是用传感器校准曲线与拟合直线之间的最大偏差与传感器满量程输出平均值之比的百分数来表示的(如图2—2所示): δL =士(ΔL max / Y FS )×100% (2-2) 式中δL 为线性度; ΔL max 为校准曲线与拟合直线之间的最大偏差; Y FS 为传感器满量程输出(平均值),Y FS =Y max -Y 。 常用的拟合直线的方法: ⑴.采用理论直线作为拟合直线来确定传感器的线性度。 所谓理论直线即式(2-1)静态方程式的第一种情况:Y =α1X ,由此式求得的线性度称为理论线性度。拟合直线为传感器的理论特性,与实际测试值无关。该方法十分简单,但ΔL max 较大。图2—3为理论线性度的示意图。 ⑵.采用最小二乘法拟合

生物医学传感器的发展与应用综述

收稿日期:2007-10-26 作者简介:夏西泉(1969—),男,重庆市人,重庆电子工程职业学院,高级讲师,主要从事传感与检测技术、通信技术的教学与研究; 曹毅(1967—),男,重庆市人,副教授,重庆城市管理职业学院电子信息工程系主任,主要研究方向为计算机网络通信、生物医学信息处理。 第17卷第1期重庆职业技术学院学报Vol.17No.12008年1月JournalofChongqingVocational&TechnicalInstitute Jan.2008 传感技术是当代科学技术发展的一个重要标志,它是现代生物医学、自动化检测、环境保护等应用领域不可缺少的功能器件,它与通讯技术、计算机技术并称为现代信息产业的三大支柱。21世纪是人类全面进入信息电子化的时代,随着人类探索领域和空间的拓展,人们需要获得的电子信息种类日益增加,需要信息传递的速度加快,信息处理能力增强,因此要求与此相对应的信息采集技术———传感技术必须跟上信息化发展的需要。生物传感器是近几十年内发展起来的一种新的传感器技术。有人把21世纪称为生命科学的世纪,也有人把21世纪称为信息科学的世纪。生物传感器正是在生命科学与信息科学之间发展起来的一个交叉学科。 1生物传感器的定义 生物传感器定义为“使用固定化的生物分子 (immobilizedbiomolecules)结合换能器,用来侦测生体内 或生体外的环境化学物质或与之起特异性交互作用后产生响应的一种装置”。生物传感器由两个主要关键部分所构成,一为来自于生物体分子、组织部分或个体细胞的分子辨认组件,此一组件为生物传感器信号接收或产生部分,另一为属于硬件仪器组件部分,主要为物理信号转换组件,主要是由电化学或光学检测元件(如电流、电位测量电极,离子敏场效应晶体管,压电晶体等)。 然而,随着当前各种新材料、新原理和新技术的不断发展,特别是微电子机械系统(Microelectromechanicalsyste m,MEMS)技术和生物芯片技术的出现,目前生物传感器 的概念已经跳出了原来狭义的圈子,扩展为以微型化、集成化、智能化和芯片化为特征的生物检测、处理的微系统。 2生物传感器的结构与原理 2.1生物传感器的结构 生物传感器由两个主要关键部分所构成,第一部分 是识别部件,如酶、微生物、细胞或组织、抗原或抗体等;第二部分是转换部件,将其他物理量转换成电学量(电压或电流),如:温度转化为电压,力学压力量转换为电学量等。其余为辅助部分,完成系统测量或控制的功能。生物传感器的组成框图如图1所示。 2.2生物传感器的原理 被测物质经扩散作用进入生物活性材料,经分子识别(特异性结合)后,发生物理或化学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经信号处理单元处理后输出,便可知道待测物的相关信息。 3生物传感器的种类 根据生物传感器组成部分(识别部分和转换部分)的 材料或原理的不同,可以有以下不同的分类方法。 (1)按照其感受器中所采用的生命物质分类,可分为微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等。 生物医学传感器的发展与应用综述 夏西泉1,曹 毅2 (1.重庆电子工程职业学院,重庆401331;2.重庆城市管理职业学院,重庆400055) 摘要:随着现代生物工程技术的发展和需要,生物医学传感器的研究与开发得到了长足发展,特别是微传感器及生化传感器是目前发展的前沿技术,本文对生物医学传感器的发展、原理、应用领域以及发展趋势等作了详细论述。 关键词:生物医学传感器;传感器;应用中图分类号:Q-1 文献标识码:A 文章编号:1672-0067(2008)01-0149-04 图1生物传感器结构框图

光电化学生物传感器的研究与应用

光电化学生物传感器的研究与应用 陈洪渊* 南京大学,南京,210093 *Email: hychen@https://www.360docs.net/doc/768919080.html, 光电化学过程是指分子、离子以及固体物质在光的作用下,因吸收光子而使电子处于激发态继而产生电荷传递的过程。光电化学传感是基于物质的光电转化特性而建立起来的一种新兴的检测技术。待测物与光电化学活性物质之间的直接/间接相互作用,或者生物识别过程前后所产生的光电流(或光电压)的变化与待测物浓度之间的关系, 是光电化学传感定量的基础。在光电化学检测中,与电化学发光检测恰好相反,光被用作激发源来激发光活性物质,通过光激发所产生的电信号作为检测信号。由于采用不同能量形式的激发与检测信号,和电化学发光检测相同的是,光电化学传感的背景信号要比传统的电化学方法低。研究表明,在采用相同或类似的流程对同一种物质进行检测时,光电化学方法获得的检测限通常要比电化学方法低一个数量级。此外,由于利用电信号响应, 同传统的光学方法相比, 光电化学检测仪器设备简单、价格低廉且易于微型化。因此,这种方法在生物分析领域具有广阔的应用前景,近年发展十分迅速。随着研究的不断深入,可以预期,光电化学传感将在生物分子测定、环境监测、食品安全、新药研究和医学卫生等诸多领域发挥重要作用。目前,光电化学应用于生物传感器的各个主要研究方向,如DNA传感器、免疫传感器以及酶催化型传感器等方面都取得了迅速的发展。 本文将以本研究组现有相关工作为例,对光电化学生物传感的基本概念、原理与应用及当前的发展趋势作一扼要的评述,以期为光电化学生物传感器的进一步发展提供一定的启示。 参考文献 [1] Zhao W W, Yu P P, Xu J J, Chen H Y. Electrochem. Commun., 2011, 13, 495—497 [2] Zhao W W, Wang J, Xu J J, Chen H Y. Chem. Commun., 2011, 47, 10990—10992 [3] Zhao W W, Tian C Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, 895—897 [4] Zhao W W, Dong X Y, Wang J, Kong F Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48, doi: 10.1039/C2CC17942C [5] Zhao W W, Ma Z Y, Yu P P, Dong X Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84, 917—923

生物医学传感器 简答题汇总

生物医学传感器与一般传感器相比,还必须满足 1.材料无毒,且与生物体组织有良好的相容性; 2.检测时,长期接触不会影响或尽可能少影响正常生理活动; 3.有良好的电气安全性 4.在结构和性能上便于清洁和消毒,防止交叉感染。 生物信号有哪些特点对医学传感器有哪些要求 特点:1.非电量信号;2.生物信号十分微弱;3.信噪比低;4.变化频率低;5.无创伤的检测; 要求:1.灵敏度高;2.信噪比高;3.良好的精确性;4.响应速度快;5.稳定性;6.互换性; 什么是应变效应什么是压阻效应两者有何异同 应变效应:金属电阻受力后尺寸变化引起阻值变化;压阻效应:半导体电阻受力后电阻率变化引起电阻值变化;同:都受到作用力,其结果都会导致电阻值的变化。异:导致阻值变化的原因不同,前者因尺寸变化引起,后者主要因电阻率变化引起。 直流单臂电桥的非线性误差如何产生如何解决 产生条件:△R1<

重庆大学《生物医学传感器原理与应用》第三章--敏感元件

第三章 敏感元件 作用:把物理量转换为电量,是传感器中的主要元件。 必备两个基本功能: ①敏感被测量(物理量、化学量)②对应产生输出量(电量)。 §3-1 变换力和压力的弹性敏感元件 一、弹性敏感元件的作用 非电量—→弹性元件—→应变量—→换能元件—→电量 弹性元件两种类型: ①弹性敏感元件:感受力、压力、力矩等-→变换为元件本身的应变、位移等; ②弹性支承:起支承导向作用,不作为测量敏感元件。 二、弹性特性: 作用在弹性元件上的外力与其相应变形间的关系。 1.刚度:弹性元件受外力作用下变形大小的量度。 dx dF k = F —作用外力 x —变形 弹性特性曲线上某点切线水平线夹角的正切为该点处的刚度。 dx dF tg k = =θ 2.灵敏度:单位力产生变形的大小,是刚度的倒数。 dF dx K = 并联时,系统的灵敏度:∑== n i i K K 111 灵敏度低,刚度大 串联时,系统的灵敏度: 1 n i i K K ==∑ 灵敏度高,刚度小 三、弹性滞后和弹性后效 1.弹性滞后——弹性特性曲线的加载曲线与去载曲线不重合现象。 滞后误差:弹性变形之差,直接产生测量误差。 2.弹性后效——当载荷改变后,在一定时间间隔逐渐完成变形的现象。

使弹性敏感元件的变形始终不能迅速跟随作用力的改变而改变,造成测量误差,尤其在动态测量中影响较大。 4.固有振动频率:——由振动质量和材料刚度综合表征的弹性元件特征。 决定弹性元件的动态特性和变换被测参数的滞后作用,希望0f (或0ω)高。 因 e m k = 0ω e m k f π 210= , k — 弹簧刚度,m e — 等效振动质量 所以 提高灵敏度K ,会使线性变差,固有振动频率 0ω、0f ↓。 k K 1= Θ 提高0ω、0f ↑,灵敏度K 会降低,需综合考虑。 5.固有频率f 0与弹性元件的变形dx 以及材料性能的关系 ρ??=l S m , S —截面积,l —长度,ρ—密度 弹性元件相对变形:E l dx σδ== ,式中 E —弹性摸数,σ—应力,∴dx l E ?=σ () 2 02 1 1 1/1 1 222221122S E dx dx k dF dx dx dx l f m Sl Sl l l dx E E dx σσσσπ πρπρπ ρπ ρ σσπ πρ ρ??====== = 最后可得: ρπσ ?= ?E dx f 20 可知弹性元件dx f ?0的乘积对于特定材料是有一个极限值的,σ达到许用应力时, dx 大,f 0就只能小,反之亦然。 6.弹性敏感元件的形式及其应用范围。 力、压力——→弹性敏感元件——→ 输入 输出 应变—各种应变传感器 位移—电感式、电容式、电阻式等传感器

生物医学传感器复习资料

第一章 传感器与生物医学测量 (1)国家标准(GB7665—87)关于传感器的定义,传感器的组成部分及其作用。 定义:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,它通常由敏感元件和转换元件组成。 传感器的组成:敏感元件,转换元件,信号调节转换电路,辅助电源 传感器的作用:将一种能力转化为另一种能量形式。 (2)生物医学测量仪器的三个主要部分及其所起作用。 ? 传感器和电极 ? 放大器和测量电路 ? 数据处理和显示装置(现代生物医学测量仪器已包括治 疗仪器组成完整的生物医学仪器,也包括基于网络的数据传输部分。) (3)常见生理参数的测量范围(心电,脑电,肌电) 心电图ECG :(所用传感器)体表电极 (幅值)50uv —5mv (频率)0.05—100Hz 脑电图EEG :头皮电极 2—200uv 0.5—100Hz 肌电图EMG:针电极 20uv —1mv 10Hz —20kHz (4)通过人体的低频电流(直流~1KHz )对人体的作用有三个方面。 ? 产生焦耳热; ? 刺激神经、肌肉等细胞; ? 使离子、大分子等振动、运动、取向。 第二章 生物电信号的特征 (1)什么是膜电位?静息时细胞膜内外常见离子浓度情况如何? 膜电位(membrane potential ):在可兴奋组织(如神经,肌肉或腺组织)的细胞膜内外,存在着不同的带电离子。膜外呈正电,膜内呈负电,存在着一定的电位差。平时呈现静息电位,细胞膜内介质的静息电位约为-50mV ~-100mV ,细胞内带负电,细胞外带正电。(静息电位(resting potential ):是指细胞未受刺激时的膜电位,即处于静息状态下,细胞膜两侧存在的电位差。) 静息时: ? K + 的膜内浓度比膜外高30倍; ? Na +的膜外浓度比膜内高10-15倍; ? CL -的膜外浓度比膜内高4~7倍; ? Ca 2+ 的膜外浓度比膜内高104 倍; ? 蛋白质阴离子的膜内浓度比膜外高等 由此可知,膜内外的K + 、Na + 、CL -、Ca 2+ 等离子之间各有一定的浓度差形成浓度梯度。 (2)能斯特(Nernst)方程以及利用能斯特方程求静息时K + 的平衡电位ε k 。 (式中ε为扩散电位差,生理学上为 膜两边的跨膜电位) 例子:已知人体神经细胞内、外K + 的有效浓度分别为[K + I ]和[K + o ](单位为mol/L ),则根据Nernst 方程式计算出 K + 的平衡电位εk : k=1.38x10-23 J·K -1),T 为绝对温度(K),Z=+1,e=1.60x10-19 C 在人体体温(37℃)下,若将各项值代入,则Nernst 方程式可化为: 代入表2.1给出参数,得εk =-89mV,理论计算值与实测结果(- 86mV )很接近。 (3)细胞膜的模拟等效电路 细胞膜等效电路为电容和电阻并联形式。 例子:若细胞膜面积S=5x10-6cm 2,厚度d=10-6 cm,ε=3.26 膜的电容值:d S C ε4==1.3pF=1.3×10-12 F(法拉) 若已知膜电位为V = - 86mV ,代入公式Q = CV,可求得应带的电量为Q=1.3×10-12 × 0.086 = 1.1×10-13 库仑(C)。 这些电量应是Q/e 个K + 离子所有,已知e=1.6×10-19 库仑(即K + 离子的电量),得参与扩散的K + 离子数应为:Q/e = 6.9×105 。 已知典型的细胞体积为10-9 cm 3 ,K + 离子的浓度约为0.14克分子/升,或每立方厘米约有0.14×6×1023 /1000 ≈1020 个离子。 照此计算,每一细胞内就有:1020 ×10-9 =1011 个K + 离子,其中只有6.9×105 个K + 离子向膜外扩散 (4)什么是动作电位,动作电位在去极化和复极化过程中各个时期的特点(包括时程,电位幅度,K + 、Na + 、Ca 2+ 离子运动情况)。 心肌细胞受到窦房结发来的电脉冲剌激时(阈剌激),受剌激部位膜电位将发生短暂的电位变动,最初膜电位升高,接着慢慢恢复到原来静息电位水平。这个过程经历300ms 时程,膜电位的变动,生理学上称为“动作电位”。 1.去极化:去极化即除极,是动作电位的0期。(当可兴奋的细胞受到外界剌激,如给它以电剌激,剌激电流从膜内流向膜外,因此膜的极化状态减弱,称之为去极化。) ? 表现:去极化达到一定临界水平,即阈电位,便产生兴奋。 这时细胞膜的极化现象消除,出现膜内为正、膜外为负的反极化状态:在短时间内由-50mV —100mV 变到+20mV —+40mV ,构成动作电位上升支(去极相)。快钠通道“开放”,Na + 通过快钠通道,向膜内迅速扩散,使膜电位升高得很快,最快变化率可达800v/s,上升幅度大(-80mV 至+30mV)。 ? 特点:对于心肌细胞,此期历时很短,仅1~2ms 。 2.复极化:是从去极化电位达到正峰值后开始,一直恢复到静息电位水平状态之间的过程。(动作电位的产生,取决于细胞膜两边的电压和膜对于Na + 、K +随时间变化的通透性。) 1期:亦称快速复极初期,Na + 向内扩散减慢,而K + 的向外扩散则缓慢地上升,两者达到动态平衡。膜外CL -浓度高于膜内4~7 倍,而且此时膜内电位为正,高于膜外,故CL - 借助于浓度差和电位差两者的作用而大量向内扩散,使细胞内的电位逐渐降低。1期占时平均约10ms 。 2期:缓慢复极期或平台期,胞外Ca 2+ 浓度比细胞内高得多,此期慢钙通道‘早已开放’,并且开得很大,Ca 2+ 在浓度梯度作用 )(] [] [lg 3.2mV K K e T O I k + +Z -=κε)(] [] [lg 51.61m V K K O I k + +-=ε

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

生物医学工程

第一章生物电磁学 第一节概述 第二节生物电现象 第三节电磁波在医学中的应用 第四节微波的生物效应 第五节毫米波生物学效应 第六节生物磁场现象 第七节生物电磁剂量学和电磁辐射的安全标准第八节生物电磁场热点问题 第二章生物力学 第一节概述 第二节软组织的力学性质 第三节骨的力学性质 第四节血液的流动性质 第五节心脏、动脉和静脉中的血液动力学 第三章超声医学原理 第一节概述 第二节医学超声的物理基础 第三节医用超声换能器医学超声的物理基础第四章生物医学光子学 第一节概述 第二节光和物质 第三节生物系统的超微弱光子发射 第四节生物组织中光传播的基本规律 第五节激光与组织的相互作用原理及应用 第六节生物医学研究中的光学成像技术 第七节光谱技术及其在生物医学中的应用 第五章生物技术 第一节概述 第二节生物学基础 第三节基因组生物技术 第四节蛋白质组生物技术 第五节制药生物技术 第六节纳米生物技术 应用技术篇生物医学工程中的应用技术 第六章生物医学传感技术 第一节概述 第二节物理传感器 第三节化学传感器 第四节生物传感器 第七章生物医学信号处理 第一节概述 第二节生物医学信号的特点 第三节生物医学信号的提取及特征

第四节生物医学信号的常用处理方法简介 第五节现代生物医学信号处理方法简介 第六节生物医学信号的参数模型分析 第八章现代医学影像技术 第一节概述 第二节投影X射线成像 第三节X射线计算机断层摄影 第四节超声成像系统 第五节放射性梳素成像系统 第六节磁共振成像系统 第七节医学图像的未来发展 第九章电生理的诊断与监护技术 第一节概述 第二节心电分析与诊断技术 第三节脑电分析与诊断技术 第四节肌电检测与应用 第五节眼电检测与诊断 第六节胃电检测与诊断 第十章临床生化检验技术 第十一章放射治疗技术 第十二章定向能量外科治疗技术 第十三章理疗技术与康复 发展趋势篇生物医学工程发展趋势 第十四章医院数字化信息化技术 第十五章生物材料 第十六章基因芯片与数据分析 第十七章MEMS技术在生物医学工程中的应用第十八章生物信息学导论

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

电化学生物传感器

目录 1. 电化学生物传感器简介 (2) 1.1 电化学生物传感器的原理 (2) 1.2 电化学生物传感器的发展 (3) 2.电化学生物传感器分类.... 错误!未定义书签。 2.1电化学免疫传感器 .......................................... 错误!未定义书签。 2.2电化学适体传感器 (5) 2.3电化学DNA传感器 (5) 3.信号放大技术在电化学生物传感器中的应用错误! 未定义书签。 3.1酶催化信号放大技术在电化学生物传感器中的应用错误!未定义书签。 3.2纳米粒子信号放大技术在电化学生物传感器中的应用 3.3 链式反应信号放大技术在电化学生物传感器中的应用 4. 电化学生物传感器研究新进展 (8) 参考文献及英文摘要与关键词. 错误!未定义书签。

电化学生物传感器的研究 摘要本文介绍了电化学生物传感器的发展状况和最新研究方向,综述了近年来电化学生物传感器检测技术的原理和分类,以及信号放大策略在电化学生物传感器中的应用,并概括了电化学生物传感器检测技术的新进展。 关键词电化学生物传感器免疫适体 DNA 信号放大 电化学生物传感器(Electrochemical biosensor)是将生物活性物质如酶、抗原/抗体、DNA、适体等作为分子识别物质固定在电极上,以电化学信号为检测信号的分析器件。电化学生物传感器以其选择性好、灵敏度高、响应快、操作简便、可实现在线、活体分析等特点,在分析化学的研究中起着越来越重要的地位,已广泛用于生命科学、环境分析、药物分析等领域。 1.电化学生物传感器简介 1.1 电化学生物传感器的原理 电化学生物传感器是指由生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。其原理结构[9]如下图 1 所示。 图1 电化学生物传感器的基本构成示意图 1.2 电化学生物传感器的发展 电化学生物传感器的应用广范,它已经渗透到医药领域、食品卫生、环境检测等生活实践中去,只要应用有:细茵及病毒感染类疾病诊断[24],基因诊断[25,26],药物分析[27],DNA 损伤研究[28]等。由此可见,电化学生物传感器的研究对临床医学和遗传工程的研究具有深远的意义和应用价值。 2.电化学生物传感器分类 2.1 电化学免疫传感器

电化学生物传感器.

电化学生物传感器 蔡新霞, 李华清, 饶能高, 王利, 崔大付 (中国科学院电子学研究所传感技术国家重点实验室北方基地, 北京100080 E 2mail :. ac. cn 摘要:介绍了电化学生物传感器的分类、基本测试原理和研究进展, 该类传感器可对多种生化参数 进行直接实时动态检测, 基于微机电系统(M EMS 加工技术和微电子IC , 电化学传感器在向着微型化、集成化方向发展。关键词:生物传感器; 电化学器件; M EMS 技术; 中图分类号:TP212文献标识码:(07/0820359203 biosensors CAI Xin 2xia , L I Hua 2qing , RAO Neng 2gao , WAN G Li , CU I Da 2fu (S tate Key L ab of T ransducer Technology (North Base , Instit ute of Elect ronics , Chi nese Academy of Sciences , Beiji ng 100080, Chi na Abstract :The system , principle and research progress of electrochemical biosensors were introduced. The electrochemical biosensors can be used for real time detection to various biochemical molecules and would take development on microsystem and integration using M EMS and IC technologies. K ey w ords :biosensors ; electrochemical devices ; M EMS technology ; integration 1引言 第一个商业化的生物传感器于1972年由Y el 2low Springs 仪器公司制造, 之后又由Leeds , Northrup 和Beckman 仪器公司相继推出, 这些传感器均用于血糖和尿糖检测的电化学传感器。80年代新型的生物传感器在实验室取得了科研进展, 商家

生物医学传感器 简答题汇总

生物医学传感器与一般传感器相比,还必须满足? 1.材料无毒,且与生物体组织有良好的相容性; 2.检测时,长期接触不会影响或尽可能少影响正常生理活动; 3.有良好的电气安全性 4.在结构和性能上便于清洁和消毒,防止交叉感染。 生物信号有哪些特点?对医学传感器有哪些要求? 特点:1.非电量信号;2.生物信号十分微弱;3.信噪比低;4.变化频率低;5.无创伤的检测; 要求:1.灵敏度高;2.信噪比高;3.良好的精确性;4.响应速度快;5.稳定性;6.互换性; 什么是应变效应?什么是压阻效应?两者有何异同? 应变效应:金属电阻受力后尺寸变化引起阻值变化;压阻效应:半导体电阻受力后电阻率变化引起电阻值变化;同:都受到作用力,其结果都会导致电阻值的变化。异:导致阻值变化的原因不同,前者因尺寸变化引起,后者主要因电阻率变化引起。 直流单臂电桥的非线性误差如何产生?如何解决? 产生条件:△R1<

电化学生物传感器的应用实例zhuyue

电化学生物传感器的应用实例 摘要:生物电化学传感器是生物传感器中研究最早、种类最多的一个分支, 它具有专一、高效、简便、快速的优点, 已应用于生物、医学及工业分析等方面。目前,生物传感器正进人全面深人研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。相信在不久的将来,生物传感器的面貌会焕然一新。 关键词:生物传感器,应用 引言 生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。 最早的生物传感器发明于1962年,英国Clark[1]利用不同的物质与不同的酶层发生反应的工作原理,在传统的离子选择性电极上固定了具有生物功能选择的酶,从而构成了最早的生物传感器一一酶电极。生物传感器的研究全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。 1 工作原理及其分类 1.1 工作原理 传感器主要由信号检测器和信号转换器组成,它能够感受一定的信号并将这种信号转换成信息处理系统便于接收和处理的信号,如电信号、光信号等。生物传感器是利用生物分子探测生物反应信息的器件。换句话说,它是利用生物的或有生命物质分子的识别功能与信号转换器相结合,将生物反应所引起的化学、物理变化变换成电信号、光信号等。Rogers[2]等人将生物传感器定义为:由生物识别单元,如酶、微生物、抗体等和物理转换器相结合所构成的分析仪器,生物部分产生的信号可转换为电化学信号、光学信号、声信号而被检测。可见,任何一个生物传感器都具有两种功能,即分子识别和信号转换功能。 1.2 主要分类 生物传感器的分类方式很多,但根据生物学和电子工程学各自的范畴,主要有以下两种分类方式。 (1)根据生物传感器中信号检测器上的敏感物质分类 生物传感器与其它传感器的最大区别在于生物传感器的信号检侧器中含有敏感的生命物质。这些敏感物质有酶、微生物、动植物组织、细胞器、抗原和抗体等。根据敏感物质的不同,生物传感器可分酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等。生物学工作者习惯于采用这种分类方法。(2)根据生物传感器的信号转换器分类

相关文档
最新文档