纳米纤维概述

纳米纤维概述
纳米纤维概述

纳米纤维概述

1.纳米纤维的概念

纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[1]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。

2.纳米纤维的制备方法

随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。

2.1静电纺丝法

静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[2-4],其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯--核结构的纳米纤维,满足其在不同领域的应用需要。

2.2双组份复合纺丝法

双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[5-7],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[8]。Fedorova等[9]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA 复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”的数量增加至360个时,制备所得纳米纤维的直径为360nm。

海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

2.3熔喷法

熔喷技术是规模化生产超细纤维的重要方法[10-12]。熔喷法的原理是将聚合物原料经喷丝板喷出,然后在高温高速气流的喷吹下使其受到进一步拉伸,从而形成超细纤维。熔喷纺丝法是利用熔融纺丝技术的方法,不用像静电纺丝需要溶剂,效率较高、成本较低,也易于进行大批量的生产,较经济。此方法得到的纤维都是无序排列的短纤维和球型颗粒形成的纤维网,但适用的材料的种类并不多。

熔喷法制备超细纤维技术的关键在于如何进一步减小所获纤维的尺寸。最直接降低纤维尺寸的方法是减少聚合物熔体的喂入速率,但是这个方法只能将纤维的直径减少到一定范围内,并且会影响纤维的生产率。Ellison等[12]研究表明可利用熔喷技术生产直径为几百纳米的聚合物纤维。他们利用特殊的模头,通过熔喷技术制备得到直径为250nm的PP纳米纤维;同时还利用熔喷技术制备得到包含600个“岛”的海岛复合纤维,去除基体后所获纳米纤维的直径为50nm。

2.4激光拉伸法

随着纳米纤维在各领域应用的不断发展,纳米纤维制备新技术和新方法不断涌现[13-15],Suzuki等[16-19]提出一种CO2激光超声波拉伸法,即利用CO2激光照射纤维的同时在超声波条件下对其进行拉伸,产生约为105倍的拉伸比。由于纤维受到连续的拉伸作用,因此制备所得纳米纤维为连续长丝。此方法在制备纳米纤维的过程中不需要任何溶剂或第二组分的去除,并且不需要结合其他工艺,因此其方法简单且易于操作,可用于制备多种聚合物纳米纤维,如PLLA、PGA、PEN、PET等。Nakata等[20]通过复合纺丝法制备得到PA6/PET海岛复合纤维,利用CO2激光加热牵伸并去除海组分PA6后,获得了直径仅为39nm的连续PET 纳米纤维。

3.纳米纤维的应用

由于纳米纤维具有独特性能,其已成为材料科学领域研究的重点之一。纳米纤维应用在复合材料增强、过滤、组织工程、药物缓释、传感等领域的研究已取得了丰硕的成果。

3.1 过滤材料

过滤材料在原料或产品分离提纯、空气及水体净化、废弃物排放前处理等工业生产环节发挥着重要的作用。在现代生物、医药等领域的快速发展中,对过滤材料也提出新的需求。如对直径在微米和纳米级的粒子有很好的过滤效果,则要求过滤材料的通道和空隙结构必须与过滤对象的粒径相配对,而静电纳米纤维是制备高效过滤介质最直接有效的方法之一。静电纺丝纳米纤维膜孔径在数十纳米到几微米间变化,孔隙率高,而且具有连贯的孔洞结构,具有良好的空气通透性和对目的物的截留吸附性能。Wang等[21]通过静电纺聚偏(二)氟乙烯-六氟丙烯(PVdF-HFP)得到平均直径在500nm 左右的纳米纤维,在其表面涂敷聚吡咯,对滤液中的金离子有很好的吸附性能。Ma等[22]用聚砜(PSU)静电纺丝得到纳米纤维膜,并分别在其表面接枝甲基丙烯酸(MAA)、二氨基-二苯胺(DADPA)以及色素配体Cibacron blue F3GA,得到纳米纤维膜,该膜对牛血清蛋白有很好的吸附过滤效果。chen[23]等用β-环式糊精对制备所得碳纳米纤维膜进行功能化处理,指出处理后的碳纳米纤维膜是一种理想的大分子过滤材料,可用于染料过滤、

手性大分子过滤以及药物传递等领域。

3.2组织工程

当纤维直径小于或相当于动物体细胞直径时,细胞可粘附在纤维上并沿纤维生长。近年来,纳米纤维膜以其巨大的细胞外基质仿生潜能,被认为是一种很好的组织工程中细胞培养的支架材料[24]。Zong X H等[25]认为静电纺丝技术制得的具有三维结构的纳米纤维膜比表面积大、孔隙率高,纳米纤维直径尺寸与体内许多细胞相当,能够负载生长因子并诱导细胞粘附、增殖和分化,对于体外细胞培养,以及模拟细胞外基质构造具有特殊优势。Kyong S R等人[26]将胶原蛋白溶解在HFIP中,经过静电纺丝获得纳米纤维,戊二醛交联后再进行细胞外基质蛋白仿生修饰,用于人表皮细胞和口腔细胞的培养,并在纤维轴向上取向生长。Park 等[27]利用静电纺丝法将载药PLGA纳米纤维覆盖于食道移植片表面,用于延长药物释放。然后,为了获得更佳的药物延长释放效果,在载药PLGA纳米纤维表面又覆盖了另外一层PLGA纳米纤维,结果表明:利用此方法制备所得药物输送食道移植片有希望用于长时间治疗由食道癌引起的吞咽困难。Mackie等[28]在PLA中加入CNTs,制备得到电活性的纳米纤维支架,表征其形态以及物理化学性能。研究表明:此纳米纤维支架被用于培养人体细胞的过程中不会产生不利的细胞霉素,因此包含CNTs的纳米纤维支架可用于电活性组织工程领域。

3.3药物缓释

药物缓释系统是为了在较长时间内维持药物有效浓度,通过改变药剂结构,使药物在预定时间内释放于相应的作用环境中,提高药物的稳定性和有效利用率,降低药物的毒副作用,减少服药次数,减轻患者的痛苦[29]。

静电纺丝选材十分灵活,是可直接生产纳米尺寸药物颗粒的方法,可将很多药物添加在适当的溶液中进行静电纺丝。Xu等[30]采用乳液电纺方法制备了含盐酸阿霉素的纳米纤维,其油相是PEG-PLLA共聚物的氯仿溶液,水相是含盐酸阿霉素水溶液。制得的复合纳米纤维表面光滑,无药物晶体。荧光显微发现,该纳米纤维具有核-壳型结构。体外降解实验结果表明,该复合纳米纤维具有良好的可控缓释性能。Song B T等[31]研究了具有双载药体系的复合纳米纤维,分别用荧光素(Fluorescein)和若丹明(Rhodamine B)为模拟药物,负载于多孔硅纳米颗粒中,再分散到以聚乳酸-聚羟乙酸共聚物(PLGA)为连续相的纺丝液中,静电纺丝后制得载药复合纳米纤维。研究结果表明,两种模拟药物具完全独立的释放动力学。荧光素在324 h 内完全释放,而若丹明释放速度则相对比较缓慢。研究同时发现,改变纤维中多孔硅纳米颗粒中若丹明的含量可以对其释放量进行有效调控。

3.4传感器

纳米技术的发展,为传感器提供了优良的纳米敏感材料。与传统的传感器相比,纳米传感器尺寸小、敏感性高、应用领域广,基于纳米技术制作的传感器也极大地丰富了传感器的基础理论。其中纳米纤维由于其吸附力强、生物兼容性好、催化效率高、便于从反应体系中分离等性能,在传感器技术中得到广泛重视。纳米纤维的引入大幅提高了检测灵敏度,缩短响应时间,使仪器向微型化发展成为可能[32-34]。

目前,基于纳米纤维制备的传感器,已经应用于无机及有机物的检测。Liu

等[35]将有序聚苯胺纳米纤维搭接在两块电极之间作为化学传感器,用于低浓度氨气的检测。Luoh R等[36]研究了一种基于PAN 静电纺纳米纤维的CO2气体传感器,他们将包含纳米颗粒的聚合物溶液静电纺成纳米纤维,纳米颗粒选择粒径在10-70nm的氧化锌、氧化铁。用这种包含纳米颗粒的PAN纳米纤维用作传感器与傅立叶红外光谱仪连接起来检测CO2气体,吸收光谱显示出该传感器具有很高的敏感性。Wang X 等[37]将聚丙烯酸(PAA)和聚甲醇芘(PM)的共聚物PAA-PM通过静电纺成纳米纤维,并将其引入基于荧光悴灭的光学传感器中,纳米纤维的高孔隙率的结构和大比表面积使得传感器能够对检测物有很高的灵敏度,实现对2,4-二硝基甲苯和金属离子Fe(Ⅲ) 、Hg(Ⅱ)的灵敏检测。Katarzyna S 等[38]将脲酶分散到聚乙烯吡咯烷酮(PVP)纺丝液中,利用静电纺丝制得固定化酶的复合纳米纤维,由于纳米纤维的小直径和巨大的比表面积,使得包埋法固定于纳米纤维中的脲酶对氨水的检测限达到×10-6级。

4.纳米纤维的发展前景

纳米纤维具有超大比表面积、超细孔隙度和良好的机械特性等其它纤维所不能拥有的独特优势而广泛用于组织工程支架、药物传输、过滤介质、人造血管、生物芯片、纳米传感器、光学、复合材料等领域[39-41]。制备纳米纤维的方法有许多种,如拉伸法、微相分离、模板合成、自组装、静电纺丝等。其中静电纺丝法可以直接从聚合物或复合材料中制备连续纤维,它以操作简单、适用范围广、生产效率相对较高等优点而被广泛应用。

然而,目前世界上纳米纤维的生产效率普遍很低、可提供的纳米纤维种类有限、纤维的功能化改性技术尚不成熟。在目前欧美市场上推出的纳米纤维产品多通过静电纺方法生产,但静电纺丝法主要针对溶液纺丝体系,并且生产效率较低,需解决量产问题。熔融电纺虽然可以不受溶剂的限制,但由于熔融高聚物的高粘度,所获纤维的直径很难小于500nm。其它还有一些方法,例如模板纺丝、熔喷和海岛纺丝法。但模板纺丝法实验结果极不稳定,生产效率甚至比静电纺还低,只适用于实验室研究。熔喷法只能制备出由无序排列的短纤维和球型颗粒组成的毡状材料,并且适用此法的高分子材料也比较有限。海岛纺丝技术需要购置昂贵的复合纺丝机,设计结构复杂的喷丝板,寻找结构匹配的高分子基体和分散相,而且通常只能生产微米级的纤维,现今,只有聚酯和聚酰胺超细纤维可用此法纺制。未来静电纺丝技术的研究将集中在更小的纤维直径、更高的定位精度、更可靠的均一性以及微观性能的控制;提高纺丝效率,同时会兼顾到有序化纳米纤维的生产等方面。相信随着研究的不断深入,纳米纤维的可控制备及其产业化将取得重要突破。

[1]刘锦淮,黄行九等编. 纳米敏感材料与传感技术. 北京,科学出版社,2011.1-2

[2]Woan, K.V.; Scheffler,R.H.;Bell,N.S.;Sigmund,W.M.,Eleetrospinning of nanofiber chevrel phase materials.Journal of Materials Chemistry 2011,21(24),8537-8539.

[3]Tajima,T.;Ueno,S.;Yabu,N.;Sukigara,S.; Ko,F., Fabrication and characterization of Poly-gamma-glutamic acid nanofiber. Journal of APPlied Polymer Science 2011,122(1), 150-158.

[4] Nguyen,T.T.T.;Tae,B.;Park,J.S.,Synthesis and Characterization of nanofiber webs of

chitosan/Poly(vinyl alcohol) blends incorporated with silver nanoparticles. Journal of MateriaIs Science 2011,46(20),6525-6537.

[5] Cheng,K.K.;Hsu, T.C.; Kao,L.H., Carbon nanofibers PrePared by a novel co-extrusion and melt-spinning of Phenol form aldehyde-based core/sheath polymer blends. Journal of Materials Science 2011,46(6),1870-1876.

[6] Ochi,T.,The Investigation of nanofibers by melt-spinning. Sen-I Gakkaishi 2007, 63(12),423-425.

[7] Lv, X.; Li,G.; Zhang,L.;Yang,S.L.; Jin,J.H.; Jiang,J.M., Carbon nanofibers prepared by spinning of polymer blends and permittivity of CNFs composites. Proceedings of the Fiber Society 2009 Spring Conference,V ols I 2009,870-872.

[8] 章金兵;许民;龙小艺,纳米纤维的研究进展.江西化工2004,03,24-30.

[9] Fedorova,N.;Pourdeyhimi,B.,High strength nylon micro- and nanofiber based nonwovens via spunbonding. Journal of Applied Polymer Science 2007,104(5), 3434-3442.

[10]Qian,X.M.;Zheng,X.D.;Zhang,H.;Kang,W.M.,The method of producing nanomaterials and melt blown nonwovens composites.Advances in Composites,Parts1 and2 2011,150-151,667-672.

[11] Ellison,C.J.;Phatak,A.;Giles,D.W.;Macosko,C.W.;Bates,F.S.,Melt blown nanofibers: Fiber diemeter distributions and onset of fiber breakup. Polymer 2007,48(20), 6180-6180.

[12] Ellison,C.J.;Phatak,A.;Giles,D.W.;Macosko,C.W.;Bates,F.S.,Melt blown nanofibers: Fiber diemeter distributions and onset of fiber breakup. Polymer 2007,48(11), 3306-3316.

[13] Suzuki,A.;Shimizu,R.,Biodegradable poly(glycolic acid) nanofiber prepared by CO2 laser supersonic drawing. Journal of APPlied Polymer Science 2011,121(5),3078-3084. [14] Dieste,O.;Quintero,F.;Pou,J.;Lusquinos,F.;Riveiro,A., Influence of the working conditions on nanofiber diameters obtained by laser spinning. Applied Physics A-Materials Science & Proeessing 2011,104(4),1217-1222.

[15] Li,S.;Jiang,W.F.;Xu,Y.P.;George,T.F.,Invisible cavity of a polymeric nanofiber laser. Journal of Physical Chemistry C 2011,115(35),17582-17586.

[16] Suzuki,A.;Yamada,Y., Poly(ethylene-2,6-naphthalate) nanofiber prepared by carbon dioxide laser supersonic drawing. Journal of APPlied Polymer Seience

2010,116(4),1913-1919.

[17] Suzuki,A.;Arino,K., Poly(ethylene terephthalate) nanosheets prepared by CO2-laser supersonic multi-drawing. Polymer 2010,51(8),1830-1836.

[18] Suzuki,A.;Tanizawa,K.,Poly(ethylene terephthalate) nanofibers prepared by CO2 laser supersonic drawing. Polymer 2009,50(3),913-921.

[19] Suzuki,A.;Aoki,K.,Biodegradable poly(L-lactic acid) nanofiber prepared by a carbon dioxide laser supersonic drawing. European Polymer Journal 2008,44(8),2499-2505. [20] Nakata,K.; Fujii,K.; Ohkoshi,Y.; Gotoh,Y.; Nagura,M.; Numata,M.; Kamiyama,M., Poly(ethylene terephthalate) nanofibers made by sea- island-type conjugated melt spinning and laser-heated flow drawing. Macromolecular Rapid Communications 2007,28(6),792-795.

[21] Wang H X, Ding J. Polypyrrole-coated electrospun nanofibrous emembranes for recovery of Au(III) from aqueous solution. Journal of Membrane Science, 2007, 303: 119-125.

[22] Ma Z W, Masa Y K, Ramakr I S. Immobizlization of cibacron blue F3GA on electrospun polysulphone ultrafine fiber surfaces towards developing an affinity membrane for albumin adsorption. Journal of Membrane Science, 2006, 282: 237-244. [23] Chen,P.;Liang,H.W.;Lv,X.H.;Zhu,H.Z.;Yao,H.B.;Yu,S.H., Carbonaceous nanofiber membrane fonctionalized by beta-Cycbdextrizls for moIecular filtration. Acs Nano2011, 5(7),5928-5935.

[24] Boland E D, Wnek G E, Simpson D G. Tailoring tissue engineering scaffold using electrostatic processing techniques:a study of poly(glycolic acid)electrospinning. Journal of macromolecular science-pure and applied chemistry 2001, 38: 1231-1243

[25] Zong X H, Bien H, Chung C Y. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005,26: 5330-5338

[26] Kyong S R, Lim J, Gene L. Electrospinning of collagen nanofibers effects on the behavior of normal human keratinocytes and early stage wound healing. Biomaterials 2006, 27:1452-1461

[27] Park,C.G.;Kim,M.H.;Park,M.;Lee,J.E.;Lee,S.H.;Park,J.H.;Yoon,K.H.;Choy, Y.B.,Polymeric nanofiber coated esophageal stent for sustained delivery of an anticancer drug.Macromolecular Research 2011,19(11),1210-1216.

[28]Mackie,J.N.;Blond,D.J.P.;Mooney,E.;McDonnell,C.;Blau,W.J.;Shaw,G.;Barry,F.P.;Mu rphy,J.M.;Barron,V., In vitro characterization of an electroactive carbon-nanotube based

nanofiber scaffold for tissue engineering.Macromolecular Bioscience 2011,11(9), 1272-1282.

[29] Yang J. Progress in biodegradable polymer nanofibers as drug delivery systems. Chemical Industry Times, 2010, 24(3): 33-37

[30] Xu X L, Chen X S, Ma P A. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70: 165-170

[31] Song B T, Wu C T , Chang J. Dual drug release from electrospun poly (lactic-co- glycolicacid) mesoporous silica nanoparticles composite mats with distinct release proles. Acta Biomaterialia, 2012, 8: 1901-1907

[32] Deng X C, Wang F, Chen Z L. A novel electrochemical sensor based on nanosrtuctured film electrode for monitoring nitric oxide in living tissues. Talanta, 2010, 82:1218-1224

[33] Um J S, Jang H J, Kim S M. The electrolyte of electrochemical oxygen gas sensor. Electron Mater Lett, 2007, 3: 211-216

[34] Dai H, Xu H F, Lin Y Y. A highly performing electrochemical sensor for NADH based on graphite-poly (methylmethacrylate) composite eletrode. Electrochemical Commmunucaiton, 2009, 11: 343-346

[35] Liu,H.Q.;Kameoka,J.;Czaplewski,D.A.;Craighead,H.G, Polymeric nanowire chemical sensor. Nano letters 2004,4(4),671-675.

[36] Luoh R, Thomas H H. Electrospun nanocomposite fiber mats as gas sensors. Composite Science and Technology, 2006, 66: 2436 - 2441

[37] Wang X, Drew C, Lee S H. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Letters, 2002, 2:1273-1275

[38] Katarzyna S, Perena G, Sanford S. Electrospun biocomposite nanofibers for urea biosensing. Sensors and Actuators B, 2005, 108: 585-588

[39] Nayak R, padbye R, Kyratzis I L, Truong Y B,Arnold L. Text Res J, 2012, 82(2), 129-147.

[40] 李岩, 仇天宝, 周治南, 徐小燕. 材料导报,2011,25(9),85-88.

[41] 王小梅, 黄永安, 布宁斌, 段永青, 尹周平. 科学通报,2012,57(10),860-865.

纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究 摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理; 0引言 纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。 1 纤维素酶的性质 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。 纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。 2 纤维素酶的作用原理 (1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。 (2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。 (3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。 (4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

纤维素纳米纤维

纤维素纳米纤维 众所周知,植物的基本组成单位是细胞,其主要结构为纤维素纳米纤维,纤维素纳米纤维是拉伸纤维素链的半结晶纤维束。纤维素纳米纤维不仅纤细,而且纤维素分子链可以拉伸和结晶,所以其质量仅为钢铁的1/5,强度却是钢铁的5倍以上。另外,其线性热膨胀系数极小,是玻璃的1/50,而且其弹性模量在-200~200℃范围内基本保持不变。弹性模量约140GPa,强度2~3GPa。不同于石油基材料,作为生物基材料,更环保。 图1 纳米纤维素微观结构作为下一代工业材料或绿色纳米材料,目前已在全世界积极地开展有关制造和利用这种纤维素纳米纤维的研究。用木材浆粕等植物类纤维材料制造纤维素纳米纤维的各种方法相继被开发出来。在低浓度(约百分之几)下进行的浆粕纤维分解技术有高压高速搅拌方法、微射流法、水中逆流碰撞法、研磨机研磨法、冷冻粉碎法、超声波分丝法、高速搅拌法和空心颗粒粉碎法等。纤维素纳米纤维重要的特征是可以用所有的植物资源作为原料。除木材外,还可以从稻杆和麦杆等农业废弃物、废纸、甘蔗和马铃薯的榨渣,以及烧酒气体等的工业废弃物中制得直径为10~50nm的纳米纤维。如果有效利用轻薄且宽域分布的生物资源的特点,则可以制造和利用取自唾手可得资源的高性能纳

米纤维。日本等发达国家已经实现了纤维素纳米纤维的工业化生产。轻量、强度高的纤维素纳米纤维作为复合材料,可制造汽车零部件和家电产品外壳、建筑材料等;利用气体阻隔性可制造屏障薄膜;利用其透明性可制作显示器和彩色滤光器、有机EL基板、太阳能电池板等;利用耐热性可制造半导体封装材料和柔性基板、绝缘材料等;利用黏弹性能,可生产化妆品、药品、食品、伤口敷料如细胞培养基材、分离器和过滤器以及特殊功能纸张等。在石油工程领域,纳米纤维素凝胶可作为井下流体助剂,不发生体积收缩;可用于钻井液降滤失剂、页岩抑制剂、增稠剂等,改善相关流体的性能。《石油工程科技动态》所有信息编译于国外石油公司网站、发表的论文、专利等,若需转载,请注明出处!中国石化石油工程技术研究院战略规划研究所

纳米材料的概述

“纳米材料”—开启微观世界之门 1.纳米材料及纳米技术 纳米技术界定为:在1nm~100nm尺度空间内研究电子、原子和分子运动规律和特性,通过直接操纵原子、分子或原子团和分子团使其形成所需要的物质的新技术。 纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。2.纳米材料的发展 人类对物质的认识分为两个层次:一个是宏观,另一个是微观。人们对宏观物质的研究已经很深人,研究的历史也较悠久。对于微观物质的研究,到20世纪60年代出现了团簇科学,成为凝聚态物理研究的热点。在团簇物理研究中,人们在团簇和亚微米体系之间又发现了一个十分令人注目的新体系,即纳米体系。这个体系通常研究的范畴为1~100nm,其中典型的代表是纳米粒子。由于纳米粒子的尺寸小、比表面积大和量子尺寸效应使其具有不同于常规固体的新特性,而成为材料科学、物理学和化学等学科的前沿焦点。 1959年著名的美国物理学家理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲,预言说:“我不怀疑,如果我们对物质微小规模上的排列加以某种控制的话,我们就能使物质得到大量的可能的特性。”虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer 发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1984年Gleiter 首次采用气体冷凝的方法,成功地制备了Fe纳米粉。随后,美国、西德和日本先后研制成纳米级粉体及块体材料。 1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使

RH436-1数据管理、存储及集群技术概述

数据管理、存储及集群技术概述 一、数据 1.数据的分类 1.1.用户数据:用户数据的保护比系统数据更具有挑战性,用户数据的丢失或泄露则是致命的,比如银行业务λ 1.2.系统数据:系统数据丢失了并不会造成企业真正的损失λ 1.3.应用数据:应用数据在企业中是最不能轻视的,大量攻击都是通过系统上应用的漏洞来开展的λ 2.数据可用性 2.1.哪些数据必需保证高可用λ 2.2.注意数据的生命周期:分类存储(打包归档还是直接存储)λ 2.3.数据的访问方法和频率:是只读的还是可读写的?是应用程序的数据,还是可以直接访问的数据?是一个网络配置文件,还是为为了安全的配置?λ 2.4.应用程序的“data starved”数据饥饿:不应该是数据跟不上来,而应该是程序跟不上λ 2.5.所有的一切都要防止单点故障(SPOF:single points of failur)λ 3.规划设计 3.1. 数据越少要求越小λ 3.2. 减小复杂性λ 3.3. 增加灵活性λ 3.4. 保证数据的完整性λ 二、集群 集群是有一组计算机来共同完成一件比较复杂的事情。 1.集群的目标 1.1. HPC(High Performance):高性能集群,追求性能,大型的运算,λ 1.2. HA(High Availability):高可用,追求稳定,主要是为了防止单点故障,为了实现的是24小时不间断的工作,并不要求有多快λ 1.3. LBC(Load Balancing):负载均衡集群,基本不用(现大多数利用硬件LBC设备)λ 2.redhat的cluster products 2.1. RHCS(Redhat cluster suite):红帽集群套件,在RHEL5的AP版自带的λ 2.2. GFS(Global File system):全局文件系统,GFS支持并发写入。是一个集群级的文件系统。λ 2.3. CLVM (Clusterd logical volume manager):集群级的逻辑卷,的LVM 只是单机版的逻辑卷,在一个节点做了LVM,只能在这个节点看到。若果使用的是CLVM,做的LVM则可以在整个集群中看到。λ 2.4. Piranha:LVS 基础上设计的一套负载均衡高可用解决方案,LVS是基于IP 的负载均衡技术,由负载调度器和服务访问节点组成。λ 3.集群的基本拓扑

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

浅谈食品用酶的应用现状

浅谈食品用酶的应用现状 食品用酶,从早期的酿造、发酵食品开始,至今已广泛应用到各种食品上。随着生物科技进展,不断研究开发出新的酶制剂,已成为当今新的食品原料开发、品质改良、工艺改造的重要环节。 酶制剂在食品行业中的应用主要体现在以下几个方面: 1. 有利于食品的保藏,防止食品腐败变质。例如:目前与甘氨酸配合使用的溶菌酶制剂,应用于面食、水产、熟食及冰淇淋等食品的防腐。如溶菌酶用于pH6.0~7.5的饮料和果汁的防腐。乳制品保鲜新鲜牛乳中含有13毫克/100毫升的溶菌酶,人乳中含量为40毫克/毫升。在鲜乳或奶粉中加入一定量溶菌酶,不但可起到防腐作用,而且有强化作用,增进婴儿健。 2. 改善食品色香味形态和质地。如,花青素酶用于葡萄酒生产,起到脱色作用;复合蛋白酶嫩化肌肉,使肉食品鲜嫩可口;在肉类香精生产中常用的风味酶就是一种复合酶,使最终反应达到风味化要求。 3. 保持或提高食品的营养价值。通过多种蛋白酶的作用生产多功能肽及各种氨基酸已经是营养保健行业常见的加工方法。 4. 增加食品的品种和方便性。如用纤维素酶及果胶酶处理过的槟榔,使硬组织软化,方便食用,提高适口性,更便于咀嚼。为儿童提供各种酶解后的动植物天然食品,通过纤维素酶、果胶酶、蛋白酶等多种酶作用,去除不易吸收的成分,提高营养价值,更适合婴幼儿的营养吸收。 5. 有利于食品加工操作,适应生产的机械化和自动化。丹宁酶消除多酚类物质,去除涩味并消除其形成的沉淀。蛋白酶用于饼干减筋,生产酥性饼干。纤维素酶、果胶酶常用于榨果汁、豆油等对于原料的前处理,通过对果胶和纤维素的降解来解决加工难度,提高出油、出汁率。 6. 专一性生产加工需求。最典型的就是成熟的酶法淀粉深加工、酶法肉类提取物及酶法酵母提取物的大规模生产。由淀粉酶、蛋白酶、各种转化酶等组成的专一性酶解技术使这些农副产品深加工得于实现,并产生高付加值的食品原料。 7. 去除食品中的不利成分。双乙酰还原酶去除啤酒中的双乙酰。过氧化氢酶去除牛乳中的过氧化氢。柚苷酶用于柑橘汁的脱苦。 8. 保护食品中的有效成分,稳定食品体系。过氧化氢酶、葡萄糖氧化酶合用,用于稳定柑橘萜烯类物质。-半乳糖苷酶用于牛乳中,预防粒状结构;冷冻时稳定蛋白质;提高炼乳稳定性。 9. 提高食品的价值。酯酶用于交酯化反应,从低价值的原料中制造高价值的三酰甘油酯。 因为酶催化反应的专一性与高效性,在食品加工中酶的应用相当广泛,用得最多的是水解酶,其中主要是碳水化合物的水解酶;其次是蛋白酶和脂肪酶;少量的氧化还原酶类在食品加上中也有应用。日前,食品加工中只有少数几种酶得到应用。 国际市场动向 据推测,现在工业用酶的世界市场约为13亿美元。按地域分,欧洲占45%,北美为35%,南美5%,亚洲15%。按用途领域分,洗涤剂用为5.5亿美元;谷物处理用1.50亿美元;饲料用2亿美元,纤维用21亿美元;其他为4.50亿美元,其中用于食品的酶包含在淀粉糖化的谷物处理领域内,而脂肪酶和凝乳酶等处于谷物处理领域以外的食品用酶,则包含在“其他”项目中。据推测,食品用酶的市场规模将包括油脂用酶0.23亿美元;面包用酶1亿美元;果汁用酶0.26亿美元;酿造用酶0.42亿美元;蛋白分解用酶(包括制造风味用酶)约1亿美元。 世界上主要酶制剂生产公司是丹麦的诺维信公司和美国的国际杰耐考阿公司两大公司。现在世界酶制剂市场大约由诺维信公司占有40%的份额,而杰耐考阿公司约享有20%的份额。 日本的食品用酶的市场规模约为100亿日元。其中虽然以用于异构糖生产的酶为主,但是日本异构糖市场已经进入成熟期,今后难以有更大的发展和增长。近年来排位第二的蛋白质分解酶市场增长较快,主要是用于食品软化、调味品生产以及多肽等保健功能性材料生产。除此以外,同样寄以厚望的还有在巧克力生产中得到重用的可可白脱制造所需的脂肪酶;为制造供乳糖不耐症患者使用的预先分解乳糖的牛乳以及在生产无砂糖酸奶时,为调制甜味所必须的乳糖酶以及奶酪生产中使用的凝乳酶和澄清果汁用酶类等。日本最大的食品添加剂公司味之素公司在1993年开发成功和上市的谷氨酰胺转胺酶(TGase)制剂“阿库替巴”,迄今为止被利用在畜肉加工、火腿、香肠加工、水产品加工、面条加工以及豆腐加工中。在日本市场的年销售金额达45亿日元,是目前食品加工用酶中市场销售金额最高的一种酶。此外,该产品已销售到以欧洲为中心的海外市场。在日本销售金额中的2/3是海外市场销售所得。

纤维素酶的介绍 应用 前景

纤维素酶的生产方法及在食品行业的应用 纤维素酶的生产方法及在食品行业的应用 纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。 纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。 纤维素酶的来源 纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。 目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichoder mavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。 现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。 纤维素酶的生产方法 目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。 固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产

厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。 液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。 纤维素酶的应用 制酒 在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出 酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。 将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,

【文献综述】纤维素酶的概述

文献综述 生物工程 纤维素酶的概述 【摘要】纤维素作为地球上分布广,含量丰富的碳水化合物,它的降解是自然界碳素循环的中心环节。纤维素的利用和转化对于解决目前世界能源危机,粮食短缺、环境污染等问题具有十分重要的意义。本文就纤维素酶的应用进行一个简要的概述。 【关键词】纤维素酶;纤维素酶的实际应用:应用前景 1. 纤维素的概况 1.2 纤维素酶的分类 纤维素酶的组成比较复杂,通常所说的碱性纤维素酶是具有3~10 种或更多组分构成的多组分酶。根据其作用方式一般又可将纤维素酶分为3 类: 外切β- 1, 4-葡聚糖苷酶( 简称CBH) 、内切β-1, 4- 葡聚糖苷酶( 简称EG)和β- 1, 4- 葡萄糖苷酶( 简称BG) [1]。在这3 种酶的协同作用下,纤维素最终被分解成葡萄糖。到目前为止, 还没有能够在碱性条件下分解天然纤维素的纤维素酶。碱性纤维素酶是一种单组分或多组分的酶, 只具有内切β- 1, 4- 葡聚糖苷酶( 又称CMC酶) 的活性, 有的还与中性CMC 酶组分共存[2]。 1.3 纤维素酶的作用机理 纤维素酶在提高纤维素、半纤维素分解的同时, 可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质, 有利于动物胃肠道的消化吸收[3]。同时, 纤维素酶制剂可激活内源酶的分泌, 补充内源酶的不足, 并对内源酶进行调整, 保证动物正常的消化吸收功能, 起到防病、促生长的作用, 消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液, 增加消化物的粘度, 对内源酶造成障碍, 而添加纤维素酶可降低粘度, 增加内源酶的扩散, 提高酶与养分接触面积, 促进饲料的良好消化。而纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物, 在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物, 从而使消化道内的消化作用得以顺利进行[4]。也就是说纤维素酶除直接降解纤维素, 促进其分解为易被动物所消化吸收的低分子化合物外, 还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化[5] 2. 纤维素酶的一些历史及研究成果 在吴琳,景晓辉,黄俊生[3]的产纤维素酶菌株的分离,筛选和酶活性测定中,他们利用“采样—培养—分离单菌落—初筛—复筛—测OD值”的方法筛选出分解纤维素能力较强的菌株。[结果]经反复培养和划线分离从80份样品中初选出35株具有分解纤维素能力的菌株。其中10株由白转绿,长势较

纤维素酶的结构与功能综述

研究生课程作业(综述)题目:纤维素酶的结构与功能 食品学院食品工程专业 学号 学生姓名 课程食品酶学 指导教师 二〇一三年十二月

纤维素酶的结构与功能 摘要:人类的生命活动离不开酶,生物体的一切新陈代谢活动都离不开酶,并且工业酶产业正在迅速发展。本文简单阐述了酶的结构与功能,重点以纤维素酶为例子,阐述它的来源、结构、分类、催化机制以及在各行业的应用,并对纤维素酶的发展前景作了一定展望。 关键词:纤维素酶结构家族功能 The structure and function of cellulase Abstract:Human's life activities is dependent on the enzyme,and all the metabolic activity of organisms cannot leave the enzyme, and industrial enzyme industry is developing rapidly.This article simply expounds the structure and function of enzymes.The key to cellulose enzyme as an example,expounds its source,structure, classification,catalytic mechanism and application in various industries,and lastly expect the development prospect of cellulase. Keywords: cellulase structure family function 1

Excel数据管理与图表分析 公式概述

Excel 数据管理与图表分析 公式概述 在Excel 中,公式是一种可以自动完成计算的工具。通常情况下,公式由常数、变量、函数、名称以及运算符组成的一个表达式。 1.公式的结构 公式的结构主要有两种,一种为以等号开头,即在一个空白单元格中输入一个等号,Excel 就默认为用户输入了一个公式(公式一般都是以等号“=”开头)。在等号之后需要输入计算元素(操作数)。其中,各操作数之间均以运算符进行分隔,如图2-1所示为一个典型公式的语法结构: 图2-1 公式的结构 提 示 该公式的含义为:首先计算B1至E5单元格区域中的数据之和,即B1+C1+D1+E 1+B2+C2+D2+E2+B3+C3+D3+E3+B4+C4+D4+E4+B5+C5+D5+E5;然后,将B1单元格中的数值加上12;最后,将第一次计算的结果除以第二次计算的结果。 另一种方法是尊重Excel 以前Lotus 1-2-3 的用户操作习惯,允许用户使用以@符号作为公式的起始符号,然后,后面紧跟函数,其语法结构如图2-2所示。 图2-2 公式结构 提 示 Lotus 1-2-3是1983年Lotus 公司(该公司现已被IBM 公司收购)推出的1-2-3电 子表格系统,可以称得上是个人计算机软件的杰出代表。 这两个公式在结构上,除了开头的符号不同外,另外以@符号开头的公式必须后面紧随函数,而前一种结构则无此要求。下面来介绍一下这两种结构中的各元素的功能: ● 等号或@符号 为了区分公式与字符型的常数,Excel 规定公式的最前面必须加一个“=”等号或者“@”符号,然后再输入计算的各元素。 ● 单元格引用 通过指定单元格地址,来引用某个单元格或者单元格区域中的数据进行计算。 ● 运算符 包括一些符号,例如“+”加号和“*”乘号。 数字常量 等号 单元格引用 加法运算符 函数 除法运算符 @符号 函数

纳米材料研究及检测.

纳米材料研究及检测 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地 概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 【关键词】纳米技术;纳米材料;结构;性能;分析方法;表征 前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义 和作用。 分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应[、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下

几种方法。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新

纤维素酶在食品发酵工业中的应用

纤维素酶在食品发酵工业中的应用 1 纤维素酶在白酒生产中的应用 在白酒的传统酿造工业中,一般使用淀粉和其它糖类的物质如玉米、高粱、大麦等作为原料,结合稻壳、谷糠、高粱壳等辅料可以保持酒醅的松软度,在此基础上再添加一定量的糖化剂,使原料可以被酵母所利用。糖化剂在酿酒工艺中被称为曲或酒曲,曲是一种培养基,可以培养多种霉菌,累积不同的粗制酶类,如淀粉酶、磷酸化酶、脱羧酶等,白酒生产中最常用的曲为麸曲。之后再细致的将原料粉碎成末,将配料与之混合后,蒸煮至糊化后冷却,经历拌醅后便可入窖发酵,发酵一定时间后进行蒸酒便可以获得传统酿造的白酒[1]。 在白酒发酵生产中应用纤维素酶,可以有效提高原料的利用率及白酒的出酒率,其原因可能是有以下三方面:一是纤维素酶对纤维素类物质具有降解作用,例如其可以降解植物细胞壁的结构,使细胞内部所含有的淀粉类物质得到释放,利于糖化酶作用,提高了原料中可利用的淀粉含量,起到了节约原料的作用;其二薯干等淀粉质原料中含有1%-3%的纤维素和半纤维素,故在纤维素酶的作用下淀粉质原料可以分解生成可发酵的糖类,原料中碳源的含量的上升,白酒的出酒率也将得到提高;此外,纤维素酶还在白酒生产中的蒸煮过程与糖化过程中有效的降低了醪液的粘度,这有利于醪液的发酵,并且对醪液的运输提供了便利[2,3]。 将纤维素酶应用于酿酒中,生产时每使用10kg的原料,可在原有酿造基础上增加1-1.5kg的酒量,节约原料20%,其生产出的酒杂醇油含量比较低,而杂醇造成是白酒中苦涩味的主要来源,其减少将会使酒味更加醇香。在白酒酿造中,原料中含有的纤维素类物质较多,使用纤维素酶后,部分纤维素会降解生成葡萄糖,这些葡萄糖会与淀粉产生的糖类一起经由酵母分解而绝大部分转化为酒精,提高出酒率3%-6%,而纤维素和淀粉的利用率也将提高到90%[2,3]。以大曲酒为例,李旭晖等[4-6]的研究发现,在大曲酒的固态发酵中添加适量的纤维素酶后,以相同工艺为标准发酵27天后,每100kg原料大约可以增加出酒量6kg-15kg,出酒率可提高1.6倍。

《纺织品生物酶加工》结课作业

《纺织品生物酶加工》结课作业 题目: 纤维素酶在生物抛光中的应用研究 学院: 纺织与材料学院 专业班级:轻化工程2013级班 学生姓名: 李朝龙 学号: 41301030205

一、纤维素酶的来源及分类 1.纤维素酶的来源 1.1.来源于微生物的纤维素酶 (1)真菌类 分解纤维素的真菌主要来自丝状真菌,其菌丝穿透能力强,降解速率快。如木霉属、青霉属、根霉属、漆斑霉属、毛壳霉属等,还有后期研究发现的一些其他类型的真菌类纤维素酶。 (2)细菌类 细菌产生的纤维素酶一般需要在最适PH为中性至偏碱性环境下发挥作用。细菌中产纤维素酶活力较强的菌种,大致分为发酵厌氧型、好氧型和好氧滑动菌型三大类。 (3)放线菌类 对于放线菌研究者们关注度并不高,其繁殖缓慢,降解纤维素能力均弱于真菌和细菌。但放线菌具有独特的优势,其分泌的胞外酶多数具有一定的耐碱低性,能够在强碱性条件下仍保持较高活性,其单细胞结构简单,便于遗传分析等。目前研究较多的是高温放线菌,主要包括纤维放线菌,诺卡氏菌属和链霉菌等一些菌种。 1.2.来源于动物的纤维素酶 动物性纤维素酶是指动物内源性纤维素酶。自然界中,某些动物如草食性动物白蚁、食木蟑螂、蜗牛、天牛和线虫等也可以产生纤维素酶。 1.3.来源于植物的纤维素酶

植物的细胞壁主要由纤维素组成,纤维素能抵抗植物高渗透压,发挥支撑作用,并且在植物发育的不同阶段起到水解细胞壁的作用,如,果实成熟蒂柄的脱落等过程,会伴随着细胞壁降解的发生,所以纤维素酶同样广泛存在于植物中H1。但现今植物中提取纤维素酶的方法尚不成熟,提取的酶含量和纯度都不理想,因此植物不作为纤维素酶的主要来源。 1.4.来源于其他的纤维素酶 主要是一些食用菌类,以及一些组织培养基等。 2.纤维素酶的分类 纤维素酶一般可以分为以下三类: (1)葡聚糖内切酶:能在纤维素酶分子内部任意断裂β-1,4糖苷键。 (2)葡聚糖外切酶或纤维二糖酶:能从纤维分子的非还原端依次裂解β-1,4糖苷键释放出纤维二糖分子。 (3)β-葡萄糖苷酶:能将纤维二糖及其他低分子纤维糊精分解为葡萄糖。 二、纤维素酶的作用机理 纤维素酶的作用机制相对复杂,到目前为止依旧没有完全弄清。除了各个组分对纤维素分子的分解作用外,现在越来越多的研究表明纤维素酶的各种组分之间存在着协同作用。不过,纤维素酶的水解作用,大体上可以分为以下几步: (1) 酶分子从水相转移到纤维的表面; (2) 酶分子与纤维表面结合,形成E+S的复合物; (3) 把水分子转移到酶与底物复合物的激活位点;

纳米纤维概述

纳米纤维概述 1.纳米纤维的概念 纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[1]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。 2.纳米纤维的制备方法 随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。 2.1静电纺丝法 静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[2-4],其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯--核结构的纳米纤维,满足其在不同领域的应用需要。 2.2双组份复合纺丝法 双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[5-7],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[8]。Fedorova等[9]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA 复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”的数量增加至360个时,制备所得纳米纤维的直径为360nm。 海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

纤维素酶的研究进展及应用前景

纤维素酶的研究进展及应用前景 摘要 我国近年来在纤维素酶研究应用领域取得了很大进展。纤维素酶是一组能够分解纤维素产生葡萄糖的酶的总称,按照功能可以分为内切葡糖聚酶,外切葡糖聚酶和β-葡聚糖苷酶。它在纺织,酿酒,食品与饲料行业的市场潜力是巨大,受到国内外业内人士的看重。本文综述了纤维素酶的组成,结构,分类,理化性质与作用机理,阐明了生产纤维素酶的微生物种类,纤维素酶的发酵工艺及高效分解菌。介绍了纤维素酶的特性,重要意义,在各领域的应用,并对其未来研究趋势进行了展望。 关键字:纤维素酶研究应用 前言:因为资源枯竭、能源短缺及环境污染等问题日益加剧,世界各国都在寻找开发新能源。纤维素类物质是自然界中分布最广泛、含量最丰富、生成量最高的有机化合物,也是自然界中数量最多的可再生类质。但这些纤维素大部分没有被开发,造成巨大的资源浪费和环境污染。近年来关于纤维素酶的基础研究获得了显著的进展,主要包括酶的组成部分和结构、发生降解的机理、基因的克隆和表达、酶的发酵和生产、应用等方面。由此可见生产纤维素酶对人类生存环境的改善和可持续发展有着举足轻重的地位。 1,纤维素酶的来源和分类 纤维素酶的最主要来源是微生物,用其生产是最为有效和方便的。不同微生物合成的纤维素酶在组成上差异明显。对纤维素的降解能力也不尽相同。细菌与放线菌生产的纤维素酶产量均不高,在工业上很少应用。而真菌具有产酶的诸多优点:产酶能力强,产生的纤维素酶为胞外酶,便于酶的分离和提取,且产生纤维素酶的酶系结构较为合理;酶之间有强烈的协同作用,降解纤维素的效率高。纤维素酶是一类能够把纤维素降解为低聚葡萄糖、纤维二糖和葡萄糖的水解酶。根据纤维素酶的结构不同,可把纤维素酶分为两类:纤维素酶复合体和非复合体纤维素酶。纤维素酶复合体是一种超分子结构的多酶蛋白复合体,由多个亚基构成。由四个部分构成:脚手架蛋白、凝集蛋白和锚定蛋白结合体、底物结合区域和酶亚基。非复合体纤维素酶主要由好氧的丝状真菌产生,如子囊菌纲和担子菌纲等的一些种属。它是由不同的三种酶所构成的混合物,即内切葡聚糖酶、外切葡苷糖酶和B一葡萄糖苷酶。 2,纤维素酶的组成与结构 因为种类和来源的不同,纤维素酶的结构存在较大差异,但是通常均具有2

纳米纤维素晶体

南京林业大学 课程设计报告 题目:纤维素纳米晶的制备与性能 学院:理学院 专业:材料化学 学号:101103227 学生姓名:朱一帆 指导教师:郭斌 职称:副教授 二0一三年十二月三十日

摘要 纤维素是自然界中最丰富的天然高分子聚合物之一,不仅是植物纤维原料主要的化学成分,也是纸浆和纸张最主要、最基本的化学成分。由于其天然性和生物可降解性,在现在能源缺乏的时代,纤维素有很大的发展空间。纳米纤维素是直径小于100nm 的超微细纤维,也是纤维素的最小物理结构单元元;与非纳米纤维素相比,纳米纤维素具有许多优良特性,如高结晶度、高纯度、高杨氏模量、高强度、高亲水性、超精细结构和高透明性等,加之具有天然纤维素轻质、可降解、生物相容及可再生等特性,其在造纸、建筑、汽车、食品、化妆品、电子产品、医学等领域有巨大的潜在应用前景。 本文介绍了纳米纤维素晶体(NCC)及其一些制备方法、性质、研究现状和应用,展望了NCC作为一种纳米材料的美好前景,是21世纪可持续发展研究的重要课题。 关键词:纳米纤维素晶体;制备方法;性质;应用

Abstract Cellulose is one of the nature's most abundant natural polymers,not only the main chemical components of the plant fiber materials , pulp and paper but also the most important and basic chemical composition of the pulp and paper. Due to its natural and biodegradable cellulose has much room for development in the era of the lack of energy. Nano-cellulose is ultra-fine fibers of less than 100 nm in diameter, the smallest physical structure of the cellulose unit Dollar;compared with non-nano-cellulose, nano-cellulose has many excellent characteristics such as high crystallinity, high purity, high Young's modulus, high strength, high hydrophilicity, the hyperfine structure, and high transparency, https://www.360docs.net/doc/769839225.html,bined with the characteristics of natural cellulose lightweight, biodegradable, biocompatible and renewable, so it has huge potential applications in the field of paper, construction, automotive, food, cosmetics, electronic products and medical. This article describes what's the NCC and some preparation methods, nature, current research and applications. And looking up theNCC as a prospect of a better future nanomaterials. This research is an important issue for sustainable development in the 21st century. Key words: Nanocrystallinecellulose; preparation methods; properties;applications

——浅谈几种酶在焙烤食品中的应用10.6.5

《酶工程》论文 浅谈几种酶在焙烤食品中的应用 学院:食品科学与药学学院 班级:食品科学与工程082班姓名:左宝莉 学号:084031258 授课教师:武运

浅谈几种酶在焙烤食品中的应用 摘要:主要介绍了脂肪酶、葡萄糖氧化酶、淀粉酶、蛋白酶、半纤维素酶在焙烤食品中的应用。 关键词:酶、焙烤食品、应用 Abstract:introduce lipase, protease, hemicelase, glucose-oxidase, amylase apply in the adhibition. Key words: enzyme, bake, adhibition. 引言:目前,在食品工业中广泛采用酶来改善食品的品质以及制造工艺,酶作为一类食品添加剂,其品种不断增多。它在食品领域中的应用 方兴未艾。随着溴酸钾被禁用,如何使用天然无害具有替代功能的 产品,成为广大焙烤食品及面粉企业关注的焦点,而生物酶制剂满 足了这方面的要求。酶作为一种生物制品,在面粉改良中,具有显 著的优越性。这些优越性体现在:酶本身就是活细胞产生的活性蛋 白质,本身无毒,故不会留下有毒的物质。酶的催化作用具有高度 的专一性,一种酶只对一种底物起作用。如淀粉酶只能催化淀粉的 水解,而对蛋白质则无效。酶的催化效率非常高,比一般催化剂高 107-1013倍,因此用量相当少。酶的操作条件温和,在常温、常 压下就能进行。与以前的化学催化剂相比,酶反应显得特别温和, 这对避免食品营养的损失是很有利的。以下介绍几种酶在焙烤食品 中的应用。 1.脂肪酶 脂氧合酶在面包中用于改良面包质地、风味,并进行漂白。

相关文档
最新文档