微合金化非调质钢C38N2动态再结晶行为

微合金化非调质钢C38N2动态再结晶行为
微合金化非调质钢C38N2动态再结晶行为

奥氏体不锈钢动态再结晶

奥氏体不锈钢的变形与再结晶 一、引言 奥氏体不锈钢在不锈钢中一直扮演着最重要的角色,是不锈钢家族中最为重要的类型,钢号特别的多。之所以称其为奥氏体不锈钢是因为它在常温下是稳定的奥氏体组织。奥氏体组织具有面心立方(FCC)的晶体结构,具有众多的滑移系,因此冷加工能力特别的好。当前我国常用奥氏体不锈钢的牌号有40多个,奥氏体不锈钢具有高塑性韧性、抗腐蚀性、冷加工能力以及无磁性,但是强度偏低。 奥氏体不锈钢主要有200、300和超级不锈钢三大系列, 300系列不锈钢是国内最常用的奥氏体系列不锈钢,是以18-8(304奥氏体不锈钢,又称18-8)为基础发展起来的,在304奥氏体不锈钢的基础上增加Ni的含量就能够生成305不锈钢,为了提高不锈钢的抗点蚀能力常在305不锈钢的基础上加入MO制造出316、317不锈钢,321不锈钢是在305的基础上加入了Ti,目的就是提高抗晶界腐蚀性及高温强度。 对于奥氏体不锈钢这种应用广泛的材料,它不仅具有高的耐蚀性、塑性和良好的可焊性,而且经过锻造、挤压后强度可以成倍提高。正因为如此,许多研究者研究了奥氏体不锈钢的变形行为,其中尤以冷变形和温变形研究得较多,本文中,将通过举例对常见的3种奥氏体不锈钢(304奥氏体不锈钢、316LN不锈钢和321奥氏体不锈钢)的高温变形进行系统的分析。主要通过热模拟试验机研究不锈钢单道次高温时的动态再结晶,得到热变形条件下的真应力-真应变曲线,结合显微组织分析,得出动态再结晶规律和流变应力。 2、金属材料的热变形行为 热变形是指在钢的再结晶温度以上进行的加工过程。不同变形温度及应变速率下的流变曲线是研究热变形条件下金属材料力学行为的主要内容之一。在热变形过程中,加工硬化与软化过程同时进行,并且决定了此时材料的变形抗力。通常,变形过程的软化取决于钢的动态回复和动态再结晶过程。 2.1 基本概念 动态回复: 动态回复是在热加工过程中伴随发生的回复过程。对于层错能较高的材料,在热加工过程中,位错易发生交滑移和攀移,在热变形时容易发生动态回复。而对于层能较低的材料,如奥氏体不锈钢则不易发生动态回复。 第Ⅰ阶段—微应变阶段:应力增加很快,但应变量不大(小于1%),加工硬化开始出现。 第Ⅱ阶段—均匀变形阶段:曲线的斜率逐渐下降,金属材料开始均匀塑性变形,即开始流变,并发生加工硬化,且随加工硬化作用的加强,开始出现动态回复并逐渐加强,其造成的软化逐渐抵消加工硬化作用,使曲线的斜率下降并趋于水平,加工硬化率为零,进入第三阶段。 第Ⅲ阶段—稳态流变阶段:在达到第三阶段后,即可实现持续形变。表现为由变形产生的加工硬化与动态回复产生的软化达到动态平衡,流变应力不再随应变的增加而增大,曲线保持水平状态。达到稳态流变时应力值与变形温度和应变速率有关,增高变形温度或降低应变速率,都将使稳态流变应力降低。

调质钢与非调质钢简介

调质钢与非调质钢简介 一、调质钢 1、简介 所谓调质钢,一般是指含碳量在0.30~0.60%的中碳钢。一般用这类钢材制作的零部件要求具有很好的综合机械性能,即在保持较高强度的同时,又具有很好的塑性和韧性,传统方法往往是使用“调质处理”来达到这个目的,所以习惯上就把这一类钢称作调质钢。 各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢,它是零件淬火后在500~650℃温度范围内进行回火处理的钢。经调质处理后,钢的强度、塑性及韧性有良好的配合。碳素钢、低合金钢及中合金钢,调质处理后的金相组织是回火索氏体。各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢。 2、性能特点 除一般的冶金方面的低倍和高倍组织要求外,主要为钢的力学性能以及与工作可靠性和寿命密切相关的冷脆性转变温度、断裂韧性和疲劳抗力等。在特定条件下,还要求具有耐磨性、耐蚀性和一定的抗热性。由于调质钢最终采用高温回火,能使钢中应力完全消除,钢的氢脆破坏倾向性小,缺口敏感性较低,脆性破坏抗力较大,但也存在特有的高温回火脆性。 大多数调质钢为中碳合金结构钢,有焊接性能要求的调质钢则为低碳合金结构钢,具有很高的塑性和韧性,少数沉淀硬化型调质钢,属高强度和超高强度调质钢。 3、分类 常用的合金调质钢按淬透性和强度分为4类: ①低淬透性调质钢

②中淬透性调质钢 ③较高淬透性调质钢 ④高淬透性调质钢 以下介绍两种最典型的调质钢: A、45碳素调质钢 45钢是中碳碳素结构钢,含碳量在0.42-0.50%,现执行标准为《优质碳素结构钢》,即GB/T 699-2015,冷热加工性能都不错,机械性能较好,且生产成本较低,价格低,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45钢调质件淬火后的硬度应该达到HRC56~59(洛氏硬度),截面大的可能低些,但不能低于HRC48,不然,就说明工件未得到完全淬火,组织中可能出现索氏体甚至铁素体组织,这种组织通过回火,仍然保留在基体中,达不到调质的目的。45钢淬火后的高温回火,加热温度为560~600℃,硬度要求为HRC22~34。因为调质的目的是得到综合机械性能,所以硬度范围比较宽。但图纸有硬度要求的,就要按图纸要求调整回火温度,以保证硬度。如有些轴类零件要求强度高,硬度要求就高;而对于齿轮类、带键槽的轴类等零件,因调质后还要进行车、插、创、铣、钻等机加工,硬度要求就低些。 B、40Cr合金调质钢 40Cr钢是中碳合金结构钢,含碳量在0.37-0.44%,含Cr量在0.80-1.10%,现执行标准为《合金结构钢》,即GB/T 3077-2015。 以40Cr为代表的合金调质钢广泛用于制造汽车、摩托车、柴油机、机床和其它机器上的各种重要零件,如齿轮、轴类件、转向节、半轴、连杆、螺栓等。调质件大多承受多种工作载荷,受力情况比较复杂,要求高的综合机械性能,即具有高的强度、良好的塑性和韧性。合金调质钢还要求有很好的淬透性。但不同

高强度钢的动态再结晶行为研究

?试验研究? 高强度钢的动态再结晶行为研究 关奎英1,唐荻1,武会宾1,谢勇1,孙全社2 (1北京科技大学高效轧制国家工程研究中心,北京100083;2宝山钢铁股份有限公司技术中心,上海201900)摘 要:采用Gleeble1500热模拟实验机研究了高强度钢在不同条件下热变形时的动态再结晶行为以及晶粒尺寸的变化规 律,确定了该钢的动态再结晶激活能为294096J/mol,建立了动态再结晶行为的数学模型,分析了变形工艺参数对再结晶行为以及晶粒尺寸的影响。变形温度和变形速率是影响动态再结晶的主要因素,一般在高的变形温度和小的变形速率下,动态再结晶才能发生。 关键词:高强度钢;动态再结晶;变形温度;变形速率;热模拟实验机中图分类号:TG111.7 文献标识码: A文章编号: 1004-4620(2007)02-0042-03收稿日期:2006-12-12 作者简介:关奎英(1981–),男,陕西西安人,北京科技大学高效轧制国家工程研究中心2004级材料加工专业硕士研究生。研究方向:金属加工工艺。 1前言 高强度钢在工程机械大型钢结构等领域有着广 泛的应用,因此在国民经济中发挥着重要的作用。近几年,上海宝山钢铁股份有限公司(简称宝钢)开发了一系列高强度和超高强度钢,供应市场,满足机械和航空航天等行业的需求。本研究主要探讨高强度钢热变形后冷却过程中奥氏体的转变规律。 一般金属在热变形过程中,位错增殖产生的加工硬化逐渐被动态回复或动态再结晶软化所平衡,最终达到稳态流变。应变速率越大,再结晶的驱动力也越大,然而,加工硬化作用也随着应变速率的增大而增大,因此,再结晶软化与加工硬化二者的作用相 互平衡时的峰值应力及峰值应变均增大[1, 2] 。微合金钢热变形过程中的动态再结晶以及变形后的静态再结晶行为是影响变形抗力的主要因素,同时也对随后的奥氏体相变行为产生影响。因此,通过建立奥氏体再结晶行为的预测模型,由钢材的化学成分及工艺参数可预测并控制钢材最终的机械性能,完成钢材的化学成分及轧制工艺参数的设计优化[3]。利用单道次压缩的实验方法, 研究了实验钢热变形过程中的动态再结晶行为。同时,利用双道次压缩的实验方法,研究了实验钢变形间隔时间内奥氏体的静态再结晶行为,为研究相变行为和制定轧制工艺提供理论依据。 2实验材料和方法 实验用材料为宝钢生产的热轧高强度钢,从锻 造坯料上截取并加工成直径为8mm,长度为15mm的试样。通过单道次压缩实验研究其动态再结晶规律,建立动态再结晶模型并比较模型计算和实验测 得的结果,热压缩变形实验工艺如图1所示,采用5个变形温度,分别为850、900、950、1000和1050℃,3个不同的变形量,真应变ε分别为0.2、0.4、0.8,变形速率为1.0s-1。 图1单道次压缩变形工艺 3实验结果及分析 图2为不同变形速率下的应力-应变曲线。可 以看出,当变形速率为5.0s-1时,应力一应变曲线没有出现峰值,随着应变的增加,变形抗力(即应力)同步增加,所以并没有发生动态再结晶。分析可知,因变形速率较快,且高强度钢中含有Nb、V、Ti合金比较多,对动态再结晶的形核和晶粒长大有明显阻碍作用,推迟动态再结晶的效果十分明显,不易发生和完成动态再结晶。 图2 不同变形速率下的应力-应变曲线 即使在1050℃温度、变形速率为1s-1时,也没有出现动态再结晶。当变形速率为1.0、0.5s-1时,变形抗力在到达峰值后基本保持稳定,此时动态软化基本和加工硬化程度相等。当变形速率为0.1、0.05s-1时变形抗力出现峰值,并随之下降,表明此两种变形条件下其动态软化超过了加工硬化,发生了明显的动态再结晶。 第29卷第2期2007年4月 山东冶金 ShandongMetallurgy Vol.29,No.2 Apri l 2007 42

铝合金的再结晶 82-9

铝合金的再结晶82-9 10 作者顾景诚 一前言 铝及铝合金与其他金属材料一样,经塑性变形后,位错密度显著升高,同时发生加工硬化,强度和硬度大大提高。另外,由于滑移转动,晶体取向发生变化,晶粒也沿加工方向拉长,产生变形织构或加工织构。将这种材料加热到某一温度以上,随等温加热时间延长,强度和硬度渐渐下降,这就是软化过程,称之为回复。当变形程度超过某一临界值之后,加热保温时,在变形组织中产生新的晶粒,大量的晶核长大,吞食变形组织,使变形组织所占的比例越来越小,最后变成晶粒组织。强度和硬度下降到最低值。这就是大家所熟知的再结晶过程。使材料发生这一过程的处理称为再结晶处理[1]。 再结晶处理在工业生产上是意义重大的。变形铝合金半成品的生产过程就是形变和热处理交替进行的过程。半成品的最终组织和性能主要由这一过程决定的[2]。 因此,为了保证铝合金材料的工艺性能和最终性能,必须控制再结晶过程。例如:为使下道加工顺利进行,要进行中间退火,实现完全再结晶,消除位错,达到完全软化状态,以保证有足够的变形条件。但是,为使最终产品具有足够的强度,必须保存变形组织和挤压效应,则在最终热处理时,应尽量使材料不发生再结晶。硬铝LY12合金的挤压棒材和型材,有时因断面外围部位发生一次和二次再结晶,形成粗晶组织,使性能不合格而报废[5·6]。 要控制再结晶,必须清楚再结晶晶粒成核和长大过程,机理以及对再结晶过程的影响因素。 多年来,铝及铝合金的工作者们,在这方面进行了大量的研究工作。对再结

晶的发生,发展过程认识比较充分。本文对铝及铝合金再结晶过程的基本知识作梗概介绍。 二再结晶过程 铝及铝合金的再结晶过程就是在变形基体上生成新的晶核长大的过程。 变形组织为什么在一定温度下要变成再结晶组织呢?这应从铝合金材料在变形前后和再结晶前后的金属内能变化来加以说明。因为金属在变形过程中,外力对金属作功,使位错迅速而大量地增殖,位错密度显著增加,位错沿滑移面滑移带和剪切带,又使原晶粒破碎形成亚结构和位错胞,增加大量的亚晶界和胞壁,把变形能变成金属内能储存起来,使自由能升高。从热力学第二定律[9]可知:这是一种不稳定的状态,它向稳定的平衡状态过渡,使自由能降低,熵值增加,这是不可逆反应。因此:铝及铝合金的变形组织在一定条件下变成再结晶组织,这是热力学第二定律所决定的。再结晶动力就是位错消毁,晶界减少所带来的金属内能的降低。 下面介绍铝及铝合金从变形状态到再结晶组织的变化过程。 1.变形组织[1] 压力工使铝及铝合金发生变形,增殖大量位错,位错沿滑移面滑移,使多晶体中的各个晶粒都被分割成若干块,这就是亚结构。部分晶体取向发生改变,趋于一致,它们之间的位向差只有几度,而与它们相邻的另一部分基体的晶体取向相差30以上。取向差急剧改变是在狭窄区间内发生的,这一区间叫做滑移带。 由于位错密度的增大,位错互相堆积,形成三维的网络组织,它叫位错胞状组织,简称位错胞。在冷轧铝板的情况下,胞的大小是:厚为0.2~1.0微米,直径为0.5~1.0微米。当变形量达20%以上时,它的大小与变形量无关,只是相邻位错胞间的取向差随变形程度而增大。变形量为70%时,位错胞间的取向差达2~

45号钢调质处理

45# (号)钢和40Cr钢调质的热处理工艺 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。 调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳 量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。 调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度,回火后硬度按图要求来检查。 工件调质处理的操作,必须严格按工艺文件执行,我们只是对操作过程中如何实施工艺提些看法。 1、45号钢的调质 45号钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、 来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45号钢淬火温度在A3+(30~50) C,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工 件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病,影响淬火质量。我们认为,如 装炉量大于工艺文件的规定,加热保温时间需延长1/5。 因为45号钢淬透性低,故应采用冷却速度大的10%盐水溶液。工件入水后,应该淬

透,但不是冷透,如果工件在盐水中冷透,就有可能使工件开裂,这是因为当工件冷却到180 C左右时,奥氏体迅速转变为马氏体造成过大的组织应力所致。因此,当淬火工件快冷到该温度区域,就应采取缓冷的方法。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,即可出水空冷(如能油冷更好)。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上静止的工件,导致硬度不均匀,应力不均匀而使工件变形大,甚至开裂。 45号钢调质件淬火后的硬度应该达到HRC56~59,截面大的可能性低些,但不能低于HRC48,不然,就说明工件未得到完全淬火,组织中可能出现索氏体甚至铁素体组织,这种组织通过回火,仍然保留在基体中,达不到调质的目的。 45号钢淬火后的高温回火,加热温度通常为560~600 C,硬度要求为HRC22~34。因为调质的目的是得到综合机械性能,所以硬度范围比较宽。但图纸有硬度要求的,就要按图纸要求调整回火温度,以保证硬度。如有些轴类零件要求强度高,硬度要求就高;而有些齿轮、带键槽的轴类零件,因调质后还要进行铣、插加工,硬度要求就低些。关于回火保温时间,视硬度要求和工件大小而定,我们认为,回火后的硬度取决于回火温度,与回火时间关系不大,但必须回透,一般工件回火保温时间总在一小时以上。 2、40Cr钢的调质处理 Cr能增加钢的淬透性,提高钢的强度和回火稳定性,具有优良的机械性能。截面尺寸大或重要的调质工件,应采用Cr钢。但Cr钢有第二类回火脆性。 40Cr工件调质的淬回火,各种参数工艺卡片都有规定,我们在实际操作中体会是:(一)40Cr工件淬火后应采用油冷,40Cr钢的淬透性较好,在油中冷却能淬硬,而且工件的变形、开裂倾向小。但是小型企业在供油紧张的情况下,对形状不复杂的工件,可以在水中淬火,并未发现开裂,只是操作者要凭经验严格掌握入水、出水的温度。

微合金元素在钢中的作用(精)

为了合金化而加入的合金元素, 最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等。现分别说明它们在钢中的作用。 1、硅在钢中的作用 : (1提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。 (2 硅能显著地提高钢的弹性极限、屈服极限和屈强比 , 这是一般弹簧钢。 (3耐腐蚀性。硅的质量分数为 15%-20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层 SiO 2薄膜,从而提高钢在高温时的抗氧化性。 缺点:(4使钢的焊接性能恶化。 2、锰在钢中的作用 (1锰提高钢的淬透性。 (2锰对提高低碳和中碳珠光体钢的强度有显著的作用。 (3锰对钢的高温瞬时强度有所提高。 锰钢的主要缺点是,①含锰较高时,有较明显的回火脆性现象; ②锰有促进晶粒长大的作用, 因此锰钢对过热较敏感 t 在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服:⑧当锰的质量分数超过 1%时,会使钢的焊接性能变坏,④锰会使钢的耐锈蚀性能降低。 3、铬在钢中的作用 (1铬可提高钢的强度和硬度。 (2铬可提高钢的高温机械性能。 (3使钢具有良好的抗腐蚀性和抗氧化性

(4阻止石墨化 (5提高淬透性。 缺点:①铬是显著提高钢的脆性转变温度②铬能促进钢的回火脆性。4、镍在钢中的作用 (1可提高钢的强度而不显著降低其韧性。 (2镍可降低钢的脆性转变温度,即可提高钢的低温韧性。 (3改善钢的加工性和可焊性。 (4镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。 5、钼在钢中的作用 (1钼对铁素体有固溶强化作用。 (2提高钢热强性 (3抗氢侵蚀的作用。 (4提高钢的淬透性。 缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。 6、钨在钢中的作用 (1 提高强度 (2提高钢的高温强度。 (3提高钢的抗氢性能。 (4是使钢具有热硬性。因此钨是高速工具钢中的主要合金元素。

45#钢和40Cr钢调质的热处理工艺

45#钢和40Cr钢调质的热处理工艺.txt逆风的方向,更适合飞翔。我不怕万人阻挡,只怕自己投降。你发怒一分钟,便失去60分钟的幸福。忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真实地感受生活;疲惫是一种享受,让我们无暇空虚。生活就像"呼吸""呼"是为出一口气,"吸"是为争一口气。45#(号)钢和40Cr钢调质的热处理工艺 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。 调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。 调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度,回火后硬度按图要求来检查。 工件调质处理的操作,必须严格按工艺文件执行,我们只是对操作过程中如何实施工艺提些看法。 1、 45号钢的调质 45号钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45号钢淬火温度在A3+(30~50) ℃,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病,影响淬火质量。我们认为,如装炉量大于工艺文件的规定,加热保温时间需延长1/5。 因为45号钢淬透性低,故应采用冷却速度大的10%盐水溶液。工件入水后,应该淬透,但不是冷透,如果工件在盐水中冷透,就有可能使工件开裂,这是因为当工件冷却到180℃左右时,奥氏体迅速转变为马氏体造成过大的组织应力所致。因此,当淬火工件快冷到该温度区域,就应采取缓冷的方法。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,即可出水空冷(如能油冷更好)。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上

微合金非调质钢的发展及现状

微合金非调质钢的发展及 现状 Revised by Jack on December 14,2020

微合金非调质钢的发展及现状 刘瑞宁1,2,王福明1,李强2 (11北京科技大学冶金与生态工程学院,北京100083;21石家庄钢铁公司技术中心,河北石家庄050031)摘要:介绍了微合金非调质钢的发展及其应用现状,开发微合金非调质钢符合钢铁产业发展政策和石钢公司的“边缘-精进”战略。 关键词:微合金;非调质钢;发展;应用 1前言 石家庄钢铁有限责任公司是中国汽车用钢(棒材)专业化生产企业,现年产钢能力近260万t,产品结构以优质碳素结构钢、合金结构钢、齿轮钢、轴承钢等五大系列汽车用钢(棒材规格为Φ14~180mm)为主,其热轧汽车棒材主要供锻造厂锻造成汽车零配件(如汽车前桥、半轴、转向节、发动机曲轴、连杆等)。微合金非调质钢是一种理想的节约能源、节约资源的经济型新材料,符合钢铁产业发展政策要求,其用途十分广泛:凡是加工过程中需要调质的钢(如45,40Cr等)均可用非调质钢替代;省略调质工序,可省去占调质钢生产总成本6%的热处理(淬火+高温回火)费用,德国人估计用49MnVS3非调质钢代替调质钢做连杆可节约总成本的38%。日本爱知公司分析,微合金非调质钢因省略调质处理这一工序,就可使热锻产品的成本降低18%[1]。 2微合金非调质钢的发展 微合金非调质钢强化机理不同于调质钢。调质钢是将轧、锻后钢材重新加热淬火再经高温回火获得所需组织性能。而微合金非调质钢是在轧制温度下,使钢中V,Nb,Ti等合金碳氮化合物较充分溶入奥氏体,使奥氏体充分合金化,在轧、锻冷却过程中析出大量微细弥散分布的合金碳氮化合物,并发生沉淀强化及先共析铁素体呈细、小、弥散析出,分割和细化奥氏体晶粒使钢的强度与硬度增加,基体组织显着强化。为此,获得相当调质钢经调质处理后的综合力学性能,由于省去了调质处理工序,因此称之为微合金非调质钢。 国外微合金非调质钢的开发及应用 20世纪60年代发展起来的微合金化技术为非调质钢的产生提供了理论和生产基础,70年代初期发生的能源危机直接促成非调质钢的出现及发展。1972年德国THYSSEN公司开发了第一个非调质锻钢49MnVS3(铁素体-珠光体,抗拉强度850MPa)取代了调质CK45钢制造汽车曲轴,提高了锻件成品率、切削加工性能、疲劳性能、生产效率,降低了成本,此钢种很快在德国、瑞典等欧洲国家用于汽车曲轴、连杆等锻件的生产。德国奔驰汽车曲轴使用非调质钢代替40CrMn调质钢制造,瑞典Volvo汽车制造厂在20世纪90年代初期年用量就3万多吨,其目标是除渗碳件外,所有锻件全部采用非调质钢生产。随后英国钢铁公司建立了Vanard(850~1100MPa)热锻用非调质钢系列,法国SAFE公司开发了一系列METASAFE钢(800~1000MPa)[2]。此外,美国福特、意大利菲亚特及俄罗斯伏尔加汽车都采用非调质钢制造汽车的曲轴、连杆等零件。近年来日本研究微合金非调质钢最为活跃,处于世界先进水平,新日铁、神户制钢、爱

微合金钢

微合金钢 微合金化是一个笼统的概念,通常指在原有主加合金元素的基础上再添加微量的Nb、V、Ti 等碳氮物形成元素,或对力学性能有影响、或对耐蚀性、耐热性起有利作用、添加量随微合金化的钢类及品种的不同而异,相对于主加合金元素是微量范围的,如非调质结构钢中一般加入量在0.02—0.06%,在耐热钢和不锈钢中加入量在0.5%左右,而在高温合金中加入量高达1—3%。 微合金化钢的基本属性:(1)添加的碳氮化物形成元素,在钢的加热和冷却过程中通过溶解一析出行为对钢的力学性能发挥作用。 (2)这些元素加进量很少,钢的强化机制主要是细晶强化和沉淀强化。 (3)钢的控轧控冷工艺对微合金化钢有重要意义,也是微合金化钢叫作新型低合金高强度钢的依据。钢的微合金化和控轧控冷技术相辅相承,是微合金化钢设计和生产的重要条件。 因此说,微合金化钢是指化学成分规范上明确列进需加进一种或几种碳氮化物形成元素的钢。如GB/T 1591—94中Q295一Q460的钢,对其中Nb、V、Ti的含量通常有以下规定: (1)Nb,0.015%~0.06%; (2)V,0.02%~0.15%(0.20%); (3)Ti,0.02%~0.20%。 同时规定Nb+V+Ti≤0.15%。微合金化的高强度低合金钢。 它是在普通软钢和普通高强度低合金钢基体化学成分中添加了微量合金元素(主要是强烈的碳化物形成元素,如Nb、V、Ti、Al等)的钢,合金元素的添加量不多于0.20%。添加微量合金元素后,使钢的一种或几种性能得到明显的变化。 典型的微合金钢有15MnVN和06MnNb。微合金钢中含有一种或几种微合金元素,其含量大约在0.01%~0.20%之间。 微合金钢由于屈服强度高、韧性好、焊接性和耐大气腐蚀性好,可用于大型桥梁建筑,制造各类车辆的冲压构件、安全构件、抗疲劳零件及焊接件,它也是锅炉、高压容器、输油和输气管线,以及工业和民用建筑的理想材料。 关于微合金钢中Nb的析出对变形诱导铁素体相变的影响有两种不同观点:一是认为在变形过程Nb通过动态析出消耗形变储能而抑制变形诱导铁素体相变; 微合金钢就是这些“高技术钢材”中用量最大的一种。 处理办法:微处理可有效地提高16Mn原规格钢板、20MnSi大规格螺纹钢筋的屈服强度约10—20Mpa,改善A、B级一般强度板和X42—X46级管线钢的低温韧性,还可使16Mnq、15MnVNq 桥梁钢板的时效敏感比降低或消除。据不完全统计,1998年我国微合金化钢的产量为346万吨,占年全低合金高强度钢总产量55.1%。微处理钢(主要是Nb处理和Ti处理,还包括稀土处理钢在内)产量大致也在300万吨左右。 近20年来,世界钢铁工业最富活力和创造性进展,莫过于低合金高强度钢生产装备和工艺技术前所未有的变革,几乎使低合金高强度钢的所有品种领域更新了一代,甚至两代。微合金化钢属于低合金高强度钢范畴,或者说是新型的低合金高强度钢。 我国80年代以来的钢材生产及近年的钢材品种结构调整同样表明了: ①低合金高强度钢的新发展,借助了钢铁生产工艺技术的一切进步和最新成就。 ②低合金高强度钢的产量大,使用面广,适应了方方面面特殊性能要求,支持了各行各业产品的升级,增加了我国的机电产品和成套装备生产的竞争力。 ③微合金化带动了我国富有合金资源的生产和综合利用,微合金化钢生产促进了钢铁企业结构调整和流程优化。 所以,形成了一个崭新的观点,发展微合金化钢就是抓住了基础原材料工业发展的关键,通

合金结构钢的定义与分类

合金结构钢的定义与分类 一、调质钢 经受淬火和在AC1以下进行回火的热处理钢称为调质钢。传统的调质钢是指淬火和高温火钢 调质钢是机械制造行业中应用十分广泛的重要材料之一。 调质钢在化学成分上的特点是,碳含量为0.3—0.5%,并含有一种或几种合金元素。具有较低或中等的合金化程度。钢中合金元素的作用主要是提高钢的淬透性和保证零件在高温回火后获得预期的综合性能。 热处理工艺是在临界点以上一定温度加热后淬火成马氏体,并在500℃--650℃回火。热处理后的金相组织是回火索氏体。这种组织具有强度、塑性的韧性的良好配合。 调质钢的质量要求,除一般的冶金方面的代倍和高倍组织要求外,主要为钢的力学性能以及与工作可靠性和寿命密切相关的冷脆性转变温度、断裂韧性和疲劳抗力等。在特定条件下,还要求具有耐磨性、耐蚀性和一定的抗热性。由于调质钢最终采用高温回火,能使钢中应力完全消除,钢的氢脆破坏倾向性小,缺口敏感性较低。脆性破坏抗力较大。但也存在特有的高温回火脆性。 大多数调质钢为中碳合金结构钢,屈服强度(σ0.2)在490—1200MPao以焊接性能为突出要求的调质钢。,为低碳合金结构钢,屈服强度(σ0.2)一般为4901—800MPa,有很高的塑性和韧性。少数沉淀硬化型调质钢,屈服强度(σ0.2)可到1400MPa以上,属高强

度的超高强度调质钢。 常用的合金调质钢按淬透性的强度妥为四类:①低淬透性调质钢; ②中淬透性调质钢;③较高淬透性调质钢;④高淬透性调质钢。 二、渗碳钢 具有高碳的耐磨表层和低碳的高强韧性心部,能承受巨大的冲击载荷、接触应力和磨损。汽车、工程机械和机械制造等行业中,大量使用的齿轮,是渗碳钢应用中最具代表性实例。 渗碳钢常用的合金钢系列主要是Cr-Mn系、Cr-Mo系和Cr-Ni-Mo系等。 保证渗碳钢心部的组织和性能的核心是淬透性。一般用途的渗碳件的心部组织为50%左右的马氏体加其它非马氏体组织。重要用途(如航空渗碳齿轮),心部组织亦应为马氏体或马氏体/贝氏体组织。提高淬透性的常用合金元素有铬、锰、镍、钼和硼。从合金化的经济角度考虑,Cr-Mn系(特别是含硼钢)值得推荐,但就生产和使用的角度而言,Cr-Mo钢更为优越。重要用途的、高质量要求的渗碳钢一般均含有一定量的钼,尤其是对于重载的大型渗碳件更需要。 当心部性能确定后,渗层组织和性能对使用寿命具有决定性作用。渗层的组织要求为马氏体和细小、弥散、球状分布的合金碳化物。保证渗层组织的核心仍然是淬透性。渗层应具有高的硬度、良好的显微组织、合理的残余应力分布和一定的韧性储备。 三、氮化钢(渗氮钢) 适合天氮化(或渗氮)工艺的钢种,称氮化钢或渗氮钢。一般狭

非调质钢在汽车行业的应用研究

龙源期刊网 https://www.360docs.net/doc/769991503.html, 非调质钢在汽车行业的应用研究 作者:杨岁权 来源:《科技创新与应用》2013年第29期 摘要:非调质钢不需要进行淬火和高温回火加热,不进行淬火冷却,显著降低生产过程 中产生的烟、汽对环境的污染,并节约大量能源,引起汽车零部件生产厂家的广泛重视,以期能代替中碳结构钢或合金结构钢。 关键词:非调质钢;力学性能;应用 1 非调质钢的出现和发展 汽车制造中有大量齿轮、轴、连杆等受力结构件,通常选用中碳结构钢和合金结构钢等传统材料。当采用这些传统材料时,需要将铸造或锻造好的零件重新加热至完全奥氏体化,正火或者淬火冷却后再进行高温回火加热和冷却,以获得均匀、细密的回火索氏体组织,满足结构件的综合力学性能要求,调质处理后进行冷切削加工成各种结构件。这种生产过程消耗大量的加热能源,大多数情况下需要进行强制冷却,产生大量的环境污染物,生产工艺复杂,周期较长。 非调质钢是指通过添加微合金化元素改变组织的相变机理,通过轧制、锻造和控制冷却等方法,使性能达到或接近调质钢力学性能的中碳低合金结构钢。 非调质钢在热轧、正火或锻造后空冷状态下的强度等级在500MPa以上。 目前,世界各国都在寻求节能、环保的可循环经济增长方式。由于冶金技术和钢材热加工技术的不断发展,各国陆续开发并生产了不需要进行调质处理,只需要进行控制轧制、锻造工艺及轧制、锻造后的冷却速度就可以获得所需要的强度、韧度和切削性能的非调质易切削钢。常规的非调质结构钢是在中碳钢中添加微量合金化元素(钒、钛和铌等),通过控制轧制、锻造过程和随后的控温冷却,在铁素体和珠光体中弥散析出碳(氮)化合物为强化相,使之在轧制、锻造后不经过调质处理,即可获得碳素结构钢或合金结构钢经调质处理后才能达到的力学性能。 非调质钢的经济技术特点: (1)非调质钢的规格效应较小,其强度和硬度沿零件截面积的分布较均匀,提高了零件的整体强度;(2)避免了调质过程中的工件的变形、开裂,而产生废品的风险,提高了成品率;(3)减少了高能耗的热处理,节能减排;(4)缩短生产周期,提高劳动生产率,节约生产管理费用;(5)良好的切削性能和表面强化性能。

微合金元素在钢中作用

微合金元素在钢中溶解析出及影响因素? 在奥氏体中,氮化物通常比碳化物更加稳定。微合金化元素不同,其碳化物和氮化物的溶解度绝对值有很大差异:V、Ti的碳化物与氮化物的溶解度差值较大,而Nb的碳化物与氮化物的溶解度比较接近,尽管NbN的溶解度仍然低于NbC的溶解度。ALN的溶解度与NbN 接近,说明其溶解度比VC还要大。多数微合金碳化物和氮化物在奥氏体中的溶解度比较接近,虽然多数微合金元素的碳化物或氮化物在钢水中的溶解度还不确定,数据显示,TiN在钢水中的溶解度要比在同温度奥氏体中高10~100倍;因此TiN在1600℃钢水中的溶解度与其它微合金化元素在1200℃奥氏体中的溶解度接近。热力学计算表明,Nb的碳化物和氮化物在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。实验和热力学计算均证实,VC在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。 碳化物和氮化物的溶解度差导致碳氮化物中富集低溶解度化合物(氮化物)。在通常的复合微合金化钢中,碳化物和氮化物的溶解度差按铌、钒、钛的次序增大。合金碳氮化物中富集的氮化物的分数比例按钛、钒、铌的次序递减。合金碳氮化物中碳化物和氮化物的分数比例取决于钢中C和N的含量,在大多数钢中,远高于氮含量的碳含量在一定程度上抵销了碳化物和氮化物在溶解度上的差异。合金碳氮化物中碳化物和氮化物的分数比例还受合金元素含量的影响,合金元素含量升高降低氮化物的分数比例,尤其是在合金元素含量超过氮在钢中化学计量比的情况下。提高温度会增加氮化物的分数比例。钢中未溶解合金碳氮化物的数量高于从不互相溶解的析出模型所预期的值,更为重要的是,合金碳氮化物能够在独立碳化物或氮化物的溶解度曲线以上温度存在。 1、应变诱导析出:未变形材料中除了在晶界和相界上形核外,沉淀相在晶粒内主要是以均匀形核机制生成;而在变形材料中,沉淀相主要在位错和各种晶体缺陷上非均匀形核。由于在位错上形核的激活能低,因此形核率很高,可得到很高的沉淀相粒子密度和很小的沉淀相尺寸。变形使析出过程的孕育时间大大缩短。 2、钢的成分偏聚:由于钢液在凝固过程中发生溶质元素的偏聚,在枝晶间隙区的浓度要明显高于钢的平均含量,即使经过高温的固溶处理,在微米尺度上溶质元素在钢中仍然是不均匀分布的 3、Ostwald 熟化:Ostwald熟化过程在析出相体积分数不变的条件下,通过颗粒的粗化使基体和析出相的界面能明显降低。在熟化过程中,第二相颗粒被一定厚度的基体所分离,为了确保相互分离的大颗粒长大而小颗粒缩小乃至消失以降低系统的总界面能,颗粒通过基体一定存在一种非接触式的感知。 微合金元素在钢对钢中组织元素及相转变的影响? 当钒单独加入时,并不抑制铁素体的形成;相反,它加速珠光体的形成。然而,当钒和铌同时存在时,易于形成贝氏体组织,而钒在贝氏体内沉淀析出。正是这种钒与铌的差别,导致了在热轧交货的小型材中多倾向于加钒。这些轧态小型材冷却快,如果有铌存在的话,则形成导致脆性的贝氏体组织,而含钒钢中则不会形成这种脆性组织。钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重轨的强度和汽车用锻件的强度。碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材料的硬度和强度。钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能有效地提高淬透性。与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了元素钼后,可固溶的钒含量明显增加,可达0.06%左右。 微合金对钢铁强度韧性热塑性的影响及强韧化机理? 钒通过在铁素体中的沉淀析出,来增加钢的强度,它可使钢的强度增加150MPa以上。碳氮化物在轧制过程和轧制以后形成,而且在正火过程中,当钢被加热时,它们将溶解,并

合金的动态再结晶与晶粒细化研究

FGH4096合金的动态再结晶与晶粒细化研究 摘要:使用Gleeble-1500D热模拟试验机对热等静压态FGH4096合金进行变形温度 1080~1140℃,应变速率0.02~1s–1,变形量15%,35%和50%的等温压缩实验。通过观察微观组织,分析了粉末高温合金动态再结晶的组织演化规律,并通过透射电镜研究了再结晶的形核位置。当变形量在35%及以下时,得到不完全再结晶组织,即“项链“组织;当变形量大于50%时,得到完全的动态再结晶组织。动态再结晶晶粒尺寸随变形温度的升高和应变速率的降低而增大。再结晶形核主要在以下三个位置,即原始颗粒边界,再结晶晶粒边界以及孪晶源。最后利用多方向热变形对晶粒的破碎和细化,得到平均晶粒尺寸为4μm的细晶坯料。 关键词:FGH4096粉末高温合金;动态再结晶;形核;细晶化锻造 粉末高温合金由于具有组织均匀、无宏观偏析、合金化程度高等优点,成为制造先进航空发动机涡轮盘的首选材料[1]。30多年中,粉末高温合金发展已经历了三代。FGH4096粉末高温合金属于我国第二代粉末高温合金材料,以其优秀的高温强度和抗裂纹扩展能力受到航空发动机研究人员的极大重视[3]。但由粉末冶金工艺所带来的原始颗粒边界(PPB)、热诱导孔洞(TIP)等组织缺陷极大的损害了高温合金的力学性能和热加工性能。美国普惠公司使用以大挤压比的热挤压来粉碎PPB、焊合TIP,并诱导高温合金发生充分的动态再结晶以得到组织均匀细小、热加工性能优秀的高温合金坯料的制坯工艺[3]。国内受多方面条件限制,尚无法实施该类工艺,但可通过塑性变形诱发动态再结晶得到细晶、无缺陷坯料[3]。本文研究了FGH4096高温合金热变形中的动态再结晶的形核、发展规律和组织演化过程,并研究了合金的细晶化锻造工艺。 1 实验材料与方法 FGH4096合金名义化学成分(Wt%)为:Cr 15.5, Co 12.5, Mo 3.8, W 3.8, Nb 0.6, Ti 3.9, Al 2.0, B 0.006, Zr 0.025, Ni Bal。本实验采用的原材料由北京钢铁研究总院提供,母合金采用真空感应熔炼,等离子旋转电极(PREP)方法制粉,粉末尺寸为50μm~100μm ,粉末经真空脱气后装入包套,封焊后进行热等静压成型(HIP)。实验用试样用线切割法取自HIP态FGH4096合金,尺寸为Φ8×12(mm)和Φ40×70(mm)的圆柱形料,试样变形前先进行1150℃/2h+AC的均匀化处理。 用Gleeble–1500D模拟器对Φ8×12(mm)圆柱试样进行1080、1110和1140℃下,应变速率分别为:0.02、0.2、1 s–1,变形量分别为:15%、35%和50%的恒温、恒应变速率压缩实验。变形后迅速将试样喷液冷却至室温,沿压缩轴线方向将压缩试样对半切开制成金相样品,研究动态再结晶组织的演化规律。并用HITACHI–H800透射电镜观察、分析动态再结晶的形核与发展规律,晶粒尺寸统计采用截线法完成。最后,用THP–6300A型液压机对Φ40×70(mm)试样进行多方向累计变形量为150%的热模锻造(模具温度930℃),以研究合金的细晶化锻造工艺。

非调质钢简介及牌号

非调质钢简介 (整理点资料) 1)名称: 非调质钢,西方国家把它叫作MICROALLOYED STEEL,译成中文意思是微合金钢。 2) 成份和优点:所谓非调质钢,是指在中碳钢中加入微量的V、Nb、Ti 等合金元素而行成的一种新钢种。在大多数情况下加入的微合金的总量一般不超过百分之零点二五(0.25%)。 世界上第一个非调质钢是由德国的GERLACH公司在1970年推出的,这家公司用他们自己刚刚研制成功的非调质取代原来使用的调质钢CK45钢生产曲轴,取得了很好的效益。由於使用非调质钢生产锻件可以省去调质处理即(淬火+高温回火)过程中的两次加热而耗费的能量,因此具有节能和环保的优点,被称为绿色钢种。 1973年中东战争暴发,石油价格高起,迫使人们更加关注节能降耗,在这种背景下非调质钢的开发和利用在西方掀起了高潮,各国相继推出了自己的非调质钢。到1984年日本有60%的曲轴和50%的连杆都是用非调质钢锻成的。德国人说,使用49MnVS3非调质钢代替调质钢生产连杆可以省去占总成本6%的热处理费用,日本爱知公司说,用非调质钢可以使成本下降18%。 3)非调质钢的强化机理: 无论是用调质钢还是用非调质钢生产锻件,锻件在锻成后如果不经过强化处理是不能使用的,不同的钢,强化的机理是不同

的。调质钢的强化机理是:先通过淬火。让钢变成马氏体组质,然后再通过回火处理使马氏体变成回火索氏体,回火索氏体是一种稳定组织,具有良好的综合机械性能。而非调质钢的强化机理是:首先,非调质钢中的V、Nb、Ti等合金元素形成的合金碳氮化合物在锻造前的加热过程中充分地溶入到了奥氏体中,然后,在锻后的冷却过程中这些合金碳氮化合物又从奥氏体中析出,形成无数个微小而且弥散分布的合金碳氮化合物,随着温度的进一步下降发生沉淀强化。与此同时,从钢中析出的细小铁素体通过分割和细化奥氏体使得钢的强度和硬度得以提高。在上述两种力的综合作用下使钢得到了强化。 4)非调质钢的发展过程: 非调质钢的发展经历了三个阶段,第一代非调质钢是铁素体—珠光体型非调质钢。第二代是贝氏体型非调质钢,第三代是低碳马氏体型非调质钢。 4.1)铁素体—珠光体型非调质钢是目前用量最大的非调质钢,,约占总用量的60%以上。与调质钢相比,它的强度有余而韧性不足,因此,必需在保证强度的前题条件下设法提高韧性。日本钢铁公司的研究人员发现通过适当控制生产工艺,让奥氏体晶体内行成大量的铁素体成核核心P1,然后在相变时铁素体不仅在晶界上形成,也在奥氏体晶包内形成。这些细小,而且分布均匀的铁素体,使得钢的韧性显著提高。

动态再结晶及其机制

动态再结晶及其机制

引言 工程上常将再结晶温度以上的加工成为“热加工”,而把再结晶温度以下而又不加热的加工称为“冷加工”。至于“温加工”则介于二者之间,其变形温度低于再结晶温度,却高于室温。高温进行的锻造,轧制等压力加工属热加工。热加工过程中,在金属内部同时进行着加工硬化与回复再结晶软化两个相反的过程。 在金属冷形变后的加热过程中发生的,称为静态回复和静态再结晶。若提高金属变形的温度,使金属在较高的温度下形变时,金属在热变形的同时也发生回复和再结晶,这种与金属热变形同时发生的回复和再结晶称为动态回复和动态再结晶。 一、动态再结晶定义 在热加工过程中,塑性变形使金属产生形变强化的同时发生的再结晶的现象。 这是在通常的热加工时发生的过程。在发生回复和再结晶时,由形变造成的加工硬化与由动态回复,动态再结晶造成的软化同时发生。 二、动态再结晶的应力应变曲线 值得注意的是:温度为常数时,随应变速率增加,动态再结晶应力应变曲线向上向右移动, 对应的应变增大:而应变速率一定时,温度升高,曲线会向下向左移动,最大应力对应的应变减小. 三、动态再结晶的机制 3.1概述 在低应变速率下,动态再结晶通过原晶界的弓出机制形核。与其对应的稳定态阶段的曲线呈波浪形变化,这是由于位错增殖速度小,在发生动态再结晶软化后,继续进行再结晶的驱动力减小,再结晶软化作用减弱,以致不能与新的加工硬化平衡,从而重新发生硬化,曲线重新上升。等到位错再度积累到一定程度,使再结晶又占上风时,曲线又重新下降。这种反复变化的过程将不断进行下去,变化周期大致不变,但振幅逐渐衰减。因此这种情况下,动态再结品与加工硬化交替进行:使曲线呈波浪式。层错能偏低的材料如铜及其合金,奥氏体钢等易出现动态再结晶。故动态再结晶是低的层错能金属材料热交形的主要软化机制。 第一阶段—加工硬化阶段:应力随应 变上升很快,金属出现加工硬化(0<ε< εc )。 第二阶段—动态再结晶开始阶段:应 变达到临界值εc ,动态再结晶开始,其软 化作用随应变增加而上升的幅度逐渐降 低,当σ>σmax 时,动态再结晶的软化作 用超过加工硬化,应力随应变增加而下降 (ε c ≤ε<εs )。 第三阶段—稳定流变阶段:随真应变 的增加,加工硬化和动态再结晶引起的软 化趋于平衡,流变应力趋于恒定。但当ε 以低速率进行时,曲线出现波动,其原因 主要是位错密度变化慢引起。(ε≥εs )

相关文档
最新文档