大数据挖掘技术之DM经典模型(上)

大数据挖掘技术之DM经典模型(上)
大数据挖掘技术之DM经典模型(上)

大数据挖掘技术之DM经典模型(上)

数据分析微信公众号datadw——关注你想了解的,分享你需要的。

实际上,所有的数据挖掘技术都是以概率论和统计学为基础的。

下面我们将探讨如何用模型来表示简单的、描述性的统计数据。如果我们可以描述所要找的事物,那么想要找到它就会变得很容易。这就是相似度模型的来历——某事物与所要寻找的事物越相似,其得分就越高。

下面就是查询模型,该模型正在直销行业很受欢迎,并广泛用于其它领域。朴素贝叶斯模型是表查找模型中一种非常有用的泛化模型,通常表查询模型适用于较低的维度,而朴素贝叶斯模型准许更多的维度加入。还有线性回归和逻辑回归模型,都是最常见的预测建模技术。回归模型,用于表示散点图中两个变量之间的关系。多元回归模型,这个准许多个单值输入。随后介绍逻辑回归分析,该技术扩展了多元回归以限制其目标范围,例如:限定概率估计。还有固定效应和分层回归模型,该模型可将回归应用于个人客户,在许多以客户为中心的数据挖掘技术之间搭建了一座桥梁。

1、相似度模型

相似度模型中需要将观察值和原型进行比较,以得到相应的相似度得分。观察值与原型相似度越高,其得分也就越高。一种度量相似度的方法是测量距离。观察值与原型值之间的距离越近,观察值的得分就越高。当每个客户细分都有一个原型时,该模型可以根据得分把客户分配到与其最相似的原型所在的客户细分中。

相似度模型有原型和一个相似度函数构成。新数据通过计算其相似度函数,就可以计算出相似度得分。

1.1、相似度距离

通过出版社的读者比一般大众要富有,而且接受教育的程度要高为例。通常前者要比后者在富有程度、教育程度的比例大三倍。这样我们

就可以给读者一个讯息——“工资很高,并且受过良好的教育”。

如果要把对读者的描述表示成一个可以识别该杂志潜在的读者的模型,就需要对理想的读者做出精确的定义,并以此来量化潜在读者与理想读者之间的相似程度。

相似度和距离是同一概念的两种不同描述方式,但是它们度量的方向不同。使用距离作为度量指标时,如果两个事物彼此非常靠近,那么两者就很相似。所以当两者距离很小时,相似度就会很高。

例如:出版社的理想读者的受教育程度是16年,年收入100000美元。那么受教育14年,年收入75000美元的潜在客户与理想客户之间的相似度是多少呢?另外它们与受教育12年,并且年收入为150000美元的潜在客户又有多少相似呢?这时候,我们要选择一个度量的标准,欧式距离。当我们计算一潜在客户与理想客户(x=16,y=100000)之间的距离时,就会发现收入在计算中占了主导地位,因为它的取值比教育年限大的多得多。这就引入另一个问题:度量尺度。解决方法:将两值分别减去相应的平均值然后除以相应的标准差。这样就把两者转化成分数,然后用分数代替原来的值来计算欧式距离。

欧式距离仅计算距离方法之一。这里才采用欧式距离只是为了将原型目标的一种统计描述与某种距离函数结合起来,搭建一种相似度模型。有了潜在用户与理想客户之间的距离,就可以对潜在客户排序,或者将距离作为另一种计算的输入,得到预期收入或相应概率。

1.2 、构建相似度模型的步骤

构建相似度模型,首先是要对原型进行描述,或得到一个用于与其他对象进行比较的理想对象。这些描述必须表示为度量,对于那些与理想值较近或较远的对象,这些变量的取值要明显不同。

首先,要解决三个问题

(1)“差”记录与“好”记录有什么区别?

(2)理想的“好”记录看起来是什么样子的?

(3)如何度量与理想对象之间的距离?

2、表查询模型

实现数据挖掘模型的一个简单方法就是查询表。表查询模型思想就是:相似的人所作出的反应也相似。对一个新观测值的评分涉及两个步骤。一、为观测值指定一个特定的标签或主键。主键对应于查询表中的一个单元格。二、被分配到某一个单元格的所有记录都会有一个得分,该分值在模型训练时就被赋予该单元格。

分配主键的方式有多种。决策树模型适用了规则集将观测值分配到特定的叶节点,叶节点的ID就可以作为一个可用于查询得分的主键。聚类技术为记录指定标签,这里的聚类标签就可以作为查询主键。

构建查询表,一、为查询表选择输入变量。将训练集中的每条记录精确地分配到该表中的一个单元格中。使用训练集中的统计数据来刻画单元格的特征,这些统计数据包括平均值、标准差以及落入该单元格的训练实例个数。在为模型评分的时候会用到这些统计数据。分数可以是数值型目标的平均值,也可以是属于某一特定类别的比例,或者是单元格中占主导地位的类别。

2.1、选择维度

每个维度都应该是一个对目标有影响的变量。理想情况,输入变量不应该彼此相关,实际上,很难避免之间不相关。相关变量的实际影响是,训练完成后有些单元格仅含有几个训练实例,这会使得估计值的置信度偏低。实际情况可能好点,因为要评分的新数据在那些单元格中也是稀疏的。

例如:在RFM模型中,有一个维度是采购总数,还有一个维度是整个生存期的花费。在两个变量高度相关,因为通常情况下,额外的购买会创造额外的收入。很少有记录会落入到购买数量最大而收入却很少,或收入很高而采购量却很少的单元格情况。

应该避免使用高度相关的变量作为查询表的维度,因为这些相关变

量会导致大量的稀疏的单元格。包含训练样本过少的单元格会产生置信度偏低的目标估计值。

对维度数的主要限制是单元格中训练记录的数量。在维度数与每个维度上分到的训练样本数之间有一个权衡。使用较少的维度,可以在每一个维度上进行更加精细的划分。在实际处理过程中,可能会出现该单元格中什么都没有,有的时候这种情况是确实存在的。这种异常情况,表中应该包含具有默认得分的单元格,这样就可为那些与任意主键不匹配的记录分配得分。典型的默认异常单元格得分,就是平均值。

2.2、维度的划分

在实际的过程中,并不需要,每一个类别划分一个维度。维度的分割应该依实而用。对于一个维度的合理划分是按高、中、低划分,而对另一个维度的合理划分可能是按照百分比来划分。有的时候,根据业务规则来定分割点,遵循这些特定的分割点划分记录可能那个比等分划分更有意义。有监督的分割,可以用于确保分割的有效性。这个后面在讨论。

2.3、从训练数据到得分

维度划分好以后,在训练集上计算每个单元格的得分就简单了。对于数值型目标而言,得分=平均值。对于类别目标,每个类别会有一个得分=每个单元格类标签的比例。这样对于每个类都有一个概率估计,即待评分的数据记录属于该类的概率。

2.4、通过删除维度处理稀疏和缺失数据

有些单元格没有分配到足够多的数据,这会导致目标估计值的置信度较低。对于这类单元格该怎么办?一、减少每个维度上的划分数量。

二、减少定义稀疏单元格的维度数。

例如:构建某购物网站物品清单价格的竞争力模型。基于清单熟悉感,点击吸引力的分析考虑四个维度:

产品

地域

供应商类型

星期几

对于一些比较受欢迎的产品,使用这四个维度是有道理的。而对于不受欢迎的商品,没有足够多的清单来支持所有维度,所以要丢弃一些维度。对于一些产品,放弃星期几这一维度就OK。对于已协商产品,只是基于三个维度而不是基于四个维度之间的比较。对于一些产品,甚至只留下一个维度,对于这类产品,要做的就是持续删除维度并合并单元格,直到每个单元格含有足够的多的数据。

3、RFM:一种广泛使用的查询模型

RFM模型,称为近期、频率以及货币。RFM背后的逻辑很简单。近期下单的客户在不久的将来再次购买的概率可能性非常大。在过去有许多购买记录的顾客更有可能在不久的将来再次购买,并且在过去消费较多的客户更有可能在将来消费更多。RFM是一种最大化现有客户收益的技术,而不是吸引新客户的技术。

将客户分配大RFM单元中,三个RFM变量需要转化为三个量化指标。近期:距离上次购买的天数或周数,用于得到R的得分。

第二个变量频率,通常是以前下单的总数,记录F的得分。最后一个是客户生存期中的总的花费,该值用于创建M的得分。每个维度5等分。由于维度之间具有相关性,如F维和M维,所以各个单元格的客户数量并不相等。要做的就是将所有的数据都分配到合适的单元格中,而且每个单元格要有足够多的记录,从而目标估计值具有一个可以接受的置信度。

3.1、RFM单元格转移

对于每个营销活动,客户都会在RFM单元格之间转移。那些做出响应的客户对增加其消费频率和消费总额,并且会减少距上一次购买的时间。这些新的取值通常都会迁移到单元格中。没有响应的客户也可能因距上一次购买时间的增加而转移到新的单元格。其实这就是定期的数据更新,模型更新。数据的迁移,会导致原来的期望的变化,在数据单

元格迁移过程中,要不断的了解客户的需求,及时的更改数据。

3.2、RFM和增量响应建模

增量响应建模的目标是识别那些容易被说服的潜在客户——受营销影响最大的人。RFM可以看成是对客户营销活动响应能力的预测。在定义好的RFM单元格之后,需要为每个单元格分配成员,要么是接收营销信息的测试组成员,要么就是不接受该信息的对照组成员。基于测试组和对照组两个分组之间的响应率之差决定了营销活动对于发现潜在客户的能力。对于测试组和对照组之间的响应率差异最大的单元格,营销获得产生的影响也是最大的。但这些单元格的响应率却未必是最大的。

数据挖掘试卷一

数据挖掘整理(熊熊整理-----献给梦中的天涯) 单选题 1.下面哪种分类方法是属于神经网络学习算法?() A. 判定树归纳 B. 贝叶斯分类 C. 后向传播分类 D. 基于案例的推理 2.置信度(confidence)是衡量兴趣度度量( A )的指标。 A、简洁性 B、确定性 C.、实用性 D、新颖性 3.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 4.数据归约的目的是() A、填补数据种的空缺值 B、集成多个数据源的数据 C、得到数据集的压缩表示 D、规范化数据 5.下面哪种数据预处理技术可以用来平滑数据,消除数据噪声? A.数据清理 B.数据集成 C.数据变换 D.数据归约 6.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?(B) A 第一个 B 第二个 C 第三个 D 第四个 7.下面的数据操作中,()操作不是多维数据模型上的OLAP操作。 A、上卷(roll-up) B、选择(select) C、切片(slice) D、转轴(pivot) 8.关于OLAP和OLTP的区别描述,不正确的是: (C) A. OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同. B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务. C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高. D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的 9.下列哪个描述是正确的?() A、分类和聚类都是有指导的学习 B、分类和聚类都是无指导的学习

车辆大数据挖掘技术

车辆大数据挖掘技术 随着人民生活水平的提高,车辆的拥有量不断的上升,针对车辆的视频分析系统迫切的需要进行升级,来挖掘出更多的结构化信息。 现有的智能交通技术主要集中在卡口和电子警察等传统技术上,抓拍车辆,识别车牌号码,车身颜色,车辆闯红灯,压实线,逆行等违法行为上,很难从图像中挖崛出更深层次的信息。以前的技术大都采用传统的算法,车辆检测跟踪主要采用基于adaboost和svm的训练方法检测车辆,然后采用基于连通区域关联或者meanshift做车辆跟踪;车牌识别主要采用基于颜色和纹理等传统特征做车牌定位,采用基于垂直投影和连通区域方式做字符分割,基于人工神经网络的方式做字符识别。目前针对标准位置下安装的摄像头,传统算法基本上都能达到98%以上的准确率。但传统算法技术已经很难满足现在的应用,随着硬件GPU的发展和深度学习技术的普及,针对公安和交警抓拍下来的图片,可以做更深层次的挖掘,例如可以识别车辆的品牌,子型号和年款,检测年检标的数目,识别年检标的形状,检测遮阳板是否放下,检测车窗上摆放的纸巾盒等物品,是否挂了挂坠,同时可以识别驾驶员的违法行为,例如是否系安全带,是否抽烟和打手机。 图存科技智能交通识别算法引擎采用传统算法加深度学习技术,可以识别车牌号码,车身颜色的同时,识别3000余种车辆款式,检测驾驶员是否系安全带,抽烟,打手机等违法状态,同时可以检测年检标的数目,是否放下遮阳板,车窗内是否挂有挂坠,将这些非结构化的数据进行结构化处理,然后存储,为将来公安办案,抓捕嫌疑车辆提供有力的证据。 图存科技智能交通识别算法引擎,采用深度学习中的分类算法,和faster rcnn等方法进行车辆检测和各类特征的检测,实际场景下测试准确率均超过90%,完全可以实际商用,已经为多家公司提供了识别核心。

《大数据时代下的数据挖掘》试题及答案..

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

数据挖掘复习章节知识点整理

数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: 1.学习应用域 2.目标数据创建集 3.数据清洗和预处理 4.数据规约和转换 5.选择数据挖掘函数(总结、分类、回归、关联、分类) 6.选择挖掘算法 7.找寻兴趣度模式 8.模式评估和知识展示 9.使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总; (2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较; (3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

基于大数据的数据挖掘技术与应用

基于大数据的数据挖掘技术与应用 发表时间:2019-07-17T12:49:19.997Z 来源:《基层建设》2019年第12期作者:汪洋 [导读] 摘要:科技前进的步伐越来越快,数据挖掘与传统行业相结合,在各行各业展现出了十分强大的生命力。 中国联合网络通信有限公司黄石市分公司湖北黄石 435000 摘要:科技前进的步伐越来越快,数据挖掘与传统行业相结合,在各行各业展现出了十分强大的生命力。本文从数据挖掘的基本概念和功能谈起,进一步再分析其在金融和人力资源两个方面的具体运用。 关键词:数据挖掘;大数据;金融;人力资源 一、数据挖掘的概念和功能 (一)数据挖掘概念。数据挖掘是指从庞大繁杂的数据中通过算法搜索隐藏于表面数据背后信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习和模式识别等多种方法来实现上述目标。 (二)数据挖掘的方法和过程。数据挖掘的理论技术一般可分为传统技术和改良技术两支。就传统技术而言,以统计分析为主要代表;就改良技术而言,以决策树理论、类神经网络和规则归纳法等为主要代表。 (三)数据挖掘的主要功能。数据挖掘的功能十分强大,在与各行各业结合之后,都能为各行业带来新的发展契机。一般来说,数据挖掘的功能分为两类:一类是描述性功能,是指对目标数据的属性进行特征描述;另一类是预测性功能,是指对当前数据进行归纳,以进行发展趋势的预测。 二、数据挖掘技术的应用实践 (一)在金融方面的应用。大数据金融以庞大繁杂的数据作为基础,利用如互联网等信息化技术,分析处理对客户的消费数据,将客户及时全面的信息及时地反馈给金融企业,如此一来,使得金融企业给零散化的客户群体提供定制化的服务成为可能。数据挖掘技术在金融领域的表现十分优异,在第三方支付、p2p网络借贷、供应链金融、互联网消费金融等方面均有广泛的运用。 就第三方支付而言,因为其运用场景多样化,使用方便快捷,因而,第三方支付与上下游的交易者联系紧密。当相关数据累积到一定程度时,便可推出更多的增值服务,进一步增加利润来源。在众多增值服务中,近年来,值得一提的是由蚂蚁金服推出的蚂蚁花呗。蚂蚊花呗本质上而言是一款消费信贷产品。蚂蚁花呗利用大数据,以自身的风控模型为基础,结合对消费者在互联网上的各种网购情况、支付习惯、信用风险等的分析结果,对不同的用户根据其近期的消费情况给予不同数额的消费额度。 第三方互联网支付交易规模由于互联网理财等大额交易场景的推动保持高速增长。在2013年,第三方互联网支付交易额仅为6万亿元,但据可靠预测,在2020年,此交易额可到39万亿元。再看第三方移动支付交易额。由于移动支付场景的多样化、用户渗透率越来越高、各种第三方支付企业进军市场等原因,移动交易量不断上升。在2013年,第三方移动支付交易额仅为1万亿元。但据估计,在2020年,第三方移动支付交易额可达144万亿元。 (二)在人力资源管理方面的运用。 (1)数据挖掘与人力资源规划:通过数据挖掘技术,组织管理者可以利用搜集到的每一个员工的组织内外部的信息资料,联系企业的整体战略目标,以事实为依据,制定未来人力资源规划。 (2)数据挖掘与人才的招聘与配置:招聘时,招聘者对于求职者的了解一般都比较肤浅,对于求职者的专业技能掌握情況、工作效率等无法有效进行认知。而新兴的社交网络呈现了—个人各方面的信息,如工作经历、社会关系、工作效率等,从而能助招聘者一臂之力,达到精准的人岗匹配。 (3)数据挖掘与员工的开发:利用数据挖掘,管理者将职业生涯规划建立在员工全方位数据的基础上,如员工的应聘岗位、晋升意愿和期望薪酬等结构化与非结构化的数据信息,从而精准地为员工提供职业培训。 三、注意区分数据挖掘与个人信息侵犯 当今时代,科学技术的不断提高,使得各种数码产品更新换代速度加快,手机、电脑、照相机等电脑产品基本是一年更新换代一次甚至两三次。其中由于手机应用功能随着经济发展而逐渐增加,从原来的按键机发展到如今的触屏手机乃至折叠手机,其功能也从原来的拨打电话、发送短信、彩信功能而增加到如今的视频通话、语音通话以及上网功能。网络的普遍化丰富了人们的生活,使得人们可以便捷广泛的了解、认知自身以外的整个中国乃至整个世界,可以通过网络媒介了解到其他国家的风土民俗、地形地貌,了解自己所喜欢的明星网红的日常喜好,或是通过网络媒介得到想获得的知识、达到一个学习的作用。但网络媒介是一把双刃剑,通过网络世界了解到诸多信息时,也可能因为自己在网络上所说的一句话、所发的一个定位从而导致自身隐私泄露,个人信息被公布在大众眼中。要运用好大数据时代中网络媒体这一把双刃剑,就必须要求到人们提高自我隐私保护意识,规范网络世界中的一言一语。 (一)大数据时代信息量过大导致信息泄露 当今时代是科技不断发展的时代,是大数据时代。在大数据时代里,各种数码产品纷呈展现其自身的广泛性、普遍性,充斥在人类日常生活中。尤其是手机的发展从原始的只能打电话接电话的大哥大,渐渐变成能够发短信、收短信的按键机,为满足人们日常生活中的娱乐要求,在信息传播的同时又增加了照相机、听音乐、玩游戏等等娱乐功能。在科技发展的基础上,为满足人们日常生活中的各种精神需求,仅仅五六年时间内,按键手机逐渐演变成如今的触屏手机、智能手机。如今的手机已不仅是一个只能打电话、接电话的功能机,在满足了人们的基本通讯要求后,增加了上网的功能。如今微博app、微信app、qqapp各种社交app的崛起,使得人们日常生活充满了娱乐性、便捷性、广泛性,所接收的信息不仅来自自身以外的中国各地,而且也可以接触到中国以外其它国家,甚至来自地球以外的各大恒星的知识。如今你将会看到,越来越多的人在超市里、商场中、地铁上、公园里拿起手机刷微博、拍抖音、视频通话、拍照片等等,在大数据时代,由于网络的普遍,人们上一秒在抖音app上传了一段视频、微博上发布了一篇文章、朋友圈发表了几张照片,以网络传播速度快的特点,下一秒这个视频、这篇文章、这些照片就极有可能出现在大众视线中。网络带来便捷性的同时也带来过大的信息量以及一定性的安全隐患,人们通过信息库了解某一样东西的同时,也可能导致自身定位被人知道、自身隐私被泄露出去。 (二)大数据时代侵犯个人信息方法更多 由于科学技术进步速度快,数码产品更新换代的速度也日益加快。当手机硬件设施提高了,相应的各类软件应用层出不穷,给予了人们日常生活中的精神满足,同时也给予了不法分子有机可图的条件。人们隐私安全问题日益堪忧,由于手机等各种数码产品的普遍性,大

大数据时代的数据挖掘技术

大数据时代的数据挖掘 技术 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

大数据时代的数据挖掘技术 【摘要】随着大数据时代的到来,在大数据观念不断提出的今天,加强数据大数据挖掘及时的应用已成为大势所趋。那么在这一过程中,我们必须掌握大数据与数据挖掘的内涵,并对数据挖掘技术进行分析,从而明确大数据时代下数据挖掘技术的应用领域,促进各项数据的处理,提高大数据处理能力。 【关键词】大数据时代;数据挖掘技术;应用 大数据时代下的数据处理技术要求更高,所以要想确保数据处理成效得到提升,就必须切实加强数据挖掘技术的应用,才能更好地促进数据处理职能的转变,提高数据处理效率,以下就大数据时代下的数据挖掘技术做出如下分析。 1.大数据与数据挖掘的内涵分析 近年来,随着云计算和物联网概念的提出,信息技术得到了前所未有的发展,而大数据则是在此基础上对现代信息技术革命的又一次颠覆,所以大数据技术主要是从多种巨量的数据中快速的挖掘和获取有价值的信息技术,因而在云时代的今天,大数据技术已经被我们所关注,所以数据挖掘技术成为最为关键的技术。尤其是在当前在日常信息关联和处理中越来越离不开数据挖掘技术和信息技术的支持。大数据,而主要是对全球的数据量较大的一个概括,且每年的数据增长速度较快。而数据挖掘,主要是从多种模糊而又随机、大量而又复杂且不规则的数据中,获得有用的信息知识,从数据库中抽丝剥茧、转换分析,从而掌握其潜在价值与规律[1]。

2.大数据时代下数据挖掘技术的核心-分析方法 数据挖掘的过程实际就是对数据进行分析和处理,所以其核心就在于数据的分析方法。要想确保分析方法的科学性,就必须确保所采用算法的科学性和可靠性,获取数据潜在规律,并采取多元化的分析方法促进问题的解决和优化。以下就几种常见的数据分析方法做出简要的说明。 一是归类法,主要是将没有指向和不确定且抽象的数据信息予以集中,并对集中后的数据实施分类整理和编辑处理,从而确保所形成的数据源具有特征一致、表现相同的特点,从而为加强对其的研究提供便利。所以这一分析方法能有效的满足各种数据信息处理。 二是关联法,由于不同数据间存在的关联性较为隐蔽,采取人力往往难以找出其信息特征,所以需要预先结合信息关联的表现,对数据关联管理方案进行制定,从而完成基于某种目的的前提下对信息进行处理,所以其主要是在一些信息处理要求高和任务较为复杂的信息处理工作之中。 三是特征法,由于数据资源的应用范围较广,所以需要对其特征进行挖掘。也就是采用某一种技术,将具有相同特征的数据进行集中。例如采用人工神经网络技术时,主要是对大批量复杂的数据分析,对非常复杂的模式进行抽取或者对其趋势进行分析。而采取遗传算法,则主要是对其他评估算法的适合度进行评估,并结合生物进化的原理,对信息数据的成长过程进行虚拟和假设,从而组建出半虚拟、半真实的信息资源。再如可视化技术则是为数据挖掘提供辅助,采取多种方式对数据的

数据挖掘及商务智能总结

第一章绪论 什么是数据挖掘,什么是商业智能 从大型数据库中提取有趣的(非平凡的、蕴涵的、先前未知的且是潜在有用的)信息或模式。 商业智能是要在必须的时间段内,把正确有用的信息传递给适当的决策者,以便为有效决策提供信息支持。 分类算法的评价标准 召回率recall =系统检索到的相关文件数/相关文件总数 准确率precision(查准率)= 系统检索到的相关文件数/系统返回的文件总数第二章数据仓库 什么是数据仓库 是运用新信息科技所提供的大量数据存储、分析能力,将以往无法深入整理分析的客户数据建立成为一个强大的顾客关系管理系统,以协助企业制定精准的运营决策。 数据仓库的基本特征 1面向主题2整合性 3长期性 4稳定性 第三章数据挖掘简介 数据挖掘的一般功能 1分类2估计3 预测4关联分类5聚类 数据挖掘的完整步骤 1理解数据与数据所代表的含义 2获取相关知识与技术 3整合与检查数据 4取出错误或不一致的数据 5建模与假设 6数据挖掘运行 7测试与验证所挖掘的数据 8解释与使用数据 数据挖掘建模的标准 CRISP-CM 跨行业数据挖掘的标准化过程 第四章数据挖掘中的主要方法 基于SQL Server 2005 SSAS的十种数据挖掘算法是什么 1.决策树 2.聚类 3.Bayes分类 4.有序规则 5. 关联规则 6.神经网络 7.线性回归 8. Logistic回归 9. 时间序列10. 文本挖掘 第五章数据挖掘与相关领域的关系 数据挖掘与机器学习、统计分析之间的区别与联系(再看看书整理下) 32页 处理大量实际数据更具优势,并且使用数据挖掘工具无需具备专业的统计学背景。 数据分析的需求和趋势已经被许多大型数据库所实现,并且可以进行企业级别的数据挖掘应用。 相对于重视理论和方法的统计学而言,数据挖掘更强调应用,毕竟数据挖掘目的

大数据下数据挖掘技术的算法word版

大数据下数据挖掘技术的算法 在大数据背景下,许多传统科学技术的发展达到了新的高度,同时也衍生 出一些新兴技术,这些推动着互联网行业的前行。新技术的发展也伴随着新问 题的产生,现有的数据处理技术难以满足大数据发展的需要,在数据保护等方 面依旧存在着一定的风险。因此,进一步完善大数据技术是当下需要攻克的难题。本文主要进行了大数据的简单引入,介绍数据挖掘技术及其应用,分析了 当下的发展进度和面临的困难。 1大数据的相关引入 1.1大数据的概念。大数据主要指传统数据处理软件无法处理的数据集,大 数据有海量、多样、高速和易变四大特点,通过大数据的使用,可以催生出新 的信息处理形式,实现信息挖掘的有效性。大数据技术存在的意义不仅在于收 集海量的信息,更在于专业化的处理和分析,将信息转化为数据,从数据中提 取有价值的知识。大数据分析与云计算关系密切,数据分析必须依托于云计算 的分布式处理、分布式数据库等。1.2大数据的特点。伴随着越来越多的学者投 入到对大数据的研究当中,其特点也逐渐明晰,都广泛的提及了这四个特点。(1)海量的数据规模,信息的数据体量明显区别于以往的GB、TB等计量单位,在大数据领域主要指可以突破IZP的数量级。(2)快速的数据流转,大数据作用的领域时刻处在数据更新的环境下,高效快速的分析数据是保证信息处理有效 的前提。(3)多样的数据类型,广泛的数据来源催生出更加多样的数据结构。(4)价值低密度,也是大数据的核心特征,相较于传统数据,大数据更加多变、模糊,给数据分析带来困扰,从而难以从中高密度的取得有价值的信息。1.3大 数据的结构。大数据主要分为结构化、半结构化和非结构化三种数据结构。结 构化一般指类似于数据库的数据管理模式。半结构化具有一定的结构性,但相 比结构化来说更加灵活多变。目前非结构化数据占据所有数据的70%-80%,原

大数据之数据挖掘技术

大数据之数据挖掘技术 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 大数据的核心:数据挖掘。从头至尾我们都脱离不了数据挖掘。其实从大学到现在一直都接触数据挖掘,但是我们不关心是什么是数据挖掘,我们关心的是我们如何通过数据挖掘过程中找到我们需要的东西,而我们更关心的是这个过程是什么?如何开始? 总结的过程也是一个学习的过程,通过有章节的整理对目前正在的学习的内容做规整。在这个过程中我们会从具体的项目实施中去谈数据挖掘,中间会贯穿很多的概念,算法,业务转换,过程,建模等等。 我们列一下要谈论的话题: 1、什么是数据挖掘及为什么要进行数据挖掘? 2、数据挖掘在营销和CRM中的应用? 3、数据挖掘的过程 4、你应理解的统计学

5、数据描述与预测:剖析与预测建模 6、经典的数据挖掘技术 7、各类算法 8、数据仓库、OLAP、分析沙箱和数据挖掘 9、具体的案例分析 什么是数据挖掘? 是知识发现、商业智能、预测分析还是预测建模。其实都可以归为一类:数据挖掘是一项探测大量数据以发现有意义的模式(pattern)和规则(rule)的业务流程。 这里谈到了发现模式与规则,其实就是一项业务流程,为业务服务。而我们要做就是让业务做起来显得更简单,或直接帮助客户如何提升业务。在大量的数据中找到有意义的模式和规则。在大量数据面前,数据的获得不再是一个障碍,而是一个优势。在现在很多的技术在大数据集上比在小数据集上的表现得更好——你可以用数据产生智慧,也可以用计算机来完成其最擅长的工作:提出问题并解决问题。模式和规则的定义:就是发现对业务有益的模式或规则。发现

模式就意味着把保留活动的目标定位为最有可能流失的客户。这就意味着优化客户获取资源,既考虑客户数量上的短期效益,同时也考虑客户价值的中期和长期收益。 而在上面的过程,最重要的一点就是:如何通过数据挖掘技术来维护与客户之间的关系,这就是客户关系管理,CRM。 专注于数据挖掘在营销和客户关系管理方面的应用——例如,为交叉销售和向上销售改进推荐,预测未来的用户级别,建模客户生存价值,根据用户行为对客户进行划分,为访问网站的客户选择最佳登录页面,确定适合列入营销活动的候选者,以及预测哪些客户处于停止使用软件包、服务或药物治疗的风险中。 两种关键技术:生存分析、统计算法。在加上文本挖掘和主成分分析。 经营有方的小店自然地形成与客户之间的学习关系。随着时间的推移,他们对客户的了解也会越来越多,从而可以利用这些知识为他们提供更好的服务。结果是:忠实的顾客和盈利的商店。 但是拥有数十万或数百万客户的大公司,则不能奢望与每个客户形成密切的私人关系。面临这样困境,他们必须要面对的是,学会充分利用所拥有的大量信息——几乎是每次与客户交互产生的数据。这就是如何将客户数据转换成客

大数据的概念及相关技术

一.大数据的概念 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。 二.大数据的相关技术 1.大数据采集技术 数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。 大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。 2.大数据预处理技术 主要完成对已接收数据的辨析、抽取、清洗等操作。 1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。 2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项, 因此要对数据通过过滤“去噪”从而提取出有效数据。 3.大数据存储及管理技术 大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化,半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。 开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据

(建筑工程管理)基于大数据挖掘技术及工程实践试题及答案

(建筑工程管理)基于大数据挖掘技术及工程实践试 题及答案

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)(D)的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能 够得到和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种 属于数据挖掘的哪类问题?(A) 3) A.关联规则发现B.聚类 4) C.分类D.自然语言处理 5)以下两种描述分别对应哪两种对分类算法的评价标准?(A) 6)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 7)(b)描述有多少比例的小偷给警察抓了的标准。 8) A.Precision,RecallB.Recall,Precision 9) A.Precision,ROCD.Recall,ROC 10)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务? (C) 11)A.频繁模式挖掘B.分类和预测 C.数据预处理 D.数据流挖掘 12)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其 他标签的数据相分离?(B) 13)A.分类B.聚类 C.关联分析 D.隐马尔可夫链

14)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于 数据挖掘的哪一类任务?(C) 15)A.根据内容检索B.建模描述 16)C.预测建模D.寻找模式和规则 17)下面哪种不属于数据预处理的方法?(D) 18)A.变量代换B.离散化 C.聚集 D.估计遗漏值 19)假设12个销售价格记录组已经排序如下: 5,10,11,13,15,35,50,55,72,92,204,215使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?(B) 20)A.第一个B.第二个 C.第三个 D.第四个 21)下面哪个不属于数据的属性类型:(D) 22)A.标称B.序数 C.区间 D.相异 23)只有非零值才重要的二元属性被称作:(C) 24)A.计数属性B.离散属性 C.非对称的二元属性 D.对称属性 25)以下哪种方法不属于特征选择的标准方法:(D) 26)A.嵌入B.过滤 C.包装 D.抽样 27)下面不属于创建新属性的相关方法的是:(B)

数据挖掘流程模型CRISP-DM

CRISP-DM 1.0 数据挖掘方法论指南 Pete Chapman (NCR), Julian Clinton (SPSS), Randy Kerber (NCR), Thomas Khabaza (SPSS), Thomas Reinartz (DaimlerChrysler), Colin Shearer (SPSS) and Rüdiger Wirth (DaimlerChrysler)

该手册描述了CRISP-DM(跨行业数据挖掘标准流程)过程模型,包括CRISP-DM的方法论、相关模型、用户指南、报告介绍,以及一个含有其他相关信息的附录。 本手册和此处的信息均为CRISP-DM协会以下成员的专利:NCR Systems Engineering Copenhagen (USA and Denmark), DaimlerChrysler AG (Germany), SPSS Inc. (USA) and OHRA Verzekeringen en Bank Groep B.V (The Netherlands)。 著作权? 1999, 2000 本手册中所有商标和服务标记均为它们各自所有者的标记,并且为CRISP-DM协会的成员所公认。

前言 1996年下半年,数据挖掘市场尚处于萌芽状态,CRISP-DM率先由三家资深公司共同提出。DaimlerChrysler (即后来的Daimler-Benz) 在其商业运营中运用数据挖掘的经验颇为丰富,远远领先于其他大多数商业组织。SPSS(即后来的ISL)自1990年以来一直致力于提供基于数据挖掘的服务,并于1994年推出了第一个商业数据挖掘平台——Clementine。至于NCR,作为对其Teradata数据仓库客户增值目标的一部分,它已经建立了数据挖掘顾问和技术专家队伍以满足其客户的需要。 当时,数据挖掘所引起的市场关注开始表明其进入爆炸式增长和广泛应用的迹象。这既令人兴奋又使人害怕。随着我们在这条路上不断走下去,所有人都不断研究和发展数据挖掘方法。可是我们做的是否正确?是否每一个数据挖掘的新使用者都必须像我们当初一样经历反复试验和学习?此外,从供应商的角度来看,我们怎样向潜在客户证明数据挖掘技术已足够成熟到可以作为它们商业流程的一个关键部分? 在这种情况下,我们认为急需一个标准的流程模型——非私人所有并可以免费获取——向我们和所有的从业者很好的回答这些问题。 一年后我们组建了联盟,名字CRISP-DM取自CRoss-Industry Standard Process for Data Mining的缩写,由欧洲委员会提供资助,开始实施我们最初的想法。因为CRISP-DM的定位是面向行业、工具导向和面向应用的,所以我们明白必须“海纳百川,博采众家之长”,必须在一个尽可能宽的范围内吸引人们的兴趣(比如数据仓库制造商和管理咨询顾问)。于是我们决定成立CRISP-DM 专门兴趣小组(即大家所知道的“The SIG”)。我们邀请所有感兴趣的团体和个人到阿姆斯特丹参加为期一天的工作会议,讨论并正式成立SIG组织:我们观念共享,鼓励与会者畅所欲言,为发展CRISP-DM共商大计。 当天每个协会成员都心怀惴惴,会不会没有人对CRISP-DM有足够的兴趣?即使有,那他们是否认为实际上并未看到一种对标准化流程的迫切需求?或者我们的想法迄今为止与别人的步调不一致,任何标准化的念头只是不切实际的白日梦? 事实上,讨论的结果大大超出了我们的期望。下面三点最为突出: 当天的与会人数是我们原先期望的两倍 行业需要而且现在就需要一个标准化流程——大家压倒性的一致同意 每个出席者从他们的项目经验出发陈述了自己关于数据挖掘的看法,这使我们越来越清晰地看到:尽管表述上有些区别——主要是在阶段的划分和术语方面,但在如何看待数据挖掘流程上大家具有极大的相似之处。 在工作组结束的时候,我们充满了自信,受SIG的启发和批评,我们能够建成一个标准化流程模型,为数据挖掘事业作出贡献。 接下来的两年半里,我们努力工作来完善和提炼CRISP-DM。我们不断地在Mercedes-Benz、保险部门的伙伴及OHRA的实际大型数据挖掘项目中进行尝试。同时也运用商业数据挖掘工具来整合CRISP-DM。SIG证明了是无价的,其成员增长到200多,并且在伦敦、纽约和布鲁塞尔都拥有工作组。 到该项目的欧洲委员会支持基金部分结束时——1999年年中,我们提出了自己觉得质量优良的流程模型草案。熟悉这一草案的人将会发现,一年以来,尽管现在的CRISP-DM1.0更完整更好,但从根本上讲并没有什么本质不同。我们强烈地意识到:在整个项目中,流程模型仍然是一个持续进行的工作;CRISP-DM还只是在一系列有限的项目中得到证实。过去的一年里,DaimlerChrysler有机会把CRISP-DM运用于更为广阔的范围。SPSS和NCR的专业服务团体采纳了CRISP-DM,而且用之成功地完成了无数客户委托,包括许多工业和商业的问题。这段时间以来,我们看到协会外部的服务供应商也采用了CRISP-DM;分析家不断重复地提及CRISP-DM

数据挖掘过程中的预处理阶段

数据挖掘过程中的预处理阶段 整个数据挖掘过程中,数据预处理要花费60%左右的时间,而后的挖掘工作仅占总工作量的10%左右[1]。经过预处理的数据,不但可以节约大量的空间和时间,而且得到的挖掘结果能更好地起到决策和预测作用。 一般的,数据预处理分为4个步骤,本文把对初始数据源的选择作为数据预处理过程中的一个步骤,即共分为5个步骤。因为,如果在数据获得初期就有一定的指导,则可以减少数据获取的盲目性以及不必要噪声的引入且对后期的工作也可节约大量的时间和空间。整个预处理过程见下图: 1 初始源数据的获取 研究发现,通过对挖掘的错误结果去寻找原因,多半是由数据源的质量引起的。因此,原始数据的获取,从源头尽量减少错误和误差,尤其是减少人为误差,尤为重要。首先应了解任务所涉及到的原始数据的属性和数据结构及所代表的意义,确定所需要的数据项和数据提取原则,使用合适的手段和严格的操作规范来完成相关数据的获取,由于这一步骤涉及较多相关专业知识,可以结合专家和用户论证的方式尽量获取有较高含金量(预测能力)的变量因子。获取过程中若涉及到多源数据的抽取,由于运行的软硬件平台不同,对这些异质异构数据库要注意数据源的连接和数据格式的转换。若涉及到数据的保密,则在处理时应多注意此类相关数据的操作且对相关数据作备注说明以备查用。

2 数据清理 数据清理 数据清理是数据准备过程中最花费时间、最乏味,但也是最重要的步骤。该步骤可以有效减少学习过程中可能出现相互矛盾情况的问题。初始获得的数据主要有以下几种情况需要处理: 1)含噪声数据。处理此类数据,目前最广泛的是应用数据平滑技术。1999年,Pyle系统归纳了利用数据平滑技术处理噪声数据的方法,主要有:①分箱技术,检测周围相应属性值进行局部数据平滑。②利用聚类技术,根据要求选择包括模糊聚类分析或灰色聚类分析技术检测孤立点数据,并进行修正,还可结合使用灰色数学或粗糙集等数学方法进行相应检测。③利用回归函数或时间序列分析的方法进行修正。④计算机和人工相结合的方式等。 对此类数据,尤其对于孤立点或异常数据,是不可以随便以删除方式进行处理的。很可能孤立点的数据正是实验要找出的异常数据。因此,对于孤立点应先进入数据库,而不进行任何处理。当然,如果结合专业知识分析,确信无用则可进行删除处理。 2)错误数据。对有些带有错误的数据元组,结合数据所反映的实际问题进行分析进行更改或删除或忽略。同时也可以结合模糊数学的隶属函数寻找约束函数,根据前一段历史趋势数据对当前数据进行修正。 3)缺失数据。①若数据属于时间局部性的缺失,则可采用近阶段数据的线性插值法进行补缺;若时间段较长,则应该采用该时间段的历史数据恢复丢失数据。若属于数据的空间缺损则用其周围数据点的信息来代替,且对相关数据作备注说明,以备查用。②使用一个全局常量或属性的平均值填充空缺值。③使用回归的方法或使用基于推导的贝叶斯方法或判定树等来对数据的部分属性进行修复④忽略元组。 4)冗余数据。包括属性冗余和属性数据的冗余。若通过因子分析或经验等方法确信部分属性的相关数据足以对信息进行挖掘和决策,可通过用相关数学方法找出具有最大影响属性因子的属性数据即可,其余属性则可删除。若某属性的部分数据足以反映该问题的信息,则其余的可删除。若经过分析,这部分冗余数据可能还有他用则先保留并作备注说明。

数据挖掘过程说明文档

生产再生钢的过程如下:组合后的废钢通过炉门送入炉子,电流通过悬浮在炉内的电极输送到熔化的废钢中。提供给这些电极的高电流通过电弧传输到内部的金属废料,对其加热并产生超过3000°C的温度。 通过添加各种活性气体和惰性气体以及固体物质来维持和优化炉内条件。然后,钢水从熔炉中流出,进入移动坩埚,并浇铸到钢坯中。 你将得到一个数据集,代表从各种金属废料lypes生产回收钢坯的过程。Hie数据集包含大 ?这是一个基于团队的项目。你需要组成一个小组,由三名(或两名)组员来完成这项练习。?您可以使用Weka或任何其他可用的数据挖掘资源和软件包来帮助您制定问题、计算、评

估等。 ?您的团队绩效将完全根据团队的结果和您的报告进行评估。 ?作为一个团队,您需要决定给定问题的性质;什么类型的数据挖掘问题公式适合解决此类问题;您的团队可以遵循什么样的基本数据挖掘过程;您的团队希望尝试什么类型的算法;以何种方式,您可以进一步利用或最大化您的性能,等等。 ?您的团队应致力于涵盖讲座、教程中包含的领域,考虑预处理、特征选择、各种算法、验证、测试和性能评估方法。 ?对于性能基准,建议您使用准确度和/或错误率作为评估指标。 ?表现最好的球队将被宣布为本次迷你KDD杯冠军,并将获得10%的加分,最高100%满分。 数据挖掘流程: 一、数据建模 1. 数据获取 2. 数据分析 3. 数据预处理 二、算法建模 1. 模型构建 2. 模型检验 三、评估 一、数据建模 1.数据获取及分析 数据集:EAF_process_dataqqq.csv 根据《assignment 2》中,数据集的说明,可知:

大数据挖掘技术之DM经典模型(上)

大数据挖掘技术之DM经典模型(上) 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 实际上,所有的数据挖掘技术都是以概率论和统计学为基础的。 下面我们将探讨如何用模型来表示简单的、描述性的统计数据。如果我们可以描述所要找的事物,那么想要找到它就会变得很容易。这就是相似度模型的来历——某事物与所要寻找的事物越相似,其得分就越高。 下面就是查询模型,该模型正在直销行业很受欢迎,并广泛用于其它领域。朴素贝叶斯模型是表查找模型中一种非常有用的泛化模型,通常表查询模型适用于较低的维度,而朴素贝叶斯模型准许更多的维度加入。还有线性回归和逻辑回归模型,都是最常见的预测建模技术。回归模型,用于表示散点图中两个变量之间的关系。多元回归模型,这个准许多个单值输入。随后介绍逻辑回归分析,该技术扩展了多元回归以限制其目标范围,例如:限定概率估计。还有固定效应和分层回归模型,该模型可将回归应用于个人客户,在许多以客户为中心的数据挖掘技术之间搭建了一座桥梁。 1、相似度模型 相似度模型中需要将观察值和原型进行比较,以得到相应的相似度得分。观察值与原型相似度越高,其得分也就越高。一种度量相似度的方法是测量距离。观察值与原型值之间的距离越近,观察值的得分就越高。当每个客户细分都有一个原型时,该模型可以根据得分把客户分配到与其最相似的原型所在的客户细分中。 相似度模型有原型和一个相似度函数构成。新数据通过计算其相似度函数,就可以计算出相似度得分。 1.1、相似度距离 通过出版社的读者比一般大众要富有,而且接受教育的程度要高为例。通常前者要比后者在富有程度、教育程度的比例大三倍。这样我们

大数据关键技术

大数据关键技术大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采 集、存储、处理和呈现的有力武器。 大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。 一、大数据采集技术 数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大 数据整合技术;设计质量评估模型,开发数据质量技术。 大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决

策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。 二、大数据预处理技术 主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。 三、大数据存储及管理技术 大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。 开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库

相关文档
最新文档