圆的四种方程学习资料

圆的四种方程学习资料
圆的四种方程学习资料

圆的四种方程

精品文档

收集于网络,如有侵权请联系管理员删除 圆的四种方程

(1)圆的标准方程 222()()x a y b r -+-=.

(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θθ

=+??=+?.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).

87. 圆系方程

(1)过点11(,)A x y ,22(,)B x y 的圆系方程是

1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ?--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.

(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程

是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.

(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交

点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的

系数.

88.点与圆的位置关系

点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种

若d =

d r >?点P 在圆外;d r =?点P 在圆上;d r

89.直线与圆的位置关系

直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:

0相离r d ;

0=???=相切r d ;

0>???<相交r d . 其中22B

A C Bb Aa d +++=. 90.两圆位置关系的判定方法

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21

条公切线外离421??+>r r d ;

条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ;

条公切线内切121??-=r r d ;

无公切线内含??-<<210r r d .

91.圆的切线方程

(1)已知圆220x y Dx Ey F ++++=.

①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

课题:与圆有关的轨迹方程

课题:与圆有关的轨迹方程 北京市第八十中学 王伟 一、教学时间:10.27 二、教学目标: 1、掌握求曲线的方程的一些常见方法; 2、建立数形结合思想,培养学生运用解析几何的基本思想方法; 3、培养学生的创新意识, 提高学生的分析问题、解决问题的能力; 三、教学重难点: 重点:求与圆有关的轨迹方程的方法; 难点:建立动点坐标之间的等量关系; 四、教学用具:计算机、投影仪、圆规、三角板; 五、教学过程: (一)复习提问导入新课: 1什么叫曲线的方程、方程的曲线? 2求曲线的方程的步骤是什么? 学生回答 教师点评:明确解析几何的基本思想方法是在坐标系的基础上,用坐标表示点,用方程表示曲线,通过方程的特征间接地来研究曲线的性质。其主要问题是1、根据已知条件求曲线的方程,2、通过方程研究平面曲线的性质。 (二)新课: 今天我们一起来研究与圆有关的轨迹方程; 例1已知定点A (6,0),点B 是圆 2+y x 求点P 的轨迹方程。 解法一:作PQ ∥OB 交x 轴于点Q , ∵P 为AB 中点,∴PQ 为△OAB 的中位线 ∴Q(3,0),|PQ|= OB 21 ∴|PQ|=2 3,由圆的定义知,P 在以Q (3,0)为圆心,半径r=|PQ|=23的圆上,∴点P 的轨迹方程是:49)3(22=+-y x ; 1、解法一由学生探讨,寻求解答,展示思维过程; 2、教师点评,总结解法一:定义法; 用计算机演示动点P 的轨迹图形,学生观察运动变化规律。 教师提问:例1的解答还有其他方法吗? 学生观察分析:动点P 的轨迹依赖圆上点B 的变化;

解法二:设P ),(),,(11y x B y x ,由中点坐标公式得: ?? ???+=+=202611y y x x ∴???=-=y y x x 26211∵B ),(11y x 在圆922=+y x 上,∴92121=+y x ∴9)2()62(22=+-y x ∴4 9)3(22=+-y x 教师总结解法二:坐标转移法,并把例1进行的拓展: 变化A 点的位置探求点P 的轨迹方程(1) A 在圆上 (2)A 在圆内 变化P 点位置探求点P 的位置关系(1)P 分AB 的比为2:1 (2)P 在的延长线上,使BP AB = 学生回答在上述四种情况中如何解答? 例2 自圆外一点A (6,0)引圆922=+y x 的割线ABC ,求弦BC 的中点P 的轨迹方程。 定义法 解法一:∵OP ⊥AP,取OA 中点M 则M(3,0),|PM|=3, 由圆的定义得P 点轨迹方程为0622=-+x y x 几何法 1 解法二:设P ),(y x ,连OP ,则OP ⊥BC 14 ,-=-?⊥x y x y k k BC OP 即,即0422=-+x y x ,当0=x 时P 点坐标为(0,0)是方程的解,∴BC 中点P 的轨迹方程为0422=-+x y x (在圆的内部分) 几何法2 解法三 :设P ),(y x ,连OP ,=),(y x ,=),6(y x --,∵⊥, ∴·=0,0)()6(=-+-y y x x ,0622=-+x y x (在圆的内部分) 几何法2 解法四 :设P ),(y x ,连OP ,OP =),(y x ,PA =),6(y x --,∵OP ⊥PA , ∴OP ·=0,0)()6(=-+-y y x x ,0622=-+x y x (在圆的内部分) 坐标转移法 解法五:设 ),,(),,(2211y x C y x B ),(y x P 则 4212 1=+y x …..①

圆与方程测试题及答案(推荐文档)

圆与方程测试题 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(). A.5B.5 C.25 D.10 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是(). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为(). A.0或2 B.2 C.2D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是(). A.8 B.6 C.62D.43 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为(). A.内切B.相交C.外切D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有(). A.4条B.3条C.2条D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于y oz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是(). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是(). A.243B.221C.9 D.86 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为. 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为. 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是. 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值. 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为. 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

(数学试卷高一)圆与方程测试题及答案

必修2第四章《圆与方程》单元测试题 (时间:60分钟,满分:100分) 班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值依次为 (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2 3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-所表示的曲线关于直线y x =对称,必有 ( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 8. 已知点A(1,-2,11),B(4,2,3),C(6,-1,4)则三角形ABC 的形状是( ) (A) 直角三角形 (B )锐角三角形 (C )钝角三角形 (D )斜三角形 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 A 、6π B 、4π C 、3π D 、2π 10.两圆x 2+y 2-4x+6y=0和x 2+y 2 -6x=0的连心线方程为 ( ) A .x+y+3=0 B .2x -y -5=0

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

与圆有关的轨迹方程

求与圆有关的轨迹方程 [概念与规律]求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤是:设动点M(x,y),已知曲线上的点为N (x o, y o), 求出用x,y表示x o,y o的关系式,将(x o, y o)代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4,o ),点B是圆x2+y2=4上的动点,点P分AB的比为2:1,求点P的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP则OPL BC 』-=一止 当x^0 时,k op ■ k AP=—1,即TT x—4 即x2+ y2—4x = O.① 当x= O时,P点坐标(0,0)是方程①的解, BC中点P的轨迹方程为x2+ y2—4x= O(在已知圆内的部分). 方法二:(定义法) 由方法一知OPtAP,取OA中点M 则M2,0), |PM =2 I OA = 2, 由圆的定义知,P的轨迹方程是(x —2)2+ y2= 4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2, 0)和圆C: x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数 (0),求动点M的轨迹方程,并说明它表示什么曲线。 设直线MN切圆于N,则动点M组成的集合是:P={M||MN|= J'|MQ|} T圆的半径|ON|=1,二|MN|2=|MO|2-|ON|2=|MO|2-1 , 设点M的坐标为(x, y),则j 整理得(x-4)2+y2=7 . ???动点M的轨迹方程是(x-4 )2+y2=7 . 它表示圆,该圆圆心的坐标为(4 , 0),半径为越 例4 如图,已知两条直线11:2x-3y+2=0 , I2: 3x-2y+3=0,有一动圆(圆心和半径都在变化)与丨1,丨2都相交, 并且I 1与I 2被截在圆内的两条线段的长度分别是26和24,求圆心M的轨迹方程。 设动圆的圆心为M(x,y),半径为r,点M到直线1* 2的距离分别为d1和dz 由弦心距、半径、半弦长间的关系得,

圆与方程单元测试题及答案

第四章单元测试题 (时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0

解析几何求圆的轨迹方程专题一师用

专题一求圆的轨迹方程 教学目标: 1、掌握直线与圆的标准方程与一般方程,能根据问题的条件选择适当的 形式求圆的方程; 2、掌握直线与圆的位置关系,可以应用直线与圆的位置关系求圆的方程 3、理解圆的标准方程与一般方程之间的关系,会进行互化。 教学重难点: 1、掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆 的方程; 2、会求曲线的轨迹方程(圆) 教学过程: 第一部分知识点回顾 一、圆的方程 : 1 .圆的标准方程:x a? y b 2 r2o 2 ?圆的一般方程:x2 y2 Dx Ey F 0(D2+ E2—4F 0) 特别提醒:只有当D2+ E2—4F 0时,方程x2 y2 Dx Ey F 0才表示圆心为(D, E),半径为1~E2~4F的圆 2 2 2 思考:二元二次方程Ax2 Bxy Cy2 Dx Ey F 0表示圆的充要条件是什么? 答案:(A C 0,且 B 0 且D2 E2 4AF 0 ));

3 .圆的参数方程:y a r s°s (为参数),其中圆心为(a,b),半径为 r 。圆的参数方程的主要应用是三角换元: (3) 已知P( 1, -3)是圆y ;;煮(为参数,0 2 )上的点,则圆的 普通方程为,P 点对应的 值为,过P 点的圆的切线方程是 (答:x 2 y 2=4 ; — ; x ,3y 4 0); 3 (4) 如果直线l 将圆:x 22-240平分,且不过第四象限,那么I 的斜率 的取值范围是_ (答: [0 , 2]); (5) 方程x 22 - 0表示一个圆,则实数k 的取值范围为(答:k 丄); (6) 若 M {(x, y) | y 3sos (为参数,0 )}, N (x, y) | y x b , 若MN ,则b 的取值范围是(答:-33& ) 二、点与圆的位置关系:已知点M x 0 ,y 0 及圆C: x-a $ y b ? r 2 r 0 , (1) 点 M 在圆 C 外 |CM | r x 0 a 2 y 。b 2 r 2; (2) 点 M 在圆 C 内 CM| r x 0 a 2 y 。b 2 r 2; (3) 点 M 在圆 C 上 CM r x 0 a $ y 0 r 2。女口 点P(5a+1,12a)在圆(x -1 )2 + y 2=1的内部,则a 的取值范围是(答: 2 ^22, r x r cos , y r sin ; x y t x r cos ,y r sin (0 r .,t)。 X i ,y i ,B X 2,y 2为直径端点的圆方程 x x 1 x X 2 y y 1 y y 2 0 如 (1) 圆C 与圆(X 1)2 y 2 1关于直线y x 对称, 则圆 C 的方程为 (答: x 2 (y 1)2 1); (2) 圆心在直线2x y 3上,且与两坐标轴均相切的圆的标准方程是 (答: (x 3)2 (y 3)2 9或(x 1)2 (y 1)2 1 );

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1 一、 选择题 1.方程x 2+y 2 +2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

8.一束光线从点(1,1)A -出发,经x 轴反射到圆22 :(2)(3)1C x y -+-=上的最短路径是 ( A ) A .4 B .5 C .321- D .26 9.直线0323=-+y x 截圆x 2 +y 2 =4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( ) A.AB B.BC C.CD D.DA [答案] D [解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上. 二、填空题 11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- . 12.圆:0642 2 =+-+y x y x 和圆:062 2 =-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --= 13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5) 14.过点A (-2,0)的直线交圆x 2+y 2 =1交于P 、Q 两点,则AP →·AQ →的值为________. [答案] 3 [解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2 -1-d 2,|AQ →|=4-d 2+1-d 2 ,

圆的方程测试题及答案

圆的方程专项测试题 一、选择题 1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( ) <a <7 <a <4 <a <3 <a <19 2.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) 个 个 个 个 3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1) D.(2 +2,2-3) 4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A. 2 2 B .1 C.2 5.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .2 1± B .22± C .2221-或 D .2221或- 6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) B.4 2 2 7.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=2 9.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1 B.|a |< 5 1 C.|a |< 12 1 D.|a |< 13 1 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) =0,且A=C≠0 =1且D 2+E 2-4AF >0 =0且A=C≠0,D 2+E 2-4AF≥0 =0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.( 3 14 ,5) B.(5,1) C.(0,0) D.(5,-1) 12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) 5 1 <k <-1 5 1 <k <1

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

与圆有关的轨迹方程的求法培训资料

与圆有关的轨迹方程 的求法

与圆有关的轨迹方程的求法 若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系: ? ??βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得???=β=α) ,(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0. 例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程. 【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程. 【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴ 3 1||||==OQ OP QA PQ , ∴Q 分PA 的比为31 .

∴???????=-=????? ??????=+?+=+=+?+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622 =+??? ??-y x . ∴Q 的轨迹方程为)0(16 9)43 (22>=+-y y x . 例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .4)1(22=+-y x B .)10(4)1(22<≤=+-x y x C .4)2(22=+-y x D .)10(4)2(22<≤=+-x y x 变式练习 1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且 3 1=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵31=,∴),3(3 1),(11y x y y x x --=--, ∴???????-=--=-y y y x x x 31)3(3111,∴??? ????=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴ 12121=+y x ,∴1)34()134(22=+-y x ,即16 9)43(22=+-y x ,∴点M 的轨迹方程是16 9)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .

与圆的轨迹方程

与圆的轨迹方程文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

求与圆有关的轨迹方程 [概念与规律] 求轨迹方程的基本方法。 (1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。 (2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问 题,其步骤是:? 设动点M(x,y),已知曲线上的点为N(x 0,y ), ? 求出用x,y表示x 0,y 的关系式, ? 将(x 0,y )代入已知曲线方程,化简后得动点的轨迹方程。 (3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。 (4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。 (5)定义法:这是直接运用有关曲线的定义去求轨迹方程。 [讲解设计]重点和难点 例1 已知定点A(4, 0),点B是圆x2+y2=4 上的动点,点P分AB的比为2:1,求点P的轨迹方程。 例2 自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程。 方法一:(直接法)设P(x,y),连接OP,则OP⊥BC, 当x≠0时,k OP·k AP=-1,即 即x2+y2-4x=0. ① 当x=0时,P点坐标(0,0)是方程①的解, ∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内的部分). 方法二:(定义法) 由方法一知OP⊥AP,取OA中点M,则M(2,0),|PM|=|OA|=2, 由圆的定义知,P的轨迹方程是(x-2)2+y2=4(在已知圆内的部分). 例3 已知直角坐标平面上的点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长 > 设直线MN切圆于N,则动点M组成的集合是:P={M||MN|=√2|MQ|}

圆与方程单元测试题及答案

(时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0 10.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面

相关文档
最新文档