福建省海上风电行业发展概况

福建省海上风电行业发展概况
福建省海上风电行业发展概况

福建省海上风电行业发展概况

1、福建省风电行业发展现状

(1)福建省风能资源丰富

福建省位于我国东部沿海地区,濒临东海和台湾海峡,海岸线总长6,128 公里,占全国海岸线的近五分之一。福建地处欧亚大陆的东南边缘,受季风气候影响年平均风速较大,尤其是秋冬季节以东北风为主,风向稳定,风力资源十分丰富。相比于内陆,近海地区风速不会受到丘陵等地形地貌的影响,因此福建省近海风能整体优于陆上地区,每当冬季冷空气南下到达时,平均风功率密度可超过700W/m2。福建全省近海(水深50m 以内)风电潜在开发海域面积为

24,547km2,风能理论蕴藏量约1.23 亿kW,全省近海风电可开发量达1000 万kW(水深30m以内),具有很高的开发价值。

福建省中部的福州、莆田和泉州三市位于台湾海峡的中部,受台湾海峡“狭管效应”的影响,风资源储量相对更高。福州中南部至泉州南部和福建南部漳浦县的赤湖镇一带是福建省沿海风速较大的地区,年平均风速介于7.5m/s ~ 9.7m/s 之间。有效风功率密布的分布特点与风速相似,福州中南部至泉州的晋江一带年有效风率较高,其中平潭岛风力资源最为丰富。

季节分布方面,由于秋季受北方冷空气南下影响,南北温差变大导致气压梯度增大,再加上沿海地区无山地影响,易出现持续的东北大风,春夏两季控制系

统则逐渐由冷高压转变为副热带高压,风速逐渐变小。因此,福建省每年的5

月到8 月风速较低,风况较差;10 月到次年的3 月风速较高,风况较好。

(2)福建省电力结构简介

根据《2018 年福建省国民经济和社会发展统计公报》,2018 年福建省发电

量共计2,461.88亿千瓦时,其中火电发电量1,405.13 亿千瓦时,占比达57.08%,水电发电量325.27 亿千瓦时,其他非水火电发电量共计731.48 亿千瓦时。其中根据国家能源局统计,福建省2018 年度风力发电量为72 亿千瓦时,占其总发电量比例较低。

截至2018 年末,福建省6,000 千瓦及以上电厂发电设备容量累计为5,770.00 万千瓦,其中火电装机容量3,128.00 万千瓦,水电装机容量1,322.00 万千瓦,非水火电装机容量1,320.00 万千瓦;非水火电装机容量较前一年度增长8.60%,远高于火电装机容量的增幅1.76%。目前来看,福建省内整体仍以火电为主,但可再生能源发电比例正逐年提升,电力结构正在调整过程中。

(3)福建省风电行业发展情况

随着当地经济快速发展,福建省电力需求稳步增长,同时在新能源发电鼓励政策的推动下,福建省风电行业一直保持着积极发展的态势。2014-2018 年,福建省风力发电并网容量逐年增长,由159 万千瓦增长至2018 年的300 万千瓦,年化复合增长率13.49%。福建省风力发电量也与并网容量同步增加,自2014 年

的38 亿千瓦时增加至2018 年的72 亿千瓦时,年化复合增长率13.92%。

【完整版】2020-2025年中国海上风电行业市场发展战略研究报告

(二零一二年十二月) 2020-2025年中国海上风电行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (7) 第一节研究报告简介 (7) 第二节研究原则与方法 (7) 一、研究原则 (7) 二、研究方法 (8) 第三节企业市场发展战略的作用、特征及与企业的关系 (10) 一、企业市场发展战略的作用 (10) 二、市场发展战略的特征 (11) 三、市场发展战略与企业战略的关系 (12) 第四节研究企业市场发展战略的重要性及意义 (13) 一、重要性 (13) 二、研究意义 (13) 第二章市场调研:2018-2019年中国海上风电行业市场深度调研 (14) 第一节海上风电概述 (14) 第二节我国海上风电行业监管体制与发展特征 (14) 一、行业主要监管部门 (14) 二、行业主要法律、法规和相关政策 (15) 三、2019年风电行业主要政策变化解读 (16) 四、行业技术水平与技术特点 (22) (一)行业技术水平现状 (22) (二)目前行业的技术特点 (22) 五、行业的周期性、区域性和季节性 (23) 六、上下游行业之间的关联性、上下游行业发展状况 (23) 七、海上风能资源分布情况 (24) 八、海上风电投资成本构成 (24) 第三节2018-2019年中国海上风电行业发展情况分析 (26) 一、我国海上风电市场发展态势 (26) 二、2018年已核准或签约的海上风电 (28) 三、中国海上风电行业主要项目分布 (31) 四、下游安装和运维市场情况 (32) 五、面临挑战 (34) 第四节重点企业分析 (34) 一、龙源电力 (34) 二、金风科技 (37) 三、泰胜风能 (37) 四、天顺风能 (38) 五、中闽能源 (39) 第五节2019-2025年我国海上风电行业发展前景及趋势预测 (39) 一、行业发展的有利因素 (39) (1)国家产业政策支持 (39) (2)国家能源结构持续优化 (40)

海上风力发电发展现状解读

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

中国海上风电行业发展现状分析报告

中国海上风电行业发展现状分析在过去的十年中,风力发电在我国取得了飞速的发展,装机容量从2004年的不到75MW跃升至2015上半年的近125GW,在全国电力总装机中的比重已超过7%,成为仅次于火电、水电的第三大电力来源。 2014 年全球海上风电累计容量达到了8759MW,相比2013 年增长了24.3%。截至2014 年底全球91%(8045MW)的海上风机安装于欧洲的海域,为全球海上风电发展的中心。我国同样具备发展海上风电的基础,目前标杆电价已到位,沿海省份已完成海上风电装机规划,随着行业技术的进步、产业链优化以及开发经验的累积,我国海上风电将逐步破冰,并在“十三五”期间迎来爆发,至2020年30GW的装机目标或将一举突破。 陆上风电的单机容量以1.5MW、2MW类型为主,截止至2014年我国累计装机类型统计中,此两种机型占据了83%的比例。而海上风电的机型则以2.5~5MW为主,更长的叶片与更大的发电机,对于风能的利用率也越高。 2014年中国不同功率风电机组累计装机容量占比

2014年底中国海上风电机组累计装机容量占比 在有效利用小时数上,陆上风电一般为0~2200h,而海上风电要高出20%~30%,达到2500h以上,且随单机规模的加大而提高。更强更稳的风力以及更高的利用小时数,意味着海上风电的单位装机容量电能产出将高于陆上。 我国风电平均利用小时数及弃风率 根据中国气象局的测绘计算,我国近海水深5-50 米围,风能资源技术开发量约为500GW(扣除了航道、渔业等其他用途海域,以及强台风和超强台风经过3 次及以上的海域)。虽然在可开发总量上仅为陆上的1/5,但从可开发/已开发的比例以及单位面积可开发量上看,海上风电的发展潜力更为巨大,年均增速也将更高。

我国海上风电行业政策背景分析

中投顾问产业研究中心 中投顾问·让投资更安全 经营更稳健 我国海上风电行业政策背景分析 2014年6月,发改委出台海上风电上网价格政策,对2017年前投运的近海风电项目制定上网电价0.8元/kwh ,潮间带风电项目上网电价为0.75元/kwh 。同年,上海市出台上海市可再生能源和新能源发展专项资金扶持办法,对海上风电给予0.2元/kwh 的电价补贴,期限5年时间,单个项目年度最高补贴额度不超过5000万元。2015年9月国家能源局在海上风电对外通报中鼓励省级能源主管部门向省政府建议并积极协调财政、价格等部门,基础上研究出台本地区的配套补贴政策,中投顾问发布的《2016-2020年中国海上风力发电行业投资分析及前景预测报告》指出,随着十三五能源规划的出台,后续沿海省份海上风电补贴政策有望落地。 2015年3月13日,中共中央国务院下发关于深化体制机制改革加快实施创新驱动发展战略的若干意见,对新能源汽车、风电、光伏等领域实行有针对性的准入政策。 2015年3月20日,国家发改委、国家能源局于20日发布了关于改善电力运行、调节促进清洁能源多发满发的指导意见。 意见显示:在编制年度发电计划时,优先预留水电、风电、光伏发电等清洁能源机组发电空间;鼓励清洁能源发电参与市场,对于已通过直接交易等市场化方式确定的电量,可从发电计划中扣除。对于同一地区同类清洁能源的不同生产主体,在预留空间上应公平公正。风电、光伏发电、生物质发电按照本地区资源条件全额安排发电;水电兼顾资源条件和历史均值确定发电量;核电在保证安全的情况下兼顾调峰需要安排发电;气电根据供热、调峰及平衡需要确定发电量。煤电机组进一步加大差别电量计划力度,确保高效节能环保机组的利用小时数明显高于其他煤电机组,并可在一定期限内增加大气污染物排放浓度接近或达到燃气轮机组排放限值的燃煤发电机组利用小时数。 2016年1月,发改委出台全国碳排放权交易市场启动重点工作的通知,将电力、石化、钢铁等行业纳入碳排放权交易市场第一阶段重点覆盖领域中。目前我国已有7个碳排放交易市场,截止至2015年底共覆盖2052家控排企业,累计配额交易量超过5365万吨,累计成交量额超过19.5亿元。2010年上海东海大桥风场以38.24万欧元价格向英国碳资源管理有限公司出售3.02万吨减排量,后续海上风场将可以通过国内碳排放市场交易减排量。 2016年3月,国家能源局印发《关于建立可再生能源开发利用目标引导制度的指导意见》,对2020年各省级行政区域全社会用电量中非水电可再生能源电力消纳量比重指标做出规定,要求,各发电企业(除专门的非化石能源生产企业外)非水电可再生能源发电量应达到全部发电量的9%以上,并提出建立可再生能源电力绿色证书交易机制,各发电企业可以通过证书交易完成非水可再生能源占比目标的要求,而目前我国发电量结构中非水可再生能源占比约4.1%。2016年4月,国家能源局下发通知要求建立燃煤火电机组承担非水可再生能源发电配额的机制。非水可再生能源配额制为包括海上风电在内的新能源发电产业拓宽了项目收益方式。

2018年海上风电行业深度研究报告

2018年海上风电行业深度研究报告

目录 1.风电未来空间广阔,机组大功率化是趋势 (4) 1.1全球风电投资和装机稳定增长,未来前景广阔 (5) 1.2风电装机成本不断下降,机组大功率化成趋势 (6) 1.3中国风电装机居世界首位,国内风电占比稳步提升 (8) 2.陆上风电存量消纳仍是主要目标 (9) 2.1全国电力需求稳定增长 (9) 2.2弃风率有所降低,存量消纳仍是主要工作 (9) 2.2.1国家电网多举措促进消纳,弃风率有所改善 (9) 2.2.2预计能源局四季度将核准多条特高压工程以促进消纳 (11) 2.3新增装机规模空间有限,风电建设向中东南部迁移 (12) 2.4配额制促进消纳,竞价政策加速风电平价上网 (14) 2.5陆上风电消纳为主,分散式风电尚在布局 (14) 3.海上风电有望迎来快速发展期 (15) 4.投资建议 (20) 4.1金风科技(002202) (20) 4.2天顺风能(002531) (21) 4.3东方电缆(603606) (21)

图目录 图1:风电行业产业链 (4) 图2:全球清洁能源装机和发电量占比(包含水电) (5) 图3:全球清洁能源和风电投资额(十亿美元)及风电投资占比 (5) 图4:全球风电装机容量(GW)预测及同比增速(右轴) (5) 图5:2010-2017年全球风电装机成本和LCOE变化趋势 (6) 图6:1991-2017年中国新增和累计装机的风电机组平均功率 (6) 图7:2008-2017年全国不同单机容量风电机组新增装机占比 (7) 图8:2011年以来新增风电机组平均风轮直径(m)及增速 (7) 图9:2017年新增风电机组轮毂高度分布 (7) 图10:2017年不同国家新增风电装机份额 (8) 图11:2017年不同国家累计风电装机份额 (8) 图12:风力发电设备容量及占全部发电设备容量的比重 (8) 图13:风力发电量及占全部发电量的比重 (8) 图14:全社会用电量变化趋势 (9) 图15:近年来中国弃风电量(亿千瓦时)及弃风率情况 (10) 图16:国家电网近年来风电并网容量(GW) (10) 图17:国家电网近年来特高压线路长度(万公里) (10) 图18:2010-2017年全国风电新增和累计装机容量(GW) (12) 图19:2017年与2020年底累计风电装机占比变化趋势 (13) 图20:海上风电厂主要组成部分 (16) 图21:截至2017年底我国海上风电制造企业累计装机容量(MW) (17) 图22:截至2017年底我国海上风电开发企业累计装机容量(MW) (18) 图23:截至2017年底我国海上风电不同单机容量机组累计装机容量(万千瓦) (18) 图24:截至2017年底我国沿海各省区海上风电累计装机容量(万千瓦) (19) 表目录 表1:双馈齿轮箱技术和直驱永磁技术比较 (4) 表2:国家电网2017年消纳新能源举措(不完全统计) (11) 表3:2018年以来风电行业相关政策 (11) 表4:拟核准的三条和清洁能源输送相关的特高压工程 (12) 表5:主要政策中关于风电建设规模的表述 (13) 表6:分散式风电发展低于预期的主要原因(不完全统计) (15) 表7:我国海上风资源分类 (16) 表8:2017年我国海上风电制造企业新增装机容量 (17) 表9:2018年以来核准和开工的海上风电项目(不完全统计) (19) 表10:海陆丰革命老区振兴发展近期重大项目之海上风电项目 (20)

海上风电项目的“一体化设计”难点分析

海上风电项目的“一体化设计”难点分析 自从我国风电行业开始涉足海上项目以来,“一体化设计”的概念一直被广泛传播。这个最初源于欧洲海上风电优化设计的名词,相信无论是整机供应商、设计院,还是业主、开发商,都在各种场合不止一次地使用或者听到过。 而对于“一体化设计”的真正内涵以及国内风电项目设计中阻碍“一体化设计”目标实现的因素,并不是每个使用这个词的人都能说得清楚,甚至很多从业者把实现“一体化建模”等同于实现“一体化设计”,对该设计解决和优化了哪些问题也缺乏探究,不利于未来通过“一体化设计”在优化降本上取得切实成效。 本文对当前海上风电行业在“一体化设计”方向上需要解决的部分客观问题加以描述,以增进行业对此的了解,并提出可能的研究方向。 “一体化设计”的内容和意义 “一体化设计”是把海上风电机组,包括塔架在内的支撑结构、基础以及外部环境条件(尤其是风况、海况和海床地质条件)作为统一的整体动态系统进行模拟分析与校核,以及优化的设计方法。运用这种方法,不仅能更全面地评估海上风电设备系统的受力状况,提升设计安全性,也能增强行业对设计方案的信心,不依赖于过于保守的估计保证设计安全,为设计优化提供了空间,有利于系统的整体降本。

根据鉴衡认证对某5.5MW 四桩承台机组模拟测算的结果,相比现有的机组与基础分离迭代的设计方法,海上风电一体化设计能够进一步优化整体结构(见表1)。在平价上网压力下,“一体化设计”是海上风电行业降本的必然途径之一。 “一体化设计”难点分析 目前,机组和基础的设计分别由整机供应商、设计院负责。想要实现真正的“一体化设计”,仍有以下几个方面必须做到统一:设计标准、建模一体化、工况设定与环境条件加载的一体化以及动态载荷的整体提取。 一、标准一体化 当下,海上风电行业涉及的标准较多,与风电机组设计相关的主要是IEC61400系列国际标准及其对应国标,设计院的基础设计主要受港工设计标准(如:JTJ215、JTS167-4 等)以及部分行业标准(如:NB-T10105 等)的约束。国际标准从整体设计的角度,对基础的设计方法一并明确了要求,但其与港工设计标准、行业标准在一些要求或指标上存在重叠与冲突。其中一个比较突出的例子是,在极限载荷上,风电行业的国际标准通常使用1.35 的安全系数,而国内港标、行标使用1.4、1.5 的安全系数,从而增加了基础的成本。行业正在积极推进这些标准的统一化工作,例如,提出一些风电专属标准,以解除设计院受到的束缚。 二、建模一体化 海上风电机组、基础与多种外部环境条件是一个统一的整体,对这些结构和边界条件进行整体建模仿真是“一体化设计”最基本的要求,因为只有这样才能充分考虑机组和基础的整体动力学响应,并且有可能实现设计优化上的整体调整和全局寻优。目前,很多项目或多或少都会开展一体化建模工作,并将其作为完成了“一体化设计”的标志。但是如果因此就忽视了其他问题,可能让行业对“一体化设计”的理解过于狭隘。受限于机组和基础设计责任主体分离的现状,即使仅对“一体化建模”这一项,关注点也不应为有没有进行整体建模仿真,而是是否实现了全局寻优。 随着整机企业研发能力的提升,设计院合作模式的开放,以及第三方在其中可以起到的知识产权保护和协调粘合的作用,全局优化是可能实现的。由于基础模型相对于机组模型更易于开放,因此,这个任务更多地有赖于整机供应商机组整体设计能力的提升,以及他们能够影响设计院基础设计的程度。

2019年福建第三大风电运营商中闽能源的海上风电业务竞争优势分析

2019年福建第三大风电运营商中闽能源的海上风电 业务竞争优势分析

目录 1福建省投资集团旗下新能源平台,盈利能力行业排名靠前 (5) 1.1福建省投资集团旗下新能源平台,是福建第三大风电运营商 (5) 1.2经营业绩稳定增长,盈利能力行业领先 (6) 2福建风电资源禀赋突出,背靠大股东具备天然优势 (9) 2.1风能资源禀赋优,政策环境友好 (9) 2.2政策驱动海上风电发展,背靠大股东具备天然优势 (11) 3大股东拟注入海上风电资产,利润规模有望大幅抬升 (12) 3.1大股东拟注入海上风电资产,涉及装机容量29.6万千瓦 (12) 3.2平海湾二期投产有望大幅抬升公司利润规模 (14) 4公司自有在建机组进入投产周期,业绩向上拐点来临 (15) 5盈利预测与估值 (17) 6风险提示 (18)

图表目录 图表1:公司股权结构图 (5) 图表2:公司业务分布图 (5) 图表3:公司在运机组明细 (6) 图表4:公司在建机组明细 (6) 图表5:公司装机容量情况 (7) 图表6:公司利用小时情况 (7) 图表7:公司发电量情况 (7) 图表8:公司营业收入情况 (8) 图表9:公司净利润情况 (8) 图表10:公司毛利率和净利率情况 (8) 图表11:同行业公司净利率对比 (8) 图表12:公司资产负债率情况 (9) 图表13:公司应收账款情况 (9) 图表14:福建省风功率密度图 (9) 图表15:中国沿海海上风能资源分布 (10) 图表16:福建省风电机组利用小时数(单位:小时) (10) 图表17:风电机组上网电价情况 (11) 图表18:福建省可再生能源配额制度指标 (11) 图表19:福建投资集团海上风电资产 (12) 图表20:资产重组预案内容 (13) 图表21:福建投资集团海上风电资产 (13) 图表22:中闽海电财务指标(单位:亿元) (14) 图表23:平海湾一期经营指标 (14) 图表24:2017年各公司风电经营指标对比 (15) 图表25:平海湾二期盈利能力测算 (15) 图表26:公司在建机组情况 (16) 图表27:2019-2020新增装机预测 (16) 图表28:公司装机容量变化预测 (16) 图表29:公司电力收入预测 (17) 图表30:公司电力成本预测 (17) 图表31:可比估值表 (18)

2014年海上风电行业分析报告

2014年海上风电行业 分析报告 2014年6月

目录 一、风电行业确定性反转 (3) 1、政策助力“弃风限电”情况改善 (3) 2、产业链自下而上传导,全行业回暖 (6) 3、风电项目储备充足,装机结构优化 (7) 二、2014是中国海上风电元年 (9) 1、海上风电未来七年增速接近100%,远景空间4500亿 (9) 2、海上风电是能源战略转型的必然选择 (10) 3、标杆电价缺位是制约海上风电市场启动的主因 (12) 4、海上风电发展国际经验比较 (15) (1)英国:强力政策力促海上风电发展 (15) (2)德国:补贴到位、技术领先 (17) 5、标杆电价呼之欲出,海上风电启动在即 (18) 三、海上风电产业链 (20) 1、风电整机 (21) 2、风电塔架及桩基 (23) 3、海底电缆 (25) 4、产业链各环节上市公司 (26) 四、行业主要企业简况 (27) 1、天顺风能:海上风电+运营商模式转型 (28) 2、吉鑫科技:风电铸件行业龙头,受益海上风电带来的风机大型化趋势. 29 3、泰胜风能:收购蓝岛海工瞄准海洋市场 (31) 4、金风科技:海上风电为行业龙头打开全新市场空间 (32) 5、明阳风电:紧凑型风机目标海上市场 (34) 6、龙源电力:国内领先的海上风电运营商 (35)

一、风电行业确定性反转 1、政策助力“弃风限电”情况改善 弃风限电是导致国内风电行业2011、2012年陷入低谷的主要原因。自2005年起,我国风电装机量爆发式增长,2005-2011年我国新增风电装机量保持着80%的年均复合增长率。风电装机的过快扩张与当地风电消纳能力、电网输出条件的矛盾逐步显现,尤其是东北、西北、华北地区风电装机大省的弃风率日趋严重,于2011年前后迎来了行业阵痛期。2011、2012 连续两年国内风电新装机量下滑,就是行业步入低谷期的真实写照:2011年我国风电装机量首次同比出现萎缩,2012年我国弃风率创出历史最高的17.12%,新增风电装机量同比减少26.49%。 2013年国家频繁出台政策,敦促风电消纳。2013年2 月,国家能

海上风电现状及发展趋势

能源与环境问题已经成为全球可持续发展所面临的主要问题,日益引起国际社会的广泛关注并寻求积极的对策.风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富.据估计,全球可利用的风能总量在53 000 TW·h/年.风能的大规模开发利用,将会有效减少石化能源的使用、减少温室气体排放、保护环境.大力发展风能已经成为各国政府的重要选择[1~6]. - 在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此风力发电系统分为恒速恒频发电机系统(CSCF 系统)和变速恒频发电机系统(VSCF 系统).恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能.恒速恒频系统一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼式感应发电机,前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行.变速恒频发电机系统是指在风力发电过程中发电机的转速可以随风速变化,而通过其他的控制方式来得到和电网频率一致的恒频电能. - 1 恒速恒频发电系统- 目前,单机容量为600~750 kW 的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易、励磁功率可直接从电网中获得的笼型异步发电机[7~9]. -恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机.定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单.这种风力机的叶片结构复杂,成型工艺难度较大.而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率.由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机. - 1.1 定桨距失速控制- 定桨距风力发电机组的主要特点是桨叶与轮毂固定连接,当风速变化时,桨叶的迎风角度固定不变.利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的.采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机. - 1.2 变桨距调节方式- 在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定.这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩. - 由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此比较适合于平均风速较低的地区安装.变桨距调节的另外一个优点是在风速超速时可以逐步调节桨距角,屏蔽部分风能,避免停机,增加风机发电量.对变桨距调节的一个要求是其对阵风的反应灵敏性. - 1.3 主动失速调节- 主动失速调节方式是前两种功率调节方式的组合,吸取了被动失速和变桨距调节的优点.系统中桨叶设计采用失速特性,系统调节采用变桨距调节,从而优化了机组功率的输出.系统遭受强风达到额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出.随着风速的不断变化,桨叶仅需微调即可维持失速状态.另外调节桨叶还可实现气动刹车.这种系统的优点是既有失速特性,又可变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击.系统控制容易,输出功率平稳,执行机构的功率相对较小[8~13]. -恒速恒频风力发电机的主要缺点有以下几点: -

全国海上风电开发建设实施方案(-)

全国海上风电开发建设方案(2014-2016)

————————————————————————————————作者:————————————————————————————————日期: 2

附件: 全国海上风电开发建设方案(2014-2016) 省份项目名称项目规模 (万千瓦) 开发企业场址位置 天津中水电新能源开发有限责任公司南港海上风电 项目一期工程 9 中国水电建设集团新能源开发有限责任公司 滨海新区南港工 业区南防波堤 小计9 河北唐山乐亭菩提岛海上风电场300兆瓦示范工程30 乐亭建投风能有限公司唐山市乐亭县国电唐山乐亭月坨岛海上风电场一期项目30 国电电力河北新能源开发有限公司唐山市乐亭县河北建投唐山海上风电场二期工程20 河北建投新能源有限公司唐山市海港区华电唐山曹妃甸海上风电场20 华电国际电力股份有限公司唐山市曹妃甸区 唐山乐亭海域五场址Ⅱ号区域300兆瓦海上风电 项目 30 唐山建设投资有限责任公司、华能国际电力 股份有限公司河北分公司 唐山市乐亭县小计130 辽宁辽宁省大连市庄河近海II号风电场30 大连市建设投资集团公司大连市庄河海域辽宁省大连市庄河近海III号风电场30 大连市建设投资集团公司大连市庄河海域小计60

省份项目名称项目规模 (万千瓦) 开发企业场址位置 江苏江苏如东10万千瓦潮间带海上风电项目10 中国水电建设集团新能源开发有限公司南通市如东县 中广核如东海上风电场项目15.2 中广核如东海上风力发电有限公司南通市如东县 江苏响水近海风电场项目20 响水长江风力发电有限公司盐城市响水县 龙源如东试验风电场扩建项目 4.92 江苏海上龙源风力发电有限公司南通市如东县 江苏大丰200MW海上风电项目20 龙源大丰海上风力发电有限公司盐城市大丰市 东台200MW海上风电项目20 江苏广恒新能源有限公司盐城市东台市 江苏滨海300MW海上风电项目30 大唐国信滨海海上风力发电有限公司盐城市滨海县 响水C1# 1.25 响水长江风力发电有限公司盐城市响水县 滨海北区H1# 10 中电投江苏新能源有限公司盐城市滨海县 大丰H7# 20 龙源大丰海上风力发电有限公司盐城市大丰市 -4-

海上风电发展现状分析

海上风电发展现状分析 一、世界海上风电发展现状 1、世界海上风电发展迅猛 [慧聪机械工业网] 2009年海上风电装机容量继续增长。截至2009年底,全球共有12个国家建立了海上风电场,其中10个位于欧洲,中国和日本有小规模的安装。 截至2009年底,世界海上风电累计装机容量达2110MW,较2008年增长48.5%,占到全球风电总装机容量的1.2%。2009年世界海上风电新增装机容量达689MW,同比增幅超过100%,新增装机容量最大的前五个国家分别为英国、丹麦、中国、德国和瑞典。

2、欧洲海上风电发展令世人瞩目 欧洲是海上风电发展最快的地区。根据欧洲风能协会(EWEA)的最新统计,2009年欧洲水域的八个海上风电场总计安装199台海上风力涡轮机并实现了并网,总容量为577MW,较2008年增幅超过50%。其中,最小装机容量为2.3MW(挪威的Hywind),最大装机容量为209MW(Horns Rev 2)。另外,欧盟15个成员国和其他欧洲国家,有超过100GW的海上风力发电项目正在规划中。 在2 0 0 9年装机并网的1 9 9台风机中,西门子风机(2.3MW和3.6MW两种机型)146台,维斯塔斯风机(3MW)37台,WinWind 风机(3MW)10台,Multibrid风机(5MW)6台。除此之外,Repower 风机(5MW)6台,但尚未并网。

3、海上风电机组技术特点 目前,海上风电机组基本上是根据海上风况和运行工况,对陆地机型进行改造,其结构也是由叶片、机舱、塔架和基础组成。海上风电机组的设计强调可靠性,注重提高风机的利用率、降低维修率。当今,海上风电机组呈现大型化的趋势,国外主要风机制造商生产的海上风电机组主要集中在2~5MW,风叶直径在72~126m。

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况

————————————————————————————————作者:————————————————————————————————日期:

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在江苏、福建、浙江、广东、河北、辽宁和天津七个省(市、区)海域,其中江苏8个在建项目共计2305.55MW,福建6个在建项目共计1428.4MW,浙江、广东、河北、辽宁和天津分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)上海电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于江苏省南通市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台上海电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

海上风电工程Briefintroductionto

海上风电工程Brief introduction to offshore wind projects 海上风电业务是华电重工“十二五”规划确定的战略新兴业务,并作为华电重工“十三五”期间重点发展的业务板块而着力发展。为抢占市场先机,华电重工提前布局,于2009年开始筹备海上风电业务,经过几年来的不懈努力,海上风电业务已成为华电重工重要业务板块,在海上风电研发、设计、制造、施工等方面均取得了重大进展。 华电重工在2014年上半年成功购置了国内 首艘海上风电安装作业平台(华电1001号), 并成立了“海洋与环境工程事业部”,在天 津分公司设立了海上风电技术中心,专业涵 盖风资源、岩土、结构、电气等专业,专注 海上风电设计研发工作。 通过近年来的项目实践,(如丹麦Ramboll、华勘院等),同时整合捆绑了市场上紧缺的关键船机等施工资源(华尔辰号、博强58、长德号、华电稳强、力雅号、Ocean号等),在桩基优化设计、设备制造及施工安装等方面已形成较强的竞争优势。 长德号力雅号 目前,华电重工已拥有海上施工所需的港口与航道工程施工总承包资质、电力工程施工总承包资质,拥有开展风电场EPC总承包业务所需的风力发电设计资质,以及海工装备制造所需的钢结构设计甲级及制造特级资质。

Ocean号 业务范围 华电重工海上风电业务包括海上风电设计、风电机组配套设备制造、海上运输、基础施工、风机安装以及风电场后期运营维护等。 设计:海上风电设计。 设备制造:钢管桩、过渡段、导管架、塔筒、海上升压站及其他结构件制造。 基础施工:风机基础施工、升压站基础施工、测风塔基础施工、过渡段安装。 设备安装:风电机组及塔筒安装、升压站结构及设备组件安装、海上测风塔安装、海缆敷设等。 运营维护:风力发电机组运营期维护。

中国海上风电产业的现状与未来趋势

中国海上风电产业的现状与未来趋势 我国拥有发展海上风电的天然优势,海岸线长达1.8万公里,可利用海域面积300多万平方公里,海上风能资源丰富。海上风电相比与陆上风电相比,具有很明显的优势,主要有以下几点,一是距离用电负荷中心近。海上风电场一般都在沿海的一两百里处,离主要的经济圈都比较近,并且常年有风,不需要长距离的运输,很符合用电负荷中心的需求;二是海上风机利用效率更高。在同样的海拔下,海上的风速要显著高于陆上风速,海上风电风能资源的能源效益比陆地风电高20%-40%;三是海上风机不占用土地资源,不会对居民和生物产生太大影响,海上风机可装的风机更大,风机单机发电容量越大,风资源利用率越充分。 自2010年我国首个海上风电并网项目上海东海大桥海上风电场建成投产以来,海上风电产业得到了飞速的发展。发展至2019年,我国风电新增并网装机2890万千瓦,其中陆上风电新增装机2650万千瓦、海上风电新增装机240万千瓦,到2019年底,全国风电累计装机2.1亿千瓦,其中陆上风电累计装机2.04亿千瓦、海上风电累计装机684万千瓦,风电装机占全部发电装机比例不断攀升。 通过梳理,海上风电产业的未来发展趋势主要表现在产业、产品、技术、区域等四个层面。 1、产业层面。一是海上风电建设速度加快,风电渗透率持续加大。二是风电行业逐步实现智能化、信息化。未来风电行业将进一步融入大数据、云计算等新一代信息技术,风电机组智能化和信息化将成为风电行业的重要发展趋势。 2、产品层面。风力发电机组不断向大型化发展。2019年-2020年,4MW-6MW海上风电机组成为我国海上风电场的主流机型,6MW-7MW直驱永磁式风电机组和半直驱永磁式风电机组将批量进入海上风电场。预计2020年以后,单机功率6MW-8MW的海上风电机组技术成熟、进入批量生产销售时期,成为海上风电市场的主流产品。 3、技术层面。一是低风速和海上风电技术成为重要发展方向。随着近年来低风速风机技术的进步,低风速地区的年发电小时数提升至2000小时左右,低风速地区风电场的经济效益得到了提升。二是半直驱混合驱动技术将得到广泛应用。混合驱动技术是在直驱永磁与双馈异步风力发电机组在向大型化发展过程中遇到问题并逐步探索解决而产生的,其本身具备直驱永磁和双馈异步的优点,并弱化了直驱永磁和双馈异步的缺点,未来,混合驱动技术逐渐得到行业知名企业的重视。 4、区域层面。海上风电向中东部沿海区域集中。山东、江浙、福建、广东等中东部沿海经济发达、负荷集中地区,海上风电市场得到快速发展。

海上风电现状与发展

全球海上风电现状与发展趋势 、全球海上风电现状 根据最新数据显示,风能发电仅次于水力发电占到全球可再生资源发电量的16%在全 球高度关注发展低碳经济的语境下,海上风电有成为改变游戏规则的可再生能源电力的潜质。在人口密集的沿海地区,可以快速地建立起吉瓦级的海上风电场,这也使得海上风电可 以成为通过经济有效的方式来减少能源生产环节碳排放的重要技术之一。海上风电虽然起步 较晚,但是凭借海风资源的稳定性和大发电功率的特点,海上风电近年来正在世界各地飞速 发展。在陆上风电已经在成本上能够与传统电源技术展开竞争的情况下,目前海上风电也正 在引发广泛关注,它具有高度依赖技术驱动的特质,已经具备了作为核心电源来推动未来全 球低碳经济发展的条件。 据全球风能理事会(GWEC统计,2016年全球海上风电新增装机2,219MW主要发生在七个市场。尽管装机量比去年同期下降了31%但未来前景看好,全球14个市场的海上风电 装机容量累计为14,384MW英国是世界上最大的海上风电市场,装机容量占全球的近36%其次是德国占29% 2016年,中国海上风电装机量占全球装机量的11%取代了丹麦,跃居 第三。其次,丹麦占8.8%,荷兰7.8%,比利时5%瑞典1.4%。除此之外还包括芬兰、爱尔兰、西班牙、日本、韩国、美国和挪威等市场,共同促进了整个海上风电的发展。

5QOO 1. : f ww -r i vw - ? ?- z 毅据采痕:GWEC 1. 欧洲海上风电现状 欧洲风能协会(WindEurope )日前发布的《欧洲海上风电产业统计报告 2016》中指出, 2016年欧洲海上风电投资达到 182亿欧元,创历史新高,同比增长 39%全年新增并网338 台风力发电机,新增装机容量1558MW 较2015年减少了 48%累计共有3589台风力发电机 并网,装机总量达 12.6GW 分布在10个国家的81个风电场。2016年,比利时、德国、荷 兰和英国还有11个风电项目正在建设当中,完成后将增加 4.8GW 装机,使得累计装机量可 达 17.4GW 2. 欧洲海上风电市场展望 虽然2016年欧洲海上风电的并网容量远低于 2015年,但大量项目的开工建设意味着, 在未来两年,并网容量将会显著增加。 由于第三轮拍卖被延期,在 2016年增长出现放缓后,英国海上风电发展速度将明显加 快。德国市场将持续增长。 比利时也将有新增装机, 这主要来自于 Nobelwind 风电场和两个 于2016年8月被核准的项目。未来两年,丹麦和荷兰于 2015年和2016年获得特许权的项 目也将开始动工。 到2019年,欧洲开工建设的海上风电项目数量将减少,因为彼时欧盟各个成员国此前 依据可再生能源指令(Ren ewable En ergy Directive )制定的国家可再生能源行动计划 (NationaIRenewableEnergy Action Plans , NREAPS 将到期。与 2016 年相似,到 2020

福建省海上风电项目竞争配置办法(试行)

福建省海上风电项目竞争配置办法(试行) (公开征求意见稿) 为优质、高效、合理配置和利用海上风能资源,根据《国家能源局关于2018年度风电建设管理有关要求的通知》(国能发新能﹝2018﹞47号),结合福建省实际,制定本办法。 一、竞争配置原则 (一)总量控制。严格按照国家能源局批复的《福建省海上风电场工程规划》、《国家能源局关于可再生能源发展“十三五”规划实施的指导意见》,有序、适度配置资源,规范项目建设。 (二)产业带动。资源配置向使用具有自主知识产权、能够突破制约产业发展的重大关键技术、引领产业技术前沿水平、可实现进口替代的风电高端装备的企业倾斜,向推进风电产业研发、制造、勘察、设计、施工、检测、运维全产业链协同可持续发展的企业倾斜。 (三)公开优选。通过综合评优等竞争优选方式,公开公平公正选择投资主体,择优选择经济实力强、技术水平高、开发建设经验足、信誉好、对海上风电装备产业发展带动力大的企业进行投资开发建设。 (四)电价竞争。通过竞争方式配置和确定上网电价。所有参与竞争配置的项目必须以电网企业投资建设接网及配套电网工程和落实消纳为前提条件,确保项目建成后达到

最低保障收购年利用小时数(或弃风率不超过5%)。 (五)政策延续。对已经由省政府明确授予开发权(包括原明确授予开发权经省政府同意调整投资主体的)并已开展相关前期工作的海上风电项目,通过公开竞争确定装备选型、上网电价、开发时序。对未经省政府确定投资主体的海上风电项目,通过公开竞争确定投资主体、装备选型、上网电价、开发时序。 二、竞争配置对象 配置的海上风电项目原则上为纳入《福建省海上风电场工程规划》的2019年起新增核准的海上风电项目。包括两大类:一是已确定投资主体但未在2018年底前核准的海上风电项目;二是在2018年5月18日前未确定投资主体的海上风电项目。进行竞争配置的海上风电项目基本条件:1.已完成一年以上测风,经评价具备开发价值,项目场址符合资源开发、土地利用、海洋保护、港口、海上交通等相关规划以及开发建设的管理规定。 2.项目具备电力接网和消纳条件,省级电网企业已出具接网及消纳能力意见。 3.各项目申报的上网电价不得高于国家规定的海上风电上网标杆电价。 三、竞争配置主体 通过公开公平公正竞争,择优选择符合以下条件的企业配置海上风能资源、开发海上风电项目。

2020年海上风电行业分析调研报告

2020年海上风电行业分 析调研报告 2019年12月

目录 1.海上风电行业概况及市场分析 (5) 1.1海上风电市场规模分析 (5) 1.2海上风电行业结构分析 (5) 1.3海上风电行业PEST分析 (6) 1.4海上风电行业特征分析 (7) 1.5海上风电行业国内外对比分析 (8) 2.海上风电行业存在的问题分析 (10) 2.1政策体系不健全 (10) 2.2基础工作薄弱 (10) 2.3地方认识不足,激励作用有限 (10) 2.4产业结构调整进展缓慢 (10) 2.5技术相对落后 (11) 2.6隐私安全问题 (11) 2.7与用户的互动需不断增强 (12) 2.8管理效率低 (13) 2.9盈利点单一 (13) 2.10过于依赖政府,缺乏主观能动性 (14) 2.11法律风险 (14) 2.12供给不足,产业化程度较低 (14) 2.13人才问题 (15) 2.14产品质量问题 (15)

3.海上风电行业政策环境 (16) 3.1行业政策体系趋于完善 (16) 3.2一级市场火热,国内专利不断攀升 (16) 3.3“十三五”期间海上风电建设取得显著业绩 (17) 4.海上风电产业发展前景 (18) 4.1中国海上风电行业市场驱动因素分析 (18) 4.2中国海上风电行业市场规模前景预测 (18) 4.3海上风电进入大面积推广应用阶段 (18) 4.4政策将会持续利好行业发展 (19) 4.5细分化产品将会最具优势 (19) 4.6海上风电产业与互联网等产业融合发展机遇 (20) 4.7海上风电人才培养市场大、国际合作前景广阔 (21) 4.8巨头合纵连横,行业集中趋势将更加显著 (22) 4.9建设上升空间较大,需不断注入活力 (22) 4.10行业发展需突破创新瓶颈 (22) 5.海上风电行业发展趋势 (24) 5.1宏观机制升级 (24) 5.2服务模式多元化 (24) 5.3新的价格战将不可避免 (24) 5.4社会化特征增强 (24) 5.5信息化实施力度加大 (25) 5.6生态化建设进一步开放 (25)

相关文档
最新文档