求数列通项公式的方法教案+例题+习题

求数列通项公式的方法教案+例题+习题
求数列通项公式的方法教案+例题+习题

求数列的通项公式的方法

1.定义法:①等差数列通项公式;②等比数列通项公式。

例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求

数列{}n a 的通项公式.

解:设数列{}n a 公差为)0(>d d

∵931,,a a a 成等比数列,∴9123

a a a =, 即)8()2(1121d a a d a +=+d a d 12=?

∵0≠d , ∴d a =1………………………………①

∵255a S = ∴211)4(2

455d a d a +=??+…………② 由①②得:531=a ,5

3=d ∴n n a n 5

353)1(53=?-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

练一练:已知数列Λ,32

19,1617,815,413试写出其一个通项公式:__________; 2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{

11,(1),(2)n n n S n a S S n -==-≥。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。

解:由1121111=?-==a a S a

当2≥n 时,有

,)1(2)(211n n n n n n a a S S a -?+-=-=-- ,)1(22221----?+=n n n a a ……,.2212-=a a

经验证11=a 也满足上式,所以])1(2[3

212---+=n n n a 点评:利用公式???≥???????-=????????????????=-2

11n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合

写时一定要合并.

练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ;

②数列{}n a 满足11154,3

n n n a S S a ++=+=,求n a ; 3.作商法:已知12()n a a a f n =g g L g 求n a ,用作商法:(1),(1)(),(2)(1)

n f n f n a n f n =??=?≥?-?。 如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n =Λ,则=+53a a ______ ;

4.累加法:

若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥。 例3. 已知数列{}n a 满足211=a ,n

n a a n n ++=+211,求n a 。

解:由条件知:1

11)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+??????+-+-+-n n a a a a a a a a 所以n

a a n 111-=- 211=a Θ,n

n a n 1231121-=-+=∴ 如已知数列{}n a 满足11a =,n n a a n n ++=

--11

1(2)n ≥,则n a =________ ; 5.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121

n n n n n a a a a a a a a ---=????L (2)n ≥。 例4. 已知数列{}n a 满足321=a ,n n a n n a 1

1+=+,求n a 。 解:由条件知1

1+=+n n a a n n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即 又321=a Θ,n

a n 32=∴ 如已知数列}{n a 中,21=a ,前n 项和n S ,若n n a n S 2=,求n a

6.已知递推关系求n a ,用构造法(构造等差、等比数列)。

(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

①1n n a ka b -=+解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中p

q t -=1,再利用换元法转化为等比数列求解。

例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=?-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23

311=++=++n n n n a a b b 所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=?=n n n b ,所以321-=+n n a .

②1n n n a ka b -=+解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q

b q p b n n 11+=+再应用1n n a ka b -=+的方法解决.。 例6. 已知数列{}n a 中,651=a ,11)2

1(31+++=n n n a a ,求n a 。 解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(3

2211+?=?++n n n n a a 令n n n a b ?=2,则1321+=+n n b b ,应用例7解法得:n n b )3

2(23-= 所以n n n

n n b a )31(2)21(32-== 练一练①已知111,32n n a a a -==+,求n a ;

②已知111,32n n n a a a -==+,求n a ;

(2)形如11n n n a a ka b --=

+的递推数列都可以用倒数法求通项。 例7:1,1

3111=+?=--a a a a n n n 解:取倒数:

11113131---+=+?=n n n n a a a a ?

?????∴n a 1是等差数列,3)1(111?-+=n a a n 3)1(1?-+=n 231-=?n a n 练一练:已知数列满足1a =1

=n a ;

数列通项公式课后练习

1已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N +)求数列{}n a 的通项公式。 2已知数列{}n a 中,a n >0,且a 1=3,1+n a =n a +1 (n ∈N +)

3已知数列{}n a 中,a 1=3,a 1+n =2

1a n +1(n ∈N +)求数列{}n a 的通项公式 4已知数列{}n a 中,a 1=1,a 1+n =3a n +2,求数列{}n a 的通项公式 5已知数列{}n a 中,a n ≠0,a 1=21,a 1+n =n n a a 21+ (n ∈N +) 求a n 6设数列{}n a 满足a 1=4,a 2=2,a 3=1 若数列{}n n a a -+1成等差数列,求a n 7设数列{}n a 中,a 1=2,a 1+n =2a n +1 求通项公式a n

8已知数列{}n a中,a1=1,2a1+n= a n+ a2+n求a n

数列、数列的通项公式

第三章数列 第一教时 教材:数列、数列的通项公式 目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。K2td4LKQoD 过程: 一、从实例引入

1.数列的有关概念 2.观察法求数列的通项公式 六、作业:练习 P112 习题 3.1

数列通项公式的求法教案

课 题:数列通项公式的求法 课题类型:高三第一轮复习课 授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法 求通项(3)累乘法求通项,并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养学生观察、辨析、运用的 综合思维能力,掌握由特殊到一般、无限化有限的化归转化的数学思想, 提高学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识—再实践”的辨证唯物 主义观点。 教学重点、难点: 重 点:数列通项公式的基本求法 难 点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,灵活运用解题。请同学们思考解决数列问题的关键是什么?(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的 重视,提高学习的积极性。 二、启发诱导、总结方法 1、利用公式求通项 《先给出例题,分析总结方法》 师生互动: 请同学分析叙述解题过程,老师板书。 {}{}{}{}的通项公式求且数列是各项都为正数的等比 为等差数列设高考卷一例、n n n n b a b a b a b a b a ,,13,21,1,,)07(355311=+=+=={}{}1 2223545322)1(212,202 74,1341,21210,,-==-+===>-===++=+=++=+>n n n n n b n n a d q q q q q d b a q d b a q q b d a ,,则所以所以(舍)因为或解得依题得的公比为等比数列的公差为解:设等差数列

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

北京第十八中学高三数学第一轮复习 65 数列的通项公式(2)教学案(教师版)

教案65 数列的通项公式(2) 一、课前检测 1.(1)数列9,99,999,…的通项公式为 ; 110-=?n n a ; (2)数列5,55,555,…的通项公式为 。 () 11095-=?n n a 。 2.已知数列{}n a 中,11a =,21(0a a a =-≠且1)a ≠,其前n 项和为n S ,且当2n ≥时,1 111n n n S a a +=-.(Ⅰ)求证:数列{}n S 是等比数列;(Ⅱ)求数列{}n a 的通项公式。 解:(Ⅰ)当2n ≥时,11+111111n n n n n n n S a a S S S S +-=-=---, 化简得211(2)n n n S S S n -+=≥, 又由1210,0S S a =≠=≠,可推知对一切正整数n 均有0n S ≠, ∴数列{}n S 是等比数列. (Ⅱ)由(Ⅰ)知等比数列{}n S 的首项为1,公比为a ,∴1n n S a -=. 当2n ≥时,21(1)n n n n a S S a a --=-=-, 又111a S ==, ∴21, (1),(1),(2).n n n a a a n -=?=?-≥? 二、知识梳理 (一)数列的通项公式 一个数列{a n }的 与 之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 解读: (二)通项公式的求法(6种方法) 5.构造法 构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,如某种数量关系,某个直观图形,或者某一反例,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 1)构造等差数列或等比数列 由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

数列求通项公式教学设计

数列求通项公式教学设计 教学目标: 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用 公式求通项(2)累加法求通项(3)累乘法求通项, (4)构造法求通项并能灵活地运用。 2、能力目标:通过例题总结归纳数列通项公式基本求法,培养 学生观察、辨析、运用的综合思维能力,掌握由特 殊到一般、无限化有限的化归转化的数学思想,提高 学生数学素质。 3、情感目标:通过本节的学习,进一步培养学生的“实践—认识 —再实践”的辨证唯物主义观点。 教学重点、难点: 重点:数列通项公式的基本求法 $ 难点:复杂问题的化归转化 教学方法与教学手段: 教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力) 教学手段:多媒体辅助教学 教学过程: 一、创设情境,引出课题: 1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,

灵活运用解题。请同学们思考解决数列问题的关键是什么(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。 《板书标题:数列通项公式的求法》 ( [设计意图] 使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的重视,提高学习的积极性。 二、启发诱导、总结方法 1、回顾上节课讲过的公式法,已知n S 求n a ,累加法及其简单应用 给出练习题目,引导学生自主做题,并让一位学生黑板演示 教师引导学生分析例题题干,总结特点:“明确数列是用何种求和方法” 《多媒体》给出同类的练习让学生巩固方法及解题过程。 、 2、累乘法求通项 回忆等比数列定义及通项公式的推导过程,引出“累乘法求通项”,利用类比的方法引导学生自己总结累乘法所适合的结构类型:已知数列相邻两项之比。给出例题让学生分析叙述解题过程。 例:已知数列}{n a ,满足 n n a a n n 11+=+,且21=a ,求该数列的通项公式 引导学生类比累加法,思考解题方法。并逐步给出答案,引导学生怎样分析解决问题。给出练习 练习1.已知数列}{n a 满足n n n a a 2.1=+,且11=a ,求该数列的通项公式 [

高中数学导学案 等差数列

2.2 等差数列 (一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。 2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。 3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。 (二)教学重、难点 重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。 难点:概括通项公式推导过程中体现出的数学思想方法。 (三)学法与教学用具 学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。 教学用具:投影仪 (四)教学设想 [创设情景] 上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 [探索研究] 由学生观察分析并得出答案: (放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,…… 2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。 水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期

中职数学(人教版)拓展模块教案:数列的概念和通项公式

数列公式数学学科导学案 教师寄语:做对国家有用的人 课题:数列的概念和通项公式 班级 17级姓名陈兆侠组别二年级 一、学习目标: 1.知识与能力: (1)理解数列及其有关概念; (2)理解数列的通项公式,并会用通项公式写出数列的任意一项; (3)对于比较简单的数列,会根据其前几项写出它的一个通项公式. 2.过程与方法: 理解数列的定义,表示法,分类,初步学会求数列通项公式的方法。 3.情感态度价值观: 提高观察,分析能力,理解从特殊到一般,从一般到特殊思想。 二、学习重、难点: 重点:了解数列的概念及其表示方法,会写出简单数列的通项公式 难点:数列与函数关系的理解,用归纳法写数列的通项 三、学习过程【导、探、议、练】 导 知识点一:数列及其有关概念 思考1:数列1,2,3与数列3,2,1是同一个数列吗? 思考2:数列的记法和集合有些相似,那么数列与集合的区别是什么? 梳理: (1)按照________排列的________称为数列,数列中的每一个数叫做这个数列的_____.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的__________(通常也叫做______),排在第二位的数称为这个数列的……排在第n位的数称为这个数列的__________. (2) 数列的一般形式可以写成,简记为_________. 知识点二:通项公式 思考1:数列1,2,3,4,…的第100项是多少?你是如何猜的? 思考2 数列的通项公式an=f(n)与函数解析式y=f(x)有什么异同? 知识点三:数列的分类 思考:对数列进行分类,可以用什么样的分类标准? 梳理: (1)按项数分类,项数有限的数列叫做__________数列,项数无限的数列叫做__________数列. (2)按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做___________;从第2项起,每一项都小于它的前一项的数列叫做;各项相等的数列叫做;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做_____________. 探、议 (一)自主探究 类型一:由数列的前几项写出数列的一个通项公式

等比数列的概念及通项公式导学案

1 等比数列的概念及通项公式 基本概念 新知: 1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1 n n a a -= (q ≠0) 2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==? 等式成立的条件 3. 等比数列中任意两项n a 与m a 的关系是: 3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则 4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a 例题 例一:判断数列是否为等比数列,若是请指出公比 (1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13 181-4121-1,,, 例二、指出下列等比数列中的未知项 (1)2,a ,8 (2)-4,b ,c ,2 1 问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b G ab G a G =?=?= 新知1:等比中项定义 如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a , b 同号). 试试:数4和6的等比中项是 . 例三、(1)在等比数列}{n a 中,是否有)2(112 ≥=+-n a a a n n n ? (2)如果数列}{n a 中,对于任意的正整数),2(,2112 ≥=≥+-n a a a n n n n n 都有) (那么}{n a 一定是等比数列 吗?

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

等差数列的概念、等差数列的通项公式 说课稿 教案

等差数列的概念、等差数列的通项公式 从容说课 本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察——分析概括——师生互动,形成概念——启发引导,演绎结论——拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究. 在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化. 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题. 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用; (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教具准备多媒体课件,投影仪 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项. 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性. 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识. 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子) (1)0,5,10,15,20,25,…; (2)48,53,58,63,…; (3)18,15.5,13,10.5,8,5.5…; (4)10 072,10 144,10 216,10 288,10 366,…. 请你们来写出上述四个数列的第7项. 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510. 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说. 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

【精品】等差数列通项公式教案

等差数列通项公式教案 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教学方法 启发式数学 教具准备 投影片1张(内容见下面) 教学过程 (I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6;① 10,8,6,4,2,…;② ③ 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6) 对于数列②-2n(n≥1) (n≥2) 对于数列③(n≥1) (n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项

数列通项公式 累乘和累加法 学案

名校学案,高二数学,必修五,数列,拔高训练,优质学案,专题汇编(附详解) 1 专题:求数列的通项公式——累加法和累乘法 学习目标 1. 掌握并能熟练应用数列通项公式的常用方法:累加法和累乘法; 2. 通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法; 3. 感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点,体会数学累加思想和累乘思想。 ________________________________________________________________________________ 自学探究:回顾等差、等比数列的通项公式推导过程,完成下列任务。 例:已知数},{n a 其中,, 111n a a a n n +==+ ① 求它的通项n a 。 变题1:把①式改为;11+=+n n a a 变题2:把①式改为;21 n n n a a +=+ 小结1:通过求解上述几个题,你得到什么结论? 变题3:把①式改为;11n n a n n a += + 变题4:把①式改为;21 n n a a =+ 小结2:通过求解上述2个题,你得到什么结论? 挑战高考题: 1.(2015.浙江.17)已知数列{}n a 满足n n n a a a 2,211==+,)*∈N n (。 (1)求n a 2.(2008.江西.5)在数列{}n a 中,)11ln(,211n a a a n n ++==+,则=n a ( ). A.n ln 2+ B.n ln 1-n 2)(+ C.n n ln 2+ D.n n ln 1++ 你能否自己设计利用累加法或累乘法求解数列通项公式的题? 通过本节课的学习你收获了什么?

数列的通项公式(普通)

数列的通项公式 一、知识梳理 1.数列的通项公式:如果数列}{n a 的第n 项与序号n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式;记作:)(n f a n =. 2.数列的通项n a 与前n 项和n S 的关系:1 1(1)(2)n n n S n a S S n -=?=?-?≥ 3.等差数列的通项公式:d n a a n )1(1-+=,首项:1a ,公差:d ,第n 项:n a ; 4.等比数列的通项公式:11-=n n q a a ,首项:1a ,公比:q ,第n 项:n a ; 二、题型精析 1.观察法求通项公式 (1)......321,161,81,41,21 (2)......251,161,91,41,1 (3) (11) 10 ,98,76,54,32-- (4) (9910) ,638,356,154,32 (5)......9...999,......99,9 n , (6)......9...999.0,......99.0,9.0 n 2.公式法求通项公式 (1)数列{}n a 中,111,2n n a a a +==+ ,求数列}{n a 的通项公式.; (2)数列{}n a 中,()1111 ,2,22 n n a a a n -==≥求数列}{n a 的通项公式.; 3.累加法与累乘法求通项公式 (1)累加法:形如)(1n f a a n n +=-,(其中)(n f 为可求和的数列) 例1.已知数列{}n a ,其中11=a ,)2(1≥+=-n n a a n n ,求n a . 巩固练习:已知数列{}n a ,其中11=a ,)2(121≥-+=-n n a a n n ,求n a . (2)累乘法:形如 )(1 n f a a n n =-, (其中)(n f 为可求积的数列) 例2.已知数列}{n a ,其中11=a ,)2(21≥?=-n a a n n n ,求n a . 巩固练习:已知数列{}n a ,其中11=a ,)2(1 1≥?-=-n a n n a n n ,求n a .

数列通项公式教案

数列通项公式教案 目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。 过程: 一、从实例引入(P110) 1.堆放的钢管4,5,6,7,8,9,10 2.正整数的倒数 3. 4.-1的正整数次幂:-1,1,-1,1,… 5.无穷多个数排成一列数:1,1,1,1,… 二、提出课题:数列 1.数列的定义:按一定次序排列的一列数(数列的有序性) 2.名称:项,序号,一般公式,表示法 3.通项公式:与之间的函数关系式 如数列1:数列2:数列4:4.分类:递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。 5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依 次取值时对应的一列函数值,通项公式即相应的函数解析式。 6.用图象表示:―是一群孤立的点 例一(P111例一略) 三、关于数列的通项公式 1.不是每一个数列都能写出其通项公式(如数列3) 2.数列的通项公式不唯一如数列4可写成和 3.已知通项公式可写出数列的任一项,因此通项公式十分重要 例二(P111例二)略 四、补充例题:写出下面数列的一个通项公式,使它的前项分别是下列 各数:

1.1,0,1,0 2.,,,, 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5.,,, 五、小结: 1.数列的有关概念 2.观察法求数列的通项公式 六、作业:练习P112习题3.1(P114)1、2 感谢您的阅读。 祝语:比如快乐,你不快乐,谁会同情你的悲伤;比如坚强,你不坚强,谁会怜悯你的懦弱;比如努力,你不努力,谁会陪你原地停留;比如珍惜,你不珍惜,谁会和你挥霍青春;比如执着,你不执着,谁会与你共进退…只有把命运掌握在自己手中,我们才能寻找到生命的闪光。

人教版数学必修五(文)学案:2专题一:数列的通项公式的求法

专题一:数列的通项公式的求法 一、定义法 直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目. 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求 数列{}n a 的通项公式. 二、公式法: 例2.已知数列 的前n 项和 ,求数列 的通项公式。 点评:利用公式???≥???????-=????????????????=-2 11n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时,一定要合并. 三、累加法 若数列 满足 ,其中{})(n f 是可求和数列,那么可用逐差后累加的方法求n a 的通项公式. 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a . 四、累乘法 若数列 满足 , ,其中数列{})(n f 前n 项积可求,则通项 可用逐项作商后求积得到. 例4.已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a . ()()211.322.1,(2) n n n n s a S n a n =-==≥{} n a s n {}n a 11,(1)n n n s a s s n -?=?->?,(n=1){}n a ()1()n n a a f n n N --=∈{}n a 1 ()n n a f n a -=n a

五、构造法 由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. 1.型如1 a pa q n n =+-递推关系,构造等比数列求解. 比如常数p=2,q=1:121n n a a -=+,待定系数法:12()n n a a λλ-+=+,展开对应得1λ=,所以{}1n a +是一个等比数列. 例5.数列 满足 , 求 的通项公式. 12..n n n Ca A B a Aa B C C +==++n+1n 11型如,取倒数得:a a 例6.数列 满足 : ,求数列 的通项公式。 {}n a 111,52, n n a a a +==+{}n a 11 22,2n n n a a a a +==+{}n a {}n a

相关文档
最新文档