温度采集与显示系统

温度采集与显示系统
温度采集与显示系统

光电与通信工程学院课程设计报告书

课设名称:温度采集与显示系统

年级专业及班级:

姓名:

学号:

组号:

温度采集与显示系统

摘要

温度是一种最基本的环境参数,也是一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度:如大气及空调房中温度的高低,直接影响着人们的身体健康;粮仓温度的检测,防止粮食发霉,最大限度地保持粮食原有新鲜品质,达到粮食保质保鲜的目的;工业易燃品的存放。

温度测量在物理实验、医疗卫生、食品生产等领域,尤其在热学试验中,有特别重要的意义。随着人们生活水平的不断提高,,人们对温度计的要求越来越高,传统的温度计功能单一、精度低,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。

本次课程设计介绍了以STC89C51单片机为核心的温度检测报警系统的工作原理和设计方法。温度信号由温度传感器芯片DS18B20采集,并以数字信号的方式传送给单片机,单片机再控制数码管驱动芯片74LS573驱动4位分立式数码管显示实时温度,当检测到的温度超出了给定的温度范围(默认下限为20℃,默认上限为35℃),系统将输出报警声。本系统的主要硬件电路包括:温度检测电路,数码管驱动电路,报警电路。另外本系统的软件部分占了很大的比重,主要的软件模块包括:温度传感器程序,数码管驱动及显示程序,报警程序。

关键词:温度测量,单片机,温度传感器

目录

一、序论 (1)

(一)设计背景与课程目的 (1)

(二)设计任务要求 (1)

二、系统的主要功能及工作流程 (1)

(一)系统具有以下功能 (1)

(二)系统的工作流程 (2)

三、硬件电路原理描述 (2)

(一)实验步骤 (2)

(二)所用芯片及其功能 (3)

1、STC89C52 (4)

2、MAX232CPE (4)

(三)硬件电路原理 (4)

1、控制部分 (4)

2、测量部分 (6)

3、显示部分 (7)

4、报警部分 (7)

四、软件设计流程及描述 (8)

五、心得体会 (10)

参考文献 (12)

致谢 (13)

附录

(一)系统总硬件电路原理图 (14)

(二)系统源程序代码(要有注释) (14)

一、序论

(一)设计背景与课程目的

温度是一种最基本的环境参数,也是一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度:如大气及空调房中温度的高低,直接影响着人们的身体健康;粮仓温度的检测,防止粮食发霉,最大限度地保持粮食原有新鲜品质,达到粮食保质保鲜的目的;工业易燃品的存放。

本次课程设计介绍了以STC89C51单片机为核心的温度检测报警系统的工作原理和设计方法。温度信号由温度传感器芯片DS18B20采集,并以数字信号的方式传送给单片机,单片机再控制数码管驱动芯片74LS573驱动4位分立式数码管显示实时温度,当检测到的温度超出了给定的温度范围(默认下限为20℃,默认上限为35℃),系统将输出报警声。本系统的主要硬件电路包括:温度检测电路,数码管驱动电路,报警电路。另外本系统的软件部分占了很大的比重,主要的软件模块包括:温度传感器程序,数码管驱动及显示程序,报警程序。(二)设计任务要求

1、根据设计内容与要求,弄清系统及各个模块的工作流程,完成电路原理图,包括单片机最小系统模块、LCD显示模块、存储模块、串行口下载模块和电源模块,最终在万用板上焊接,完成整个系统硬件设计。

2、根据设计内容与要求,弄清系统及各个模块的工作流程,完成系统的软件设计,包括系统主程序、温度读取子程序、LCD显示子程序、存储子程序等,可使用汇编语言或是C语言编写,建议使用C语言编写。

3、首先使用Proteus进行仿真和调试,在仿真通过后,将程序通过串行口下载电路下载到单片机中,最终使得系统在脱机情况下,能稳定可靠地工作。

二、系统的主要功能及工作流程

(一)系统具有以下功能:

1、能正确检测温度;

2、在1602上实时显示温度;

3、每隔10秒采集一次温度数据并保存到AT24C02

4、按键按下后,可逐个显示之前采集到的数据;

5、其他功能可根据系统上的资源自行设定。

利用STC89C52、DS18B20、LCD1602、AT24C02等元器件设计温度采集与

显示系统。

扩展功能:

温度超过设定值,蜂鸣器报警;时间日期的显示;按键按下,重新开始采集温度等等。

(二)系统的工作流程 总体设计框图:

系统设计思路为以单片机为控制中心,通过实时采集温度传感器DBS18B20获得当前的温度值,通过LED 显示当前温度,同时使用键盘设定温度阈值,当测定温度大于温度阈值后,利用蜂鸣器报警。系统包括包括单片机最小系统模块、LED 显示模块、蜂鸣器报警模块、矩阵键盘模块、串行口下载模块和电源模块。

三、硬件电路原理描述

(1)实验步骤

系统的主要功能是实现温度信号的采集,在4位LED 显示器上显示当前的温度和通道号。模拟现场两个点的温度巡回检测,温度范围0-510摄氏度。每隔0.5秒检测一次,经标度变换后送LED 显示器显示,4路循环显示,每路持续两秒。

实验步骤如下:

1、从PC 机引出两根电缆连接在试验平台上。

2、编写程序然后编译连接。

3、按照附录一电路图所示连接试验线路。

单片机STC89C51

温度采集(DBS18B20)

阈值设定(键盘)

报警(蜂鸣器)

显示

4、运行参考程序,观察LED显示器上的通道号和温度值。

(二)所用芯片及其功能

1、STC89C52

STC89C52RC引脚功能说明

VCC(40引脚):电源电压

VSS(20引脚):接地

P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的8位双向I/O口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。

P1端口(P1.0~P1.7,1~8引脚):P1口是一个带内部上拉电阻的8位双向I/O 口。P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。

P2端口(P2.0~P2.7,21~28引脚):P2口是一个带内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。

P3端口(P3.0~P3.7,10~17引脚):P3是一个带内部上拉电阻的8位双向I/O 端口。P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。

RST(9引脚):复位输入。当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操

作。看门狗计时完成后,RST引脚输出96

个晶振周期的高电平。

ALE/(30引脚):地址锁存控制信号

(ALE)是访问外部程序存储器时,锁存

低8位地址的输出脉冲。

(29引脚):外部程序存储器选通信

号是外部程序存储器选通信号。当

AT89C51RC从外部程序存储器执行外部代

码时,在每个机器周期被激活两次,而访

问外部数据存储器时,将不被激活。

VPP(31引脚):访问外部程序存储

器控制信号。为使能从0000H到FFFFH的外

部程序存储器读取指令,必须接GND。注

意加密方式1时,将内部锁定位RESET。为

了执行内部程序指令,应该接VCC。在Flash编程期间,也接收12伏VPP电压。

XTAL1(19引脚):振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2(18引脚):振荡器反相放大器的输入端。

2、MAX232CPE

MAX232CPE是16针SMD封装IC,用于完成计算机232端口数据电平转换,连接CMOS电路的,换言之,如果离开它,我们就无法用软件监控电源状态了(需要串口返回信号)。而PIC16F870则为24脚8位

CMOS闪存控制器。用于可监控UPS当中。

MAX232CPE完成232电平与TTL电平转换,

提供一个本地接口,为调试和维护提供方便。TXD

接SX52的RA2脚,RXD接SX52的RA3脚,

RS-RXD和RS-TXD是RS232电平,为标准串口

电平。数据可以从串口输入到单片机SX52,SX52

再把数据送到RTL8019AS传出去。用于嵌入式

设备上的应用

(三)硬件电路原理

系统总硬件电路原理图见附录一

1、控制部分

控制部分是采用单片机STC89C52。

STC89C52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

具有以下标准功能:8k字节Flash,512字节RAM,32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,3个16位定时器/计数器,4个外部中断,一个7向量4级中断结构(兼容传统51的5向量2级中断结构),全双工串行口。另外STC89X52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35MHz,6T/12T可选。

单片机总控制电路如下图:

1.2 复位操作

本系统的复位电路采用按键电平复位方式,通过使复位端经电阻与Vcc电源接通而实现的,其电路如下图所示

上述电路图中的电阻、电容参数适用于6MHz晶振,能保证复位信号高电平持续时间大于2个机器周期。

1.3 STC89C52主要功能,如下表所示

STC89C52主要功能

主要功能特性

兼容MCS51指令系统8K可反复擦写Flash ROM

32个双向I/O口256x8bit内部RAM

3个16位可编程定时/计数器中断时钟频率0-24MHz 2个串行中断可编程UART串行通道

2个外部中断源共6个中断源

2个读写中断口线3级加密位

低功耗空闲和掉电模式软件设置睡眠和唤醒功能

STC89C52管脚介绍:

①主电源引脚(2根)

VCC(Pin40):电源输入,接+5V电源

GND(Pin20):接地线

②外接晶振引脚(2根)

XTAL1(Pin19):片内振荡电路的输入端

XTAL2(Pin20):片内振荡电路的输出端

③控制引脚(4根)

RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):地址锁存允许信号

PSEN(Pin29):外部存储器读选通信号

EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,接高电平则从内部程序存储器读指令。

④可编程输入/输出引脚(32根)

STC89C52单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

PO口(Pin39~Pin32):8位双向I/O口线,名称为P0.0~P0.7

P1口(Pin1~Pin8):8位准双向I/O口线,名称为P1.0~P1.7 P2口(Pin21~Pin28):8位准双向I/O口线,名称为P2.0~P2.7 P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.7

2、测量部分

测量部分我们采用美国DALLAS公司生产的DS18B20温度传感器。

2.1 DS18B20简介

DS18B20数字温度传感器,该产品采用美国DALLAS公司生产的

DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

2.2封装及接线说明:

DS18B20芯片封装结构:

特点:独特的一线接口,只需要一条口线通信多点能力,简化了分布式温度传感应用无需外部元件可用数据总线供电,电压范围为 3.0V 至5.5V无需备用电源测量温度范围为-55 °C至+125 ℃。华氏相当于是-67 °F到257华氏度 -10 °C至+85 °C范围内精度为±0.5 °C

2.3 DS18B20控制方法

DS18B20有六条控制命令:

温度转换 44H:启动DS18B20进行温度转换

读暂存器 BEH:读暂存器9个字节内容

写暂存器 4EH:将数据写入暂存器的TH、TL字节

复制暂存器 48H:把暂存器的TH、TL字节写到E2RAM中

读电源供电方式 B4H:启动DS18B20发送电源供电方式的信号给主CPU

3、显示部分

内部的四个数码管共用a~dp这8根

数据线,为人们的使用提供了方便,因

为里面有四个数码管,所以它有四个公

共端,加上a~dp,共有12个引脚,下面

便是一个共阴的四位数码管的内部结构

图(共阳的与之相反)。引脚排列依然

是从左下角的那个脚(1脚)开始,

以逆时针方向依次为1~12脚,上图中

的数字与之一一对应。

4、报警部分

本系统设计三个按键,采用查询方式,

一个用于选择切换设置报警温度和当

前温度,另外两个分别用于设置报警温

度的加和减。

四、软件设计流程及描述

系统软件程序采用C51语言编写。本程序采用模块化程序方法,主要分为以下三个模块:

◆ LCD初始化显示模块

◆ DS18B20数据采集模块

◆温度报警上下限设置模块

整个系统的功能是由硬件电路配合软件来实现的,当硬件基本定型后软件的功能也就基本定下来了。从软件的功能不同可分为两大块:第一块是对数字温度传感器的操作,通过单片机对DS18B20进复位,进行数据读取等操作;第二块是控制LED数码显示,将温度数据在LED上显示出来。

程序流程图设计:

开始

初始化LCD1602

调用DS18B20模块

调用报警模块

温度显示

主程序流程图

DS18B20是否响应?

主机发出开始信号

主机设置为输入模

N

Y

DS18B20数据采集流程图

等待480us

接收数据

拉低总线,延时

45us

释放总线

跳出

进入设置模式(按键)

设置温度报警上下限

TH与TL

调用DS18B20模块

Temp>=TH||Temp<=TL?

N

Y

报警(LED亮,蜂鸣

器响)

温度显示

报警模块流程图

五、心得体会

硬件(庄春兰)

通过这次课程的课程设计,我深深的认识到自己的很多不足,在实际的动手焊接过程中,我发现自己还是有很多欠缺的,首先就是要进行排版,这是非常重要的,这关系到这个版的美观,以及走线的正确性。当然在焊接过程最需要的是认真,不仅需要分清楚器件的正反,更重要的是查清楚器件的管脚图,依照管脚图进行焊接,以及明白各个管脚的作用。再则,就是走线的问题,走线尽量走直线,但是由于焊锡的不足,所以我们的板通过导线来走线,这样可以省下很多焊锡,但是不足的是影响了作品的美观度。焊接的时候要求对每个节点焊接牢固,

避免出现虚焊这种现象。但是,当我们讲作品按照原理图连接完成的时候,发现只有LED亮,并且闪烁。电路出现不稳定的现在,LED上无显示。经排查,发现插头出现漏电的现象,另外接了一个导线,LED灯不闪烁。认真的用万用表测量了单片机的引脚之后发现芯片在插的时候有一个引脚没有插进去,重新弄了之后,LED灯可以显示数据,并且可以实现功能。

软件(王璇)

根据实验的要求,我对相关的知识进行了复习,查询了各个器件的相关资料,并且找到了适合的方案进行了程序的编写。首先根据课程设计的要求写好程序的流程图,然后再进行相关的功能扩张,在程序流程图的基础上根据芯片的功能写出相对应的程序和扩展功能程序,然后再进行不断的调试和相应的修改,来实现要求的功能。程序都是由各个子程序组成,为了让自己更好的理解自己的程序,我都在程序后面加注释,这样在程序出错的检查过程中可以更容易查找的到,也更简洁,更明白易懂。在写程序时候由于中断程序出错导致无法实现功能,排除错误之后程序运行正常,通过这次的课程设计我明白了理论和实际相结合的重要性,设计都是自己从头到尾慢慢的修改出来的,这让我熟悉了整个设计的过程,更系统的锻炼了自己,从而对书本上所学的知识有了更具体的理解。

参考文献

[1]单片机原理及应用;徐敏,刘建春,关健生;机械工业出版社

[2] 单片机原理及接口技术,李朝青编著,北京航空航天大学出版社;

[3] 微机原理及接口技术,李顺增、吴国东、乔志伟,机械工业出版社;

[4] 电子技术常用器件应用手册,陈汝全,机械工业出版社;

[5] 单片机原理及接口技术,李朝青,北京航空航天大学出版社;

[6] 单片机微型计算机及其应用,孙育才,东南大学出版社;

[7]基于单片机的自适应温度控制系统;叶丹

致谢

人生的成长历程始终是向前的。当一个阶段快要结束即将迈入另一个阶段时,自然需要对即将过去的进行思考和小结。自己一直在思考学业、职业、事业的哲学关系,也许本来就没有固定的答案和模式。需要的是对自己对时间、对生命的尊重和珍惜,同样需要对在我成长历程中、在人生某个阶段一直给予我帮助、指导、鼓励、支持、信任、爱护的人,表达真正的感谢。可以用客套、冠冕堂皇的话,也可以选择朴实。后者才更真挚,更深入心灵。

在这里我要感谢指导老师和同学对我的悉心指导与帮助。老师诲人不倦的精神,治学严谨的态度,让我无比钦佩。还要感谢大学期间遇到的其他老师,谢谢你们让我在学到知识的同时,也学到了如何做人,你们的言传身教将让我一生受用。

附录一

系统总硬件电路原理图

附录二

系统源程序代码

主程序

#include

#include

char miao,shi,fen;

uint s1num;

uchar count;

uint su,tt,mm,m,n;

uchar buff[4];

unsigned char pDat[7],pDat1[7]; sbit s1=P3^0;

sbit s2=P3^1;

sbit s3=P3^6;

void main()

{

m=0;

n=0;

init();

EX0=1;

//init_com(); //包含了对定时器0的设定

while(1)

{

write_sfm(10,miao);

write_sfm(7,fen);

write_sfm(4,shi);

dis_temp(tt);

dis_temp1(mm);

keyscan();

}

}

void int_0() interrupt 0

{

EA=0;

IRcvStr(0xa0,n,&pDat1[0],8);

//mm=pDat1[0];

//mm<<=8; //两个字节组合为1个字

//mm=mm|pDat1[1];

mm=pDat1[0]*100+pDat1[1]*10+pDat1[2];

pDat1[0]=0;

pDat1[1]=0;

pDat1[2]=0;

n=n+8;

EA=1;

}

void keyscan()

{

if(s1==0)

{

delay(5);

if(s1==0)

{ s1num++;

while(!s1);

if(s1num==1)

{

TR0=0;

write_com(0x80+0x40+10);

write_com(0x0f);

}

}

if(s1num==2)

{

write_com(0x80+0x40+7);

}

if(s1num==3)

{

write_com(0x80+0x40+4);

}

if(s1num==4)

{

s1num=0;

write_com(0x0c);

TR0=1;

}

}

if(s1num!=0)

{

if(s2==0)

{

delay(5);

if(s2==0)

{

while(!s2);

if(s1num==1)

{

miao++;

if(miao==60)

miao=0;

write_sfm(10,miao);

write_com(0x80+0x40+10);//指针回原位

}

if(s1num==2)

{

fen++;

if(fen==60)

fen=0;

write_sfm(7,fen);

write_com(0x80+0x40+7);//指针回原位}

if(s1num==3)

{

shi++;

if(shi==24)

shi=0;

write_sfm(4,shi);

write_com(0x80+0x40+4);//指针回原位}

}

}

if(s3==0)

{

delay(5);

if(s3==0)

{

while(!s3);

if(s1num==1)

{

/* if(miao==0)

{

miao=59;

write_sfm(10,miao);

write_com(0x80+0x40+10);

}*/

miao--;

if(miao==-1)

miao=59;

write_sfm(10,miao);

write_com(0x80+0x40+10);

}

if(s1num==2)

{

fen--;

if(fen==-1)

fen=59;

温度数据采集系统

第三章系统硬件设计 温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器DS18B20,数据的发送和接收采用无线数据收发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个DS18B20,很方便。具有以下特点: (1)具有独特的1-Wire 接口,只需要一个端口引脚就可以进行通信; (2)具备多节点能力,能够简化分布式温度检测应用中的设计; (3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在3~5.5V; (5)在待机状态下可以不消耗电源电量; (6)测量温度范围在-55~+125℃; (7)在-10~+85℃时测量精度在±0.5℃; (8)可以用程序设定9~12 位分辨率; (9)用户可根据需要定义温度的上下限报警设置。 DS18B203 脚封装的管脚排列图如图3.1.1 所示。

图 3.1.1 DS18B20 管脚排列图 DS18B20 只有三个引脚。其中,引脚1 和3 分别是GND 和VDD,引脚2 是DQ 端,是用于数据信息的输入和输出。当给DS18B20 加电后,单片机可以通过DQ 端写入命令,并可以读出含有温度信息的数字量。在使用寄生电源情况下,可以向DS18B20 提供电源。 3.1.2 DS18B20 的内部结构 DS18B20的内部框图如图3.1.2所示。 图3.1.2 DS18B20的内部框图 DS18B20主要由64位ROM、温度传感器、非易失性温度报警触发器TH和TL及暂存器四部分组成。64位ROM存储器具有独一无二的序列号,可以看作是该DS18B20的地址系列号,是在出厂前就被光刻好的。暂存器各字节具有不同的意义,0和1字节是用于存储温度传感器数字输出的温度寄存器;2字节和3字节分别是非易失性上限报警触发寄存器(TH)和下限报警触发寄存器(TL);4字节的配置寄存器能够用来设置温度转换的精度; 5、6和7字节作为内部保留使用。DS18B20有两种供电方式,可以使用寄生电源供电,也可以使用外部电源。在使用寄生电源的时候,不用外部电源,而是在总线为高时由DQ端提供电源,同时向内部电容充电,以求在总线拉低时为DS18B20提供电量。上电后,DS18B20进入空闲状态;当MCU向DS18B20发出Convert T [44h]的命令后,DS18B20 向MCU传送转换状态,开始温度测量和A/D转换。温度数据以带符号位的补码形式存储在温度寄存器中,温度寄存器格式如图3.1.3所示。 图3.1.3 DS18B20温度寄存器格式 温度的正负值是由符号为来说明的,正为0,负为1。表3.1给出一部分数字数据与温度的对应关系。 表3.1 DS18B20温度与数据对应关系

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

【CN109974256A】一种室内温湿度控制系统及控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910264380.2 (22)申请日 2019.04.03 (71)申请人 南京福加自动化科技有限公司 地址 210001 江苏省南京市经济技术开发 区恒业路6-3号 (72)发明人 李新美 王岑佳 刘守超 吴敢  (74)专利代理机构 南京经纬专利商标代理有限 公司 32200 代理人 曹翠珍 (51)Int.Cl. F24F 11/89(2018.01) (54)发明名称 一种室内温湿度控制系统及控制方法 (57)摘要 本发明涉及一种室内温湿度控制系统及控 制方法,运用自动化技术,实时检测获得送风侧 温湿度平均值和回风侧温湿度平均值,并据此针 对空调装置(1),实现表冷段(3)、蒸汽加热段 (4)、蒸汽加湿段(5)的精确控制输出,并通过左 右侧送回风向的定时切换,结合室内轴流风扇切 换控制组推动中间气流,提高左右侧室内空气混 合效率,使得室内各区域温湿度更加接近和均 衡,从而最终提高了整个室内环境的温湿度精 度, 进而提高了养殖质量和养殖收益。权利要求书2页 说明书5页 附图2页CN 109974256 A 2019.07.05 C N 109974256 A

权 利 要 求 书1/2页CN 109974256 A 1.一种室内温湿度控制系统,通过空调装置(1)实现对室内环境的恒温恒湿控制,其特征在于:包括控制模块(20)、送回风阀切换控制组和传感器检测组,其中,控制模块(20)与空调装置(1)相连接,进行制冷、制热、加湿、除湿功能控制,针对空调装置(1)内部回风区内气流实现温湿度控制,并输送至空调装置(1)内部的出风区;空调装置(1)内部出风区设置两个出风口,并定义为第一出风口和第二出风口,同时,空调装置(1)内部回风区设置两个进风口,并定义为第一进风口和第二进风口;室内环境中彼此相对的两侧壁上分别固定设置一组主导风装置,各组主导风装置分别均包括至少一个子导风装置,各子导风装置上分别均设置两端导风口,各子导风装置上的两端导风口敞开、且彼此连通; 送回风阀切换控制组包括左侧回风切换风阀(7)、左侧送风切换风阀(8)、右侧回风切换风阀(9)、右侧送风切换风阀(10),控制模块(20)分别与送回风阀切换控制组中的各切换风阀进行连接控制;第一出风口经管路对接左侧送风切换风阀(8)的其中一端,第一进风口经管路对接左侧回风切换风阀(7)的其中一端,左侧送风切换风阀(8)另一端与左侧回风切换风阀(7)另一端相对接,并且该对接位置经各根管路分别连通其中一组主导风装置中各子导风装置上的其中一端导风口;第二出风口经管路对接右侧送风切换风阀(10)的其中一端,第二进风口经管路对接右侧回风切换风阀(9)的其中一端,右侧送风切换风阀(10)另一端与右侧回风切换风阀(9)另一端相对接,并且该对接位置经各根管路分别连通另一组主导风装置中各子导风装置上的其中一端导风口; 传感器检测组包括两个温湿度检测组,各温湿度检测组分别与各组主导风装置彼此一一对应,各温湿度检测组分别均包括至少一个温湿度传感器,各温湿度检测组中温湿度传感器的数量与对应主导风装置中子导风装置的数量相同,温湿度检测组中各个温湿度传感器分别与对应主导风装置中各个子导风装置一一对应,各温湿度检测组中各温湿度传感器分别设置于对应主导风装置中对应子导风装置上的另一端导风口,控制模块(20)分别与各个温湿度传感器相连,分别获取对应子导风装置上导风口位置的温湿度数据。 2.根据权利要求1所述一种室内温湿度控制系统,其特征在于:还包括室内轴流风扇切换控制组,室内轴流风扇切换控制组包括至少一个送风轴流风扇组,室内轴流风扇切换控制组设置于所述室内环境中、两组主导风装置之间的位置,各送风轴流风扇组分别均包括正向送风轴流风扇组和反向送风轴流风扇组,所述控制模块(20)分别与各送风轴流风扇组中的正向送风轴流风扇组、反向送风轴流风扇组相连接、进行两向送风控制,针对两组主导风装置之间的气流进行引导。 3.根据权利要求2所述一种室内温湿度控制系统,其特征在于:还包括左侧送风风压传感器(21)和右侧送风风压传感器(6),所述左侧送风切换风阀(8)另一端与所述左侧回风切换风阀(7)另一端相对接位置串联左侧送风风压传感器(21)后、经各根管路分别连通其中一组主导风装置中各子导风装置上的其中一端导风口;所述右侧送风切换风阀(10)另一端与所述右侧回风切换风阀(9)另一端相对接位置串联右侧送风风压传感器(6)后、经各根管路分别连通另一组主导风装置中各子导风装置上的其中一端导风口;所述控制模块(20)分别与左侧送风风压传感器(21)、右侧送风风压传感器(6)相连接,获取各个风压传感器所设管路位置中气流流动的压力数据。 4.根据权利要求2所述一种室内温湿度控制系统,其特征在于:所述各组主导风装置分别均包括三个子导风装置,各组主导风装置中各个子导风装置呈纵向排列布局设置,即上 2

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

远程温度采集与显示系统设计

毕业设计论文 远程温度采集测量系统 系电子信息工程系 专业电子信息工程技术姓名张一浩班级电信091 学号0901043118 指导教师张少华职称讲师 设计时间2011.11.20-2012.1.8

目录 第一章测量方案 (4) 1.1 系统功能 (4) 1.1.1 功能介绍 (4) 1.2方案论证与确定 (4) 1.2.1温度测量方案的确定 (4) 1.2.2 远程无线数据传送方案的确定 (5) 第二章电路原理及主要功能模块 (6) 2.1工作原理 (6) 2.1.1 系统框图 (6) 2.1.2现场温度采集电路 (6) 2.2 通信模块 (7) 2.2.1 信号发送电路 (7) 2.2.2 接收解调电路 (8) 2.3微机硬件原理图 (9) 2.3.1主机控制原理图 (9) 2.3.2从机控制原理图 (10) 第三章软件系统设计 (11) 3.1软件主要功能 (11) 3.2 软件设计框图 (11) 3.2.1设计框图 (11) 3.3测试方法及所用仪表 (13) 第四章数据分析 (14) 4.1 测试数据及测试结果分析 (15) 4.1.1 温度数据 (15) 第五章结束语 (16) 参考文献 (17) 致谢 (18)

远程温度采集测量系统 摘要 本文给出了远程温度采集测量系统的设计,它由温度数据采集测量与远程无线数字调频传送两部分构成,分为现场温度采集、远程数据传送和温度数据显示三个模块。设计采用单片微型计算机系统,数字频率调制(FSK)芯片和相关接口电路,实现现场温度信号的调理、模数转换、处理和远程传送。测温范围可达-50℃~+150℃,误差小于1℃。远程无线传送距离有障碍物时大于20m,传送的误码率小于1‰。利用LCD和LED分别可在现场模块和终端模块显示当前温度值,显示分辨率为0.1℃,系统设有语音报温和温度上限报警功能,所有指标均满足题目的基本要求和发挥部分要求。 关键词:温度传感器;接收电路;温度的测量

单片机温度采集系统

课程设计 课程设计名称:温度采集装置 班级:数控技术0901 学号: 课程设计时间:2011.12.5—12.11

目录 1 设计任务 (2) 2 确定设计方案 (3) 2.1 温度传感器—AD22100K (3) 2.2 A/D转换器—ADC0809 (4) 2.3 单片机的选择—80C51 (6) 2.4 显示器接口—LED动态显示接口 (8) 3 硬件电路的设计 (10) 3.1 温度传感器与A/D转换器的接口电路 (10) 3.2 A/D转换器与89C51的接口电路 (10) 3.3 89C51与显示器间的接口电路 (11) 3.4 晶振电路和复位电路的设计 (12) 4 软件设计 (13) 4.1温度采集的主程序流程图 (13) 4.2 程序清单 (15) 5 心得体会 (20) 附录 (21) 温度采集装置 1、设计任务

设计一个温度采集系统,要求按1路/s的速度顺序检测8路温度点,测温范围为+20℃~+100℃,测量精度为±1%。要求用5位数码管显示温度,最高位显示通道号,次高位显示“—”,低三位显示温度值。 2、设计方案 2.1 温度传感器—AD22100K AD22100K是有信号调节的单片温度传感器,工作温度范围为-50~+150,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出温度与电压和电源电压的乘积(比率测量)成比例。输出电压摆幅为0.25V(对应-50℃)和4.75V(对应150℃),用5V单电源工作。 2.1.1 AD22100K的引脚图如2.1.1 图2.1.1 AD22100K的引脚图 注:1.V电源 4.GND接地 2.U输出 3、5~8 NC不连接

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

基于labview温度监测系统

课题基于labview的温度监测系统班级 12电信 学号 201210350120 姓名邹临昌 时间 2015.12 .12-2016.1.12 景德镇陶瓷学院

摘要:本课题介绍了虚拟仪器概况及其发展背景;通过对虚拟仪器的学习和研究,运用软件工具,实现温度显示系统的模拟。实现系统软件设计思路是:利用LabVIEW中的各种控件,实现温度数据采集显示。利用虚拟仪器的优越性实现了基于操作系统下的交通终端服务系统的展示部分。 关键字:labVIEW,温度,数据采集 引言 美国国家仪器公司推出的LabVIEW不仅是一个图形化编程语言,而且是一个广泛应用于虚拟测控系统的虚拟仪器平台,它与数据采集卡一起构成虚拟测试仪器,其测试系统的构建可以通过图形化的语言描述,组态容易,设计简单,广泛应用于测量与控制。 LabVIEW是虚拟仪器领域中最具有代表性的图形化编程开发平台[1] ,是目前国际上首推并应用最广的数据采集和控制开发环境之一,主要应用于仪器控制、数据采集、数据分析、数据显示等领域,并适用于多种不同的操作系统平台。与传统程序语言不同,LabVIEW采用强大的图形化语言(G 语言)编程,面向测试工程师而非专业程序员,编程非常方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控制能力等特点。使用LabVIEW 开发环境,用户可以创建32位的编译程序,从而为常规的数据采集、测试、测量等任务提供了更快的运行速度。LabVIEW是真正的编译器,用户可以创建独立的可执行文件,且该文件能够脱离开发环境而单独运行。

1.1虚拟仪器的优势 1.经济实惠 2.方便适用 3.提高测试效果 4.开放且灵活 远程虚拟仪器的优势在于不受地域限制,功能可由用户自己定义,且构建容易,所以使用面极为广泛,是科研、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它可应用在高危险的区域进行在线的数据采集和检测[5]。使测量人员的工作不但摆脱了地理位置和条件的限制,还可以通过Intcrnet把所采集到的数据自动地转送到另一台计算机进行评估。

基于Labview的温度采集系统

基于Labview 的温度采集系统 摘要:随着工业的不断发展,对温度测量的要求越来越高,而且测量范围也越来越广。本设计用LabView 软件在PC 机上编程实现了多点温度采集、动态图形显示、数据存储、报警、数据分析等功能,并重点对基于LabVIEW 的虚拟温度采集系统的设计进行了讨论。 关键词:LabVIEW; 温度采集 0 引言 进入21世纪以来,作为测试技术的一个分支,虚拟仪器的开发和研制在国内得到了飞速的发展。它可以利用计算机显示器的显示功能来模拟传统仪器的控制面板,以多种形式表达输出检测结果。目前,常用的温度采集系统绝大部分是由集成温度传感器和单片机构成的,设计过程繁琐、调试期长、修改不方便。本文借助LabVlEW 图形化软件开发系统,用软件代替DAQ 数据采集卡设计的这种虚拟温度采集系统,比以前的更易修改且成本低、周期短。 1 设计思想 该系统的功能框图如图所示。 本温度采集系统的设计采用软件代替了DAQ 数据采集卡,使用Demo read voltage 子程序来仿真电压测量,然后把所测得的电压值转换成摄氏或华氏温度读数。 在数据采集过程中,实时地显示数据。当采集的温度值大于设定的高限报警数值时,就会点亮高报警红色灯,同时触发条件结构里的事件发生,使系统发出蜂呜温度采集系统 实 时 温 度 显 示 保存数据 报警设定 数值计算 显示转换

声。当采集过程结束后,在图表上画出数据波形,并算出最大值、最小值和平均值,并自动产生数据文件的头文件,它包括操作者名字和文件名,将采集的数据附在头文件后面,以供查询。 2 子程序设计 2.1 温度计子程序 温度计界面程序如下图所示。在框图程序中设定温度计的标尺范围为0.0到100.0,在前面板窗口中放入竖直开关控制用下选择“温度值单位”,即选择以华氏还是摄氏显示。 2.2 实现步骤 1、点击框图程序窗口的空白处,弹出功能模板,从弹出的菜单中选择所需的对象。本程序用到下面的对象: Multiply(乘法)功能,将读取电压值乘以100.00,以获得华氏温度。 Subtract(减法)功能,从华氏温度中减去32.0,以便转换成摄氏温度。 Divide(除法)功能,把相减的结果除以1.8以转换成摄氏温度。 Select(选择)功能(Comparison子模板)。取决于温标选择开关的值,该功能输出华氏温度(当选择开关为false)或者摄氏温度(选择开关为True)数值。 Demo Read Voltage VI程序(Tutorial子模板)。该程序模拟从DAQ卡的0通道读取电压值,并把所测得的电压值转换成华氏或摄氏读数。 随机数产生功能(Numeric子模板),用于产生随机温度值。 数值常数。用连线工具,点击要连接一个数值常数的对象,并选择Create Constant功能。若要修改常数值,用标签工具双点数值,再写入新的数值。

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

温湿度独立控制空调系统

摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制新风高温冷源 1 引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºc,相对湿度60%,此时露点温度为16.6ºc。空调排热排湿的任务可以看成是从25ºc 环境中向外界抽取热量,在16.6ºc的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºc的露点温度需要约7ºc的冷源温度,这是现有空调系统采用5~7ºc的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºc的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºc的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、co2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。 综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为: 加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大

温度数据采集系统

第三章 系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器 DS18B20,数据的发送和接收采用无线数据收 发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由 DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个 DS18B20,很方便。具有以下特点:(1)具有独特的 1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在 3~5.5V ;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定 9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。DS18B203 脚封装的管脚排列图如图 3.1.1 所示。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

专业课程设计温度的采集与控制(软件)2

专业课程设计说明书课程设计名称:专业课程设计 课程设计题目:温度的采集与控制(2)学院名称:信息工程学院 专业:电子信息工程班级: 学号:姓名: 评分:教师: 20 年月日

专业课程设计任务书2012-2013学年第二学期分散1周第17 周- 19 周集中

摘要 随着现代信息技术的飞速发展,温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响,所以温度采集控制系统的设计与研究有十分重要的意义。 本次设计的目的在于学习基于51单片机的温度采集控制系统设计的基本流程。本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,把温度信号通过单总线从温度传感器传递到单片机上。单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到LED进行显示。本系统可以实现温度信号采集与显示,通过进行温度数据的运算处理,发出控制信号达到控制蜂鸣器和继电器的目的。 关键词:温度温度采集温度控制

目录 第一章系统组成及工作原理 (1) 1.1 设计要求 (1) 1.2 系统组成 (1) 1.3 工作原理 (1) 第二章硬件电路设计 (2) 2.1 温度转换电路 (2) 2.2 A/D转换电路 (2) 2.3 控制电路 (3) 2.4 单片机最小系统 (3) 第三章软件设计 (5) 3.1 主程序流程图 (5) 3.2 7279初始化程序INIT7279 (6) 3.3 发送字节程序STFS (7) 3.4 延时程序 (9) 3.5 中断程序 (10) 3.6 AD采样程序 (12) 3.7 数值转换程序 (13) 3.8 7279送显程序 (14) 第四章实验、调试和测试结果分析 (16) 4.1 主要仪器和工具 (16) 4.2 调试过程及测试结果 (16) 结论 (18) 参考文献 (19) 附录 (20)

四路温度采集系统系统

四路温度采集系统的设计 【内容摘要】本文主要研究的是基于AT89S51单片机作为系统的温度显示以及设定双路温度报警系统的设计。此系统硬件电路主要包括5部分:AT89S51单片机最小系统电路部分和复位电路部分,LCD1602液晶显示电路部分,4个DS18B20作为温度检测部分,以及电源电路部分。 本系统采用C语言进行编写程序,为了便于阅读和修改,软件采用模块化结构设计,使程序间的逻辑层次更加简明。 【关键词】四路温度采集系统系统;DS18B20;LCD1602液晶显示;AT89S51单片机 1 引言 四路温度采集系统系统不仅是工业上的宠儿,也是是单片机实验中一个很常用的题目。因为它的有很好的开放性和可发挥性,因此对作者的要求比较高,不仅考察了对单片机的掌握能力更加强调了对单片机扩展的应用。而且在操作的设计上要力求简洁,功能上尽量齐全,显示界面也要出色。所以,双路温度报警系统无论作为比赛题目还是练习题目都是很有价值。 本文介绍一种基于 AT89C2051 单片机的一种温度测量,该电路DS18B20 作为温度监测元件,测量范围-55℃-~+125℃,使用LCD1602液晶显示模块显示,能通过键盘设置温度报警上下限.正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器 DS18B20 的原理,AT89C2051 单片机功能和应用.该电路设计新颖,功能强大,结构简单。 2双路温度报警系统系统简介及其作用综述 首先,由DS18B20温度传感器芯片测量当前温度,并将结果送入单片机。然后,通过AT89C51单片机芯片对送入的测量温度读数进行计算和转换,并将此结果送入液晶显示模块。最后,LCD 1602模块将送来的四路温度值值显示于显示屏上。

单片机实验温度采集系统

单片机原理与运用 课 程 设 计 课题名称:专业班级:学生姓名:指导老师:完成时间:温度采集与显示系统2012年7月4号

摘要 随着信息技术的飞速发展,嵌入式智能电子技术已渗透到社会生产、工业 控制以及人们日常生活的各个方面。单片机又称为嵌入式微型控制器,在智能 仪表、工业控制、智能终端、通信设备、医疗器械、汽车电器、导航系统和家 用电器等很多领域都有着广泛的应用,已成为当今电子信息领域应用最广泛的 技术之一。 本文主要介绍了一个基于STC89C52单片机的温度采集与显示系统,详细 描述了利用液晶显示器件温度传感器DS18B20开发测温系统的原理,重点对传感器与单片机的硬件连接和软件编程进行了详细分析。主要地介绍了数字温度 传感器DS18B20的数据采集过程,进而对各部分硬件电路的工作原理进行了介绍。温度传感器DS18B20与STC89C52结合构成了最简温度检测系统,该系统可以方便的实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合我们日常生活和工、农业生产中的温 度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。 单片机综合实验的目的是训练单片机应用系统的编程及调试能力,通过对 一个单片机应用系统进行系统的编程和调试,掌握单片机应用系统开发环境和 仿真调试工具及仪器仪表的实用,掌握单片机应用程序代码的编写和编译,掌 握利用单片机硬件仿真调试工具进行单片机程序的跟踪调试和排错方法,掌握 示波器和万用表等杆塔工具在单片机系统调试中应用。 关键词:单片机STC89C52、DS18B20温度传感器、液晶显示器LCD1602、AT24C02数据存储芯片

室内温度自动调节控制系统

室内温度自动调节控制系统 摘要 在人们日常生产及生活过程中,经常要用到温度的检测和控制。随着微型计算机和传感器技术的迅速发展,自动检测领域发生了巨大变化,室内温度自动检测控制方面的研究有了很大进展。同时现代电子产品性能进一步提高,产品更新换代的节奏越来越快。本次课程设计是基于STC89C52单片机基础板所做的温度检测调节系统,不仅对于学习单片机技术等专业知识有实际意义,而且还可以增强动手能力。 这次设计的系统,硬件电路主要包括单片机最小系统电路,温度采集电路,显示电路,语音播报电路,按键电路,继电器电路等。软件程序主要包括主程序,读出温度子程序,计算温度子程序,显示温度刷新子程序,语音播报程序等。我们利用DS18B20温度传感器采集温度通过STC89C5单片机系统在应用板上利用LCD1602液晶显示屏显示实时测得的温度,通过程序进行语音播报;当温度超过设定的上限时,继电器闭合,并驱动动机工作,以实现降温。 经过调试,结果显示LCD屏准确显示了室温,并能进行语音播报。当温度超过设定上限时,继电器闭合,风扇工作,开始降温;实现了系统设计要求的功能。 关键词:室内温度,自动控制,STC89C52单片机,语音播报。

目录 0 前言 (1) 1总体方案设计 (2) 1.1设计方案论证 (3) 1.2 主控制器 (3) 1.3 LCD液晶显示 (3) 1.4 温度传感器 (3) 2硬件电路设计 (6) 2.1.主控制器 (6) 2.1.1 电源部分 (7) 2.1.2 串口电路 (7) 2.1.3晶振电路 (8) 2.1.4复位电路 (9) 2.2 显示电路 (9) 2.3 数据采集电路 (9) 2.4语音电路 (10) 2.5按键电路 (11) 3 软件设计 (11) 3.1 主程序设计..................................................................................... 错误!未定义书签。 3.2 温度转换程序 (13) 3.3 温度显示程序 (13) 4 调试分析 (14) 4.1 硬件调试 (14) 4.1.1硬件调试方法 (14) 4.1.2 电源调试 (14) 4.1.3 语音模块调试 (14) 4.2 软件调试 (14) 5 结论 (17) 参考文献 (18) 附录1 电路原理图 (19) 附录2 .PCB图 (20) 附录3主程序 (21)

数字式温度采集系统设计 周恒辉

《电子技术》课程设计报告 班级电气1112学号 1111205227 学生姓名周恒辉 专业电气信息类 系别电子信息工程系 指导教师庄立运 淮阴工学院 电子与电气工程学院 2013年5月

1 设计目的 a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 d)培养学生的创新能力。 2 设计要求 a)能够实现坏境温度的检测及转换,检测精度为±0.1℃; b)测量值用数字显示,显示范围为-50℃~+150℃; c)不可采用集成温度传感器; d)画出总体电路图; e)主要单元电路和元器件参数计算、选择; f)安装自己设计的电路,按照自己设计的电路,在通用板上焊接。焊接完 毕后,应对照电路图仔细检查,看是否有错接、漏接、虚焊的现象; g)调试电路; h)电路性能指标测试; i)要求性能可靠、操作简便; j)提交格式上符合要求,内容完整的设计报告; 3 总体设计 环境温度是影响工农业生产的重要因素。本课题要求用电子元器件设计一个数字式温度采集系统,利用数码管显示当前温度,具有读数方便、测量范围广、测量准确等优点。

图1温度采集报警系统方案框图 3.1总体设计框图 图3-1为温度采集报警系统方案框图。该温度采集报警系统由以下几部分组成:(1)检测电路(2)信号调理(3)双积分A/D 转换器(4)基准电压 (5)显示译码器(6)字位驱动(7)LED 数码管显示 3.2电路组成图及工作原理 图2总电路图 3.2.1测温探头的工作原理 检测电路 信号原理 A/D 转换 译码 器 驱 动 LED 显示

相关文档
最新文档