clontech matchmaker gold酵母双杂交pprotocol最新版

clontech matchmaker gold酵母双杂交pprotocol最新版
clontech matchmaker gold酵母双杂交pprotocol最新版

Matchmaker? Gold Y east Two-Hybrid System User Manual

PT4084-1 (PR033493) United States/Canada 800.662.2566Asia Paci?c

+1.650.919.7300Europe

+33.(0)1.3904.6880Japan

+81.(0)77.543.6116U s e r M a n u a l

Matchmaker?Gold Y east T wo-Hybrid System User Manual

I. Introduction & Protocol Overview (4)

II. List of Components (7)

III. Additional Materials Required (8)

IV. General Considerations Regarding Y east T wo-Hybrid Libraries (9)

V. List of Abbreviations (10)

VI. Control Experiments (11)

A. General Considerations (11)

B. Protocol: Control Mating Protocol (11)

VII. Cloning and T esting Bait for Autoactivation and T oxicity (14)

A. Generate a Bait Clone (14)

B. Detecting Bait Expression (15)

C. Protocol: T esting Your Bait for Autoactivation (15)

D. Protocol: T esting Your Bait for Toxicity (16)

VIII. T wo-Hybrid Library Screening Using Y east Mating (17)

IX. Analysis of Results (21)

A. Too Few Positives (21)

B. Too Many Positives (21)

X. Confirmation of Positive Interactions & Rescue of the Prey Plasmid (22)

A. Protocol: Yeast Colony PCR Analysis to Eliminate Duplicate Clones (23)

B. Protocol: Rescue and Isolation of Library Plasmid Responsible for Activation of Reporters (23)

C. Protocol: Distinguishing Genuine Positive from False Positive Interactions (24)

D. Sequence Analysis of a Genuine Positive (26)

E. Biochemical Methods to Confirm Positive Interactions (27)

F. Downstream Analysis (27)

XI. T roubleshooting Guide (28)

XII. References (30)

Appendix A: Mate & Plate? Library Construction (32)

Appendix B: Library Titering (35)

Appendix C: Control Plasmid Information (36)

Appendix D: Y east Growth Media & Supplements (37)

T able of Contents

Customer Service/Ordering tel: 800.662.2566 (toll-free) fax: 800.424.1350 (toll-free) web: https://www.360docs.net/doc/7716042751.html,

e-mail: orders@https://www.360docs.net/doc/7716042751.html, T echnical Support

tel: 800.662.2566 (toll-free) fax: 650.424.1064

web: https://www.360docs.net/doc/7716042751.html, e-mail: tech@https://www.360docs.net/doc/7716042751.html,

Matchmaker? Gold Y east T wo-Hybrid System User Manual T able of Contents continued

List of Figures

Figure 1. The two-hybrid principle. (4)

Figure 2. Reporter gene constructs in Matchmaker yeast strains. (5)

Figure 3. T wo-hybrid screening using Mate & Plate? Libraries. (6)

Figure 4. Simple, one-step PCR cloning with In-Fusion Advantage PCR Cloning Kits. (14)

Figure 5. An example of a typical yeast zygote. (18)

Figure 6. High stringency screening of potential interactors. (20)

Figure 7. Strategies for analyzing and verifying putative positive interactions (22)

Figure 8. Illustration of the activation of reporter gene expression in genuine and false positives. (24)

Figure 9. Using cotransformation on selective media to verify protein interactions. (25)

Figure 10. Map of pGBKT7-53 DNA-BD control plasmid. (36)

Figure 11. Map of pGADT7-T AD control plasmid. (36)

List of T ables

Table I: Mating the Pretransformed Control Strains (11)

Table II: Yeast Host Strain Genotypes (32)

Table III: Phenotype Testing on Various SD Media (32)

Table IV: Components of Yeast Media Set 2 & Yeast Media Set 2 Plus (37)

Table V: Individual Yeast Media Pouches for Matchmaker Gold Protocols (37)

Table VI: Additional Media & Media Supplements Required for a T wo-Hybrid Screen (38)

Matchmaker?Gold Y east T wo-Hybrid System User Manual

I. Introduction & Protocol Overview

Principle of the T wo-Hybrid Assay

In a Matchmaker GAL4-based two-hybrid assay, a bait protein is expressed as a fusion to the Gal4 DNA-binding do-main (DNA-BD), while libraries of prey proteins are expressed as fusions to the Gal4 activation domain (AD; Fields & Song, 1989; Chien et al., 1991). In the Matchmaker Gold Yeast Two-Hybrid System (Cat. No. 630489), when bait and library (prey) fusion proteins interact, the DNA-BD and AD are brought into proximity to activate transcription of four independent reporter genes (AUR1-C , ADE2, HIS3, and MEL1) (Figure 1). This technology can be used to:identify novel protein interactions ? confirm putative interactions ? define interacting domains

? Figure 1. T he two-hybrid principle. T wo proteins are expressed separately, one (a bait protein) fused to the Gal4 DNA-binding domain (BD) and the other (a prey protein) fused to the Gal4 transciptional activation domain (AD). In Y 2HGold Y east Strain, activation of the reporters (AUR1-C , ADE2, HIS3, and MEL1) only occurs in a cell that contains proteins which interact and bind to the Gal4-responsive promoter.

The Bait

To make your GAL4 DNA-BD/bait construct, we recommend using pGBKT7, which is available separately (Cat. No. 630443) or as a component of our Matchmaker Gold T wo-Hybrid System (Cat. No. 630489). To investigate ternary protein complexes, we suggest you use pBridge (Cat. No. 630404), a three-hybrid vector that contains two MCS regions so that you can express a Gal4 DNA-BD fusion and a second protein of interest that may act as a "bridge" between bait and prey.

mRNA

GAL Promoter

RNA Pol II

5'

GAL4 DNA-BD

GAL4 AD

P r e y B a i t

Matchmaker? Gold Y east T wo-Hybrid System User Manual

I. Introduction & Protocol Overview continued

Figure 2. Reporter gene constructs in Matchmaker yeast strains. In Y 2HGold, the HIS3, ADE2, and MEL1/AUR1-C reporter genes are under the control of three completely heterologous Gal4-responsive promoter elements—G1, G2, and M1, respectively. The protein-binding sites within the promoters are different, although each is related to the 17-mer consensus sequence recognized by Gal4 (Giniger et al., 1985; Giniger & Ptashne, 1988).

Four Reporter Genes to Detect Protein Interactions

There are four integrated reporter genes under the control of three distinct Gal4-responsive promoters (Figure 2) in Clontech’s Y2HGold Yeast Strain, which are used to detect two-hybrid interactions.

AUR1-C. A dominant mutant version of the AUR1 gene that encodes the enzyme inositol phosphoryl ceramide syn-thase. AUR1-C is expressed in Y2HGold Yeast Strain in response to protein-protein interactions that bring the GAL4 transcriptional activation and DNA binding domains into close proximity. In Saccharomyces cerevisiae , its expression confers strong resistance (AbA r ) to the otherwise highly toxic drug Aureobasidin A (Cat Nos. 630466 & 630499). This drug reporter is preferable to nutritional reporters alone, due to lower background activity. For example, the use of this reporter alone results in considerably less background than a histidine reporter alone.

HIS3. Y2HGold is unable to synthesize histidine and is therefore unable to grow on media that lack this essential amino acid. When bait and prey proteins interact, Gal4-responsive His3 expression permits the cell to biosynthesize histidine and grow on –His minimal medium.

ADE2. Y2HGold is also unable to grow on minimal media that does not contain adenine. However, when two proteins interact, Ade2 expression is activated, allowing these cells to grow on –Ade minimal medium.

MEL1. MEL-1 encodes a -galactosidase, an enzyme occurring naturally in many yeast strains. As a result of two-hybrid interactions, a -galactosidase (MEL1) is expressed and secreted by the yeast cells. Yeast colonies that express Mel1 turn blue in the presence of the chromagenic substrate X-a -Gal (Cat. Nos. 630462 & 630462).

Note: X-a -Gal is not X-Gal, and is not a substrate for b -galactosidase.

Three Different Binding Sites

Three promoters controlling the four reporter genes AUR1-C , HIS3, ADE2, and MEL1 in Y2HGold are unrelated except for the short protein binding sites in the UAS region that are specifically bound by the Gal4 DNA-BD. Thus, library proteins that interact with unrelated sequences flanking or within the UAS (i.e., false positives) are

automatically screened out.

Y187 (Library Host Strain) reporter gene constructs

Y2HGold (Mating Partner) reporter gene constructs

Matchmaker?Gold Y east T wo-Hybrid System User Manual

I. Introduction & Protocol Overview continued

Figure 3. T wo-hybrid screening using Mate & Plate? Libraries. Your bait protein is expressed as a fusion with the Gal4 DNA-BD in yeast strain Y 2HGold. T he high-complexity library, which expresses fusions with the Gal4 AD, is provided in yeast strain Y 187. When cultures of the two transformed strains are mixed together overnight, they mate to create diploids. Diploid cells contain four reporter genes: HIS3, ADE2, MEL1, and AUR1-C , that are activated in response to two-hybrid interactions.

Matchmaker Screening Protocol Overview

The entire Matchmaker screening process (Figure 3) consists of the following steps:Step 1. Perform control experiments

? Step 2. Clone and test bait for autoactivation and toxicity ? Step 3. Screen Mate & Plate? library ? Step 4. Confirm and interpret results

? Confirm patch positives on QDO/X/A (Section VIII)

Clone bait (Section VII.A)

Check expression (Section VII.B)

T est for autoactivation

and toxicity

(Section VII.C & VII.D)

Mate with library (Section VIII)

Plate on DDO/X/A and pick blue colonies (Section VIII)

Matchmaker? Gold Y east T wo-Hybrid System User Manual II. List of Components

Matchmaker Gold Y east T wo-Hybrid System (Cat. No. 630489)

Store all Matchmaker vectors at –20°C, all yeast (S. cerevisiae) strains at –70°C, and all Y east

Media Pouches at room temperature.

For the Y eastmaker? Y east T ransformation System 2, store carrier DNA and control plasmid at

–20°C, and all other components at room temperature.

Matchmaker Vectors

?

50 μl pGBKT7 DNA-BD Cloning Vector (0.1 μg/μl)

?

50 μl pGADT7 AD Cloning Vector (0.1 μg/μl)

?

50 μl pGBKT7-53 Control Vector (0.1 μg/μl)

50 μl pGADT7-T Control Vector (0.1 μg/μl)

?

?

50 μl pGBKT7-Lam Control Vector (0.1 μg/μl)

?

Matchmaker Gold Yeast T wo-Hybrid System User Manual (PT4084-1)

?

pGBKT7 Vector Information (PT3248-5)

?

pGADT7 AD Vector Information (PT3249-5)

Matchmaker Y east Strains

?

0.5 ml Y2HGold Yeast Strain

?

0.5 ml Y187 Yeast Strain

Y eastmaker? Y east T ransformation System 2 (also available separately as Cat No. 630439)

?

2 x 1 ml Yeastmaker Carrier DNA, denatured (10 mg/ml)

?

20 μl pGBT9 (0.1 μg/μl; positive control plasmid)

?

2 x 50 ml 50% PEG

?

50 ml 1 M LiAc (10X)

?

50 ml 10X TE Buffer

?

50 ml YPD Plus Liquid Medium

?

Yeastmaker Yeast T ransformation System 2 User Manual (PT1172-1)

Complimentary Y east Media Pouches

?

1 x 0.5 L YPDA

1 x 0.5 L YPDA with Agar

?

?

1 x 0.5 L SD–Leu with Agar

?

1 x 0.5 L SD–T rp with Agar

Matchmaker?Gold Y east T wo-Hybrid System User Manual

III. Additional Materials Required

A. Mate & Plate? Libraries (several catalog items; see https://www.360docs.net/doc/7716042751.html, for current list)

Store all Mate and Plate Libraries and Control vials at –70°C.

?

5 x 1.0 ml Library Aliquots (Universal Human and Mouse are also sold as 2 x 1 ml vials)

?

1 x 1.0 ml Mate & Plate Control

Alternatively, you can make your own Mate & Plate library using our Make Your Own “Mate & Plate” Library System

(Cat. No. 630490).

B. Accessory Kits

? (supplied with your system—see Section II; also sold separately

Yeastmaker Yeast Transformation System 2

as Cat. No. 630439)

? (50 preps; Cat. No. 630467)

Easy Yeast Plasmid Isolation Kit

? (Cat. No. 630497; for characterizing the cDNA inserts of positive

Matchmaker Insert Check PCR Mix 2

clones from your library screening.)

C. T ools for Plating Y east

?

T ools for plating yeast include a sterile glass rod—and a bent Pasteur pipette or 5 mm glass beads for spreading

cells on plates. (Use 5–7 beads per 100 mm plate, or 15–20 beads for a 150 cm plate).

D. Y east Media

Table IV (in Appendix D) lists the components of the Yeast Media Set 2 (Cat. No. 630494) and the Yeast Media Set

2 Plus (Cat. No. 630495). These media sets contain a complete assortment of mixes for preparing eight specialized

broth and agar media, designed for use with the Matchmaker Gold Yeast T wo-Hybrid System, in convenient, “ready-

mixed” foil pouches. The Yeast Media Set 2 Plus also contains the additional media supplements Aureobasidin A

and X-a-Gal, which are required for the protocols described in this user manual. Table V (in Appendix D) contains

information for purchasing each of the media mixes separately, in packs of 10 pouches, and Table VI (in Appendix

D) contains preparation instructions for all additional required media supplements and information for purchasing

Aureobasidin A and X-a-Gal separately.

Additionally, the following should be considered when culturing yeast for a two-hybrid screen:

See Appendix D for working and stock concentrations of Aureobasidin A and X-

? a-Gal.

? (synthetically defined medium) is minimal media that is routinely used for culturing S. cerevisiae.

SD medium

SD base supplies everything that a yeast cell needs to survive (including carbon and nitrogen sources). Essential

amino acids, which are added to SD base to create minimal medium, are already included premixed in Clontech’s

Yeast Media Pouches. The particular minimal medium that is chosen will determine which plasmids and/or

activated reporters are selected for.

? dropout supplement is used to select for the bait and prey plasmids. SD/–Leu/–T rp dropout is

SD/–Leu/–Trp

so called because the medium includes every essential amino acid except for leucine and tryptophan, which are

omitted from the formulation (or “Dropped Out”). Cells harboring Matchmaker bait and prey plasmids are able

to grow because the plasmids encode tryptophan and leucine biosynthesis genes, respectively, that are otherwise

absent from the cell. We often refer to SD/–Leu/–Trp as Double Dropout (DDO) in this user manual.

? dropout supplement is used to select for the bait and prey plasmids, and in addition,

SD/–Ade/–His/–Leu/–Trp

for the activation of the Gal-responsive HIS3 and ADE2 genes as part of the confirmation step of the two-hybrid

assay. Colonies that grow on this Quadruple Dropout (QDO) contain both bait and prey plasmids and also

express proteins that interact with each other to activate HIS3 and ADE2. This medium is used at the end of

the two-hybrid screen to confirm interactions.

Matchmaker? Gold Y east T wo-Hybrid System User Manual IV. General Considerations Regarding Y east T wo-Hybrid Libraries

Use of Mate & Plate? Libraries

Please note that the protocols described in this manual assume that you are using a Mate & Plate? Library. These

libraries utilize the natural ability of haploid yeast strains such as Y187 and Y2HGold to mate with each other to form

a diploid cell, providing a very easy way to introduce an entire library (prey) to your bait.

? strongly recommends using Mate & Plate Libraries with the Matchmaker Gold System. These librar-

Clontech

ies provide by far the simplest method for yeast two-hybrid screening because no library-scale transformations

or labor-intensive amplifications are needed. Thus, very little optimization and hands-on time are required.

?

Several Mate & Plate libraries are available for purchase from Clontech, supplied as 5 x 1 ml vials (and also sold

as 2 x 1 ml vials for Universal Human and Universal Mouse libraries). Alternatively you can easily “Make

Your Own Mate & Plate Library” using Cat No. 630490, and store enough 1 ml vials for more than 100

library screens.

? 6 independent

A single 1ml Mate & Plate Library aliquot is sufficient for each complete library screening (>1x10

clones).

?

See Appendix A for more details on prey vectors used to construct Mate & Plate Libraries. These libraries are

supplied in Saccharomyces cerevisiae strain Y187, in Freezing Medium. Depending on which library you purchase,

your library may be cloned into pGADT7-Rec2, pGADT7-RecAB, or pACT2. (See Certificate of Analysis for

details.). All are compatible with Matchmaker Gold.

?

A Mate & Plate Control is supplied with all Mate & Plate libraries. This control is Y187 Yeast Strain pretrans-

formed with our pGADT7-T positive control plasmid, which expresses the Gal4 AD-SV40 large T-antigen

fusion protein. See Section VI for control experiments.

?

Once a library aliquot has been thawed, do not refreeze it. With every freeze/thaw cycle, there is a ~10% loss

in viability, which can affect the quality of the library.

?

The recommended Freezing Medium consists of YPDA broth + 25% glycerol (see Appendix D).

Matchmaker?Gold Y east T wo-Hybrid System User Manual

V. List of Abbreviations

AD fusion library A cDNA library (such as a Mate & Plate Library) constructed in an

[or AD library] activation domain (AD) vector such that the proteins encoded by the inserts are fused to

the 3’ end of the Gal4 AD

AD/library plasmid Plasmid encoding a fusion of the Gal4 activation domain and a library cDNA

AD/library protein A protein fusion comprised of the Gal4 activation domain and a polypeptide encoded

by a library cDNA

AD vector Plasmid encoding the yeast Gal4 activation domain

DNA-BD vector Plasmid encoding the Gal4 DNA-binding domain

DNA-BD/bait plasmid Plasmid encoding a fusion of the Gal4 DNA binding domain and a bait cDNA

DNA-BD/bait protein A protein fusion comprised of the Gal4 DNA binding domain and a polypeptide

[or “bait”] encoded by a bait cDNA

Y east Phenotypes

AbA The antibiotic Aureobasidin A, which is toxic to yeast at low concentrations (0.1–0.5 μg/ml).

It acts by inhibiting a yeast enzyme, inositol phosphoryl ceramide synthase.

AbA r Resistance to the antibiotic Aureobasidin A, conveyed by expression of the AUR1-C gene

product.

AUR1-C A dominant mutant version of the AUR1 gene, which encodes the enzyme

inositol phosphoryl ceramide synthase. This gene is expressed in Yeast Strain Y2HGold,

in response to protein-protein interactions that bring the GAL4 activation and binding

domains in proximity, thus conferring resistance to the antibiotic Aureobasidin A.

Ade–, or His–, or Requires adenine (Ade), or histidine (His) or leucine (Leu), or tryptophan (T rp) in the

Leu–, or T rp– medium to grow; i.e., is auxotrophic for one (or more) of these specific nutrients

LacZ+Expresses the LacZ reporter gene; i.e., is positive for ?-galactosidase (?-gal) activity.

Mel1+Expresses the MEL1 reporter gene; i.e., is positive for a-galactosidase (a-gal) activity

Miscellaneous

SD Minimal, synthetically defined medium for yeast; is comprised of a nitrogen base, a

carbon source (glucose unless stated otherwise), and a DO supplement

DO Dropout (supplement or solution); a mixture of specific amino acids and nucleosides

used to supplement SD base to make SD medium; DO solutions are missing one or

more of the nutrients required by untransformed yeast to grow on SD medium DDO Double dropout medium: SD/–Leu/–T rp

DDO/X/A Double dropout medium: SD/–Leu/–T rp supplemented with X-a-Gal and

Aureobasidin A

TDO T riple dropout medium: SD/–His/–Leu/–T rp or SD/–Ade/–Leu/–T rp

QDO Quadruple dropout medium: SD/–Ade/–His/–Leu/–T rp

QDO/X/A Quadruple dropout medium: SD/–Ade/–His/–Leu/–T rp supplemented with X-a-Gal

and Aureobasidin A

YPD A blend of yeast extract, peptone, and dextrose in optimal proportions for growth of

most strains of S. cerevisiae

YPDA YPD medium supplemented with adenine hemisulfate (1X concentration = 120 μg/ml)

Matchmaker? Gold Y east T wo-Hybrid System User Manual

VI. Control Experiments

Please read the entire Protocol before starting

Use this procedure to perform a control mating before screening a two-hybrid library.

A. General Considerations

To familiarize yourself with the procedures and expected results of a two-hybrid assay, use these procedures to perform a control mating before you begin screening the library. Select for diploids and for two-hybrid protein-protein interac-tors as described below.

pGBKT7-53 encodes the Gal4 DNA-BD fused with murine p53; pGADT7-T encodes the Gal4 AD fused ? with SV40 large T-antigen. Since p53 and large T-antigen are known to interact in a yeast two-hybrid assay (Li & Fields, 1993; Iwabuchi et al., 1993), mating Y2HGold [pGBKT7-53] with Y187 [pGADT7-T] will result in diploid cells containing both plasmids that can activate all four reporters (Table I).A negative control should also be performed using pGBKT7-Lam (which encodes the Gal4 BD fused with lamin) ? and pGADT7-T . Diploid yeast containing pGBKT7-Lam and pGADT7-T will grow on SD/–Leu, SD/–T rp and SD/–Leu/–T rp (DDO) minimal media, but no colonies should grow on DDO + AbA.Table I indicates the selection media required for strains containing a DNA-BD vector, AD vector, or both, as ?

well as the selection for diploids expressing interacting proteins.

1 Controls for mating efficiency.

2

Selects for diploids expressing interacting proteins.

B. Protocol: Control Mating Protocol 1. Materials:

SD/–T rp with Agar (see Appendix D)? SD/–Leu with Agar (see Appendix D)? SD/–T rp/X-? a -Gal agar plates (see Appendix D)SD/–Leu/–T rp agar plates (see Appendix D)

? SD/–Leu/–T rp/X-? a -Gal/AbA agar plates (see Appendix D)2 x YPDA Broth (see Appendix D)

? YPDA Broth + 25% glycerol (Freezing Medium; see Appendix D)? Y2HGold Yeast Strain (Bait Strain)? Y187 Yeast Strain (Prey Strain)

? pGBKT7-53 Positive Control Bait Plasmid ? pGBKT7-Lam Negative Control Bait Plasmid ? pGADT7-T Positive Control Prey Plasmid

? Protocol 7–10 days

Matchmaker?Gold Y east T wo-Hybrid System User Manual

NOTES:

Use the Y eastmaker Y east T ransformation System 2 (supplied with this system) for all transformations.

? X-? a -Gal is not the same as X-Gal.

Use the Yeastmaker Yeast T ransformation System 2 according to the small-scale protocol in the accompanying 2.

user manual to perform the following three transformations.

Grow at 30°C for 3 days.

3. Note: If you wish, you may stop the experiment at this step and resume work later. T he plates can be stored at 4oC in subdued lighting for up to one month.

Pick one 2–3 mm colony of each type for use with the following small-scale mating procedure (Steps 5–7).4. Positive Control Mating:? Y2HGold [pGBKT7-53] and Y187 [pGADT7-T]Negative Control Mating:? Y2HGold [pGBKT7-Lam] and Y187 [pGADT7-T]

Place both colonies in a single 1.5 ml centrifuge tube containing 500 μl of 2X YPDA and vortex to mix.5. Incubate with shaking at 200 rpm at 30°C overnight [20–24 hr].

6. From the mated culture (0.5 ml), spread 100 μl of 1/10, 1/100, and 1/1,000 dilutions on each of the follow-

7. ing agar plates. Incubate plates (colony side facing downward) at 30°C for 3–5 days.SD/–T rp ? SD/–Leu

? SD/–Leu/–T rp (=DDO)

? SD/–Leu/–T rp/X-? a -Gal/AbA (=DDO/X/A)Expected results after 3–5 days:8. Positive control :

Similar number of colonies on DDO and DDO/X/A agar plates ? Colonies on DDO/X/A are blue ? Negative control:

Colonies on DDO, but no colonies on DDO/X/A agar plates

? Notes:

For positive interactions, theoretically, the number of colonies should be the same on both media. DDO se-? lects for the presence of both plasmids (i.e, proper mated diploids) and DDO/X/A selects for the plasmids as well as for the interactions of the hybrid proteins encoded by them to activate the AbA r and MEL1 reporters. However, a difference (approximately 10–20% lower on DDO/X/A) is usually observed.If you see no colonies on DDO, compare to colony counts on SD/–Trp and SD–/Leu single dropout media to ?

determine if there was a problem with the bait or the prey cultures, respectively.

VI. Control Experiments continued

Matchmaker? Gold Y east T wo-Hybrid System User Manual

VI. Control Experiments continued

Pick healthy 2 mm colonies from DDO plates, restreak onto fresh DDO plates, and incubate at 309. °C for 3–4 days.Short-term storage (< 4 weeks): Seal with Parafilm? and store at 4°C.

? Long-term storage: Scoop a large healthy colony and fully resuspend in 500 μl of YPDA Broth + 25% ? glycerol (Appendix D). Store at –80°C.

Notes:

These diploids are useful as reference strains for checking new batches of growth media, and for compari-? sons in future experiments.When reviving frozen stocks, remember to restreak onto DDO selective medium.

?

Matchmaker?Gold Y east T wo-Hybrid System User Manual

VII. Cloning and T esting Bait for Autoactivation and T oxicity

Please read the entire Protocol before starting

detailed instructions are provided to test your bait for autoactivation (section c) and toxicity (section d).

A. Generate a Bait Clone

Generate a GAL4 DNA-BD fusion by cloning your gene of interest in frame with the GAL4 DNA binding domain of the bait plasmid pGBKT7 (see Appendix C and https://www.360docs.net/doc/7716042751.html, for map).

For an extremely simple cloning procedure, we recommend using one of Clontech’s In-Fusion? Advantage ? PCR Cloning Kits (see https://www.360docs.net/doc/7716042751.html, for details).

PCR Cloning of Y our Bait into pGBKT7

The following method describes a simple and highly efficient method to clone your gene in-frame with the GAL4BD in pGBKT7. T he magic of In-Fusion Advantage (Cat. Nos. 639201, 639202, 639206 & 639207) means that:

Your bait is automatically cloned in-frame with the bait.? Virtually every clone contains your insert.

? It does not matter what sites are present on your bait sequence since for In-Fusion ? cloning you do not digest it.

1. Digest pGBKT7 to completion with BamHI and EcoRI, then spin column-purify.

2. Amplify your bait insert by PCR using oligos that contain a 24 bp homology to your bait, and a 15 bp homology to the linear ends of pGBKT7, which are designed as follows:

Forward Primer (111 = first codon of your bait)

5’-C ATG GAG GCC GAATTC 111 222 333 444 555 666 777 888

Reverse Primer (LLL = reverse complement of last codon of your bait)5’-GC AGGTCGACGGATCC LLL NNN NNN NNN NNN NNN NNN NNN

NOTE: These primers actually contain 16 bp of homology in order to keep the BamHI and EcoRI sites intact.

3. Mix the bait and linear pGBKT7 together and “fuse”’ using the In-Fusion enzyme.See the In-Fusion Advantage PCR Cloning Kit User Manual (PT4065-1) at https://www.360docs.net/doc/7716042751.html, for additional details regarding PCR cloning procedures.

Figure 4. Simple, one-step PCR cloning with In-Fusion Advantage PCR Cloning Kits.

Single-tube protocol

Matchmaker? Gold Y east T wo-Hybrid System User Manual

Matchmaker?Gold Y east T wo-Hybrid System User Manual VII. Cloning and T esting Bait for Autoactivation and T oxicity continued

If you wish to find proteins that interact with a membrane-bound or secreted protein, it may be necessary to first

? modify the protein (van Aelst et al., 1993) or to use only selected domains as the bait (as in Kuo et al., 1997).In order to confirm that the fusion construct is in-frame, the fusion junction may be sequenced using a standard T7 ? primer.B. Detecting Bait Expression

If you wish to determine whether or not your bait is expressed well in yeast, both of the following antibodies will detect bait proteins in yeast containing pGBKT7-based bait plasmids (via Western blot). In order to make yeast protein extracts (yeast cannot simply be boiled or sonicated to extract protein), we strongly recommend that you use the supporting protocols provided at https://www.360docs.net/doc/7716042751.html, GAL4 DNA-BD Monoclonal Antibody (Cat. No. 630403)? c-Myc Monoclonal Antibody (Cat. No. 631206)

? Note: Use Y 2HGold [pGBKT7-53] as a positive control that expresses a 57 kD protein.

C. Protocol: T esting Y our Bait for Autoactivation

As a first step for any two-hybrid screen, it is imperative to confirm that your bait does not autonomously activate the reporter genes in Y2HGold, in the absence of a prey protein.Materials:

1. pGBKT7 containing your gene of interest cloned in frame with the ? GAL 4 DNA-BD (pGBKT7).Competent Y2HGold cells [see Yeastmaker? Yeast T ransformation System 2 User Manual (PT1172-1), ? supplied with this system]SD/–T rp/ X-? a -Gal agar plates (Appendix D)SD/–T rp/X-? a -Gal/AbA agar plates (Appendix D)

NOTE: X-a -Gal is required, not X-Gal (Appendix D).

T ransform 100 ng of your pGBKT7+Bait construct using the Yeastmaker Yeast T ransformation System 2 (supplied 2. with this system).

NOTE: (POSITIVE and NEGATIVE CONTROLS) For comparison, we recommend that you also plate the

diploid controls that you created in Section VI; but plate them on DDO/X/A since they contain both bait and prey plasmids).

Spread 100 μl of a 1/10 dilution and a 1/100 dilution of your transformation mixture onto separate plates, as 3. follows:SD/–T rp plates = SDO

? SD/–T rp/ X-? a -Gal = SDO/X plates SD/–T rp/X-? a -Gal/AbA = SDO/X/A plates Expected results after 3–5 days:

4.

Protocol 4–6 days.

Matchmaker?Gold Y east T wo-Hybrid System User Manual

VII. Cloning and T esting Bait for Autoactivation and T oxicity continued

NOTE: If your bait autoactivates the AbA r reporter (i.e., blue colonies appear on SDO/X/A) check to see if it also activates the His3/Ade2 reporters by plating on SD–Trp/–His/–Ade. See Section XI (Troubleshooting) if your bait activates all the reporters.

D. Protocol: T esting Y our Bait for T oxicity

You should demonstrate that your bait protein is not toxic when expressed in yeast. If your bait is toxic to the yeast cells, both solid and liquid cultures will grow more slowly.

If expression of your bait protein does have toxic effects, you may wish to switch to a vector (such as pGBT9) that has a lower level of expression.

NOTE: pGBT9 is supplied as a transformation control in Clontech's Y eastmaker T ransformation System 2 (supplied with this system).

Materials:

1. Y2HGold competent cells [see Yeastmaker? Yeast T ransformation System 2 User Manual (PT1172-1), ? supplied with this system]SD/–T rp agar plates (Appendix D)? SD/–T rp broth (Appendix D)? T ransform 100 ng of the following vectors:

2. pGBKT7 (empty)? pGBKT7 + cloned bait gene

? Spread 100 μl of 1/10 and 1/100 dilutions of your transformation mixtures onto SD/–T rp.3. Grow at 304. °C for 3–5 days:

NOTE: If your bait is toxic, you may notice that colonies containing your bait vector are significantly smaller than colonies containing the empty pGBKT7 vector.

Protocol 4–6

days.

Matchmaker? Gold Y east T wo-Hybrid System User Manual

VIII. T wo-Hybrid Library Screening Using Y east Mating

Please read the entire Protocol before starting

detailed instructions are provided for performing a yeast two-hybrid library screening.

Simply mix a concentrated bait culture with 1 ml of your Mate & Plate library and incubate overnight before ? plating on DDO/X/A selective media (see Figure 3).In addition to plating on DDO/X/A media, it is imperative that you determine the number of clones that you ? screened on DDO (following the protocol below ensures this). Screening fewer than 1 million clones may result in an inability to detect positive interactions With a “normalized” Mate & Plate library, up to threefold fewer clones need to be screened, because gene representation has been equalized, significantly reducing the abundance of housekeeping genes in the library. Several normalized libraries are available from https://www.360docs.net/doc/7716042751.html, .

1. Materials:

Mate & Plate? Library—make your own, using our ? Make Your Own “Mate & Plate” Library System (Cat. No. 630490) or purchase separately.Bait construct transformed into Y2HGold on SD/–T rp (Section VII)? SD/–T rp Broth (Appendix D)? 2X YPDA Broth (Appendix D)? 0.5X YPDA broth (Appendix D)? kanamycin sulfate (50 mg/ml)

? YPDA + 25% glycerol [Freezing Medium] (Appendix D)? The following selective SD agar plates (also see Appendix D):

? NOTE : Clontech’s Mate & Plate libraries are supplied in strain Y 187, so your bait must be in strain Y 2HGold.

If you wish to “Make your Own Mate & Plate Library” use our kit (Cat. No. 630490)(see https://www.360docs.net/doc/7716042751.html, for details)

Protocol 5–6

days

Matchmaker?Gold Y east T wo-Hybrid System User Manual

VIII. T wo-Hybrid Library Screening Using Y east Mating continued

Construct your bait, test for autoactivation and toxicity (Section VII).2. Perform the control experiments (Section VI).

3. NOTE: Control experiments are strongly recommended; the control strains will aid interpretation of results when you screen your library.

Prepare a concentrated overnight culture of the bait strain (Y2HGold [pGBKT7+Bait]) as follows: 4. Inoculate one fresh, large (2–3 mm) colony of your bait strain into 50 ml of SD/–T rp liquid medium.a. Incubate shaking (250–270 rpm) at 30°C until the OD b. 600 reaches 0.8 (16–20 hr).Centrifuge to pellet the cells (1,000 g for 5 min), discard the supernatant.c. Resuspend the pellet to a cell density of >1x10d. 8 cells per ml in SD/–T rp (4–5 ml). [The cells can be counted using a hemocytometer.]Combine the Library Strain with the Bait Strain as follows:

5. Thaw a 1 ml aliquot of your library strain in a room temperature water bath. Remove 10 μl for titering on a. 100 mm SD/–Leu agar plates (see Appendix B, Section B for library titering instructions).

NOTE: Use a hemocytometer to count the cells. Y our 1 ml library aliquot should contain >2x107 cells. T o check the titer, spread 100 m l of 1/100, 1/1,000, 1/10,000 dilutions on SD/–Leu agar plates. If your titer is 2x107 cells/ml, you will obtain 200 colonies on the 1/10,000 dilution plate.

Combine 1 ml of your Mate & Plate Library with 4–5 ml Bait Strain (from Step 4) in a sterile 2 L flask.b. Add 45 ml of 2xYPDA liquid medium (with 50 μg/ml kanamycin).

c. Rinse cells from the library vial twice with 1 ml 2xYPDA and add to the 2 L flask.

d. Incubate at 306. °C for 20–24 hr, slowly shaking (30–50 rpm).

IMPO RTANT : Use the lowest shaking speed possible that prevents the cells from settling at the base of the flask. Vigorous shaking can reduce the mating efficiency, but shaking too slowly will cause the cells to sedi-

ment, also lowering the mating efficiency.

After 20 hr, check a drop of the culture under a 7. phase contrast microscope (40X). If zygotes are present, continue to Step 8, if not, allow mating to continue; incubate for an additional 4 hr.

NOTE: A zygote typically has a 3-lobed structure (see Figure 5). T he lobes represent the two hap-loid parental cells and the budding diploid cell. Some zygotes may resemble a clover leaf, while others may take on a shape similar to a “Mickey Mouse” face.

Centrifuge to pellet the cells (1,000 g for 10 min).

8.

Figure 5. An example of a typical yeast zygote.

Matchmaker? Gold Y east T wo-Hybrid System User Manual

VIII. T wo-Hybrid Library Screening Using Y east Mating continued

Meanwhile, rinse the 2L flask twice with 50 ml 0.5xYPDA (with 50 μg/ml kanamycin), combine the rinses, 9. and use this to resuspend the pelleted cells.Centrifuge to pellet the cells (1,000 g for 10 min) and discard the supernatant.

10. Resuspend all pelleteted cells in 10 ml of 0.5X YPDA/Kan liquid medium. Measure the total volume of cells

11. + medium.

NOTE: e.g., 10 ml medium + 1.5 ml cells = 11.5 ml

From the mated culture, spread 100 μl of 1/10, 1/100, 1/1,000, and 1/10,000 dilutions on each of the fol-12. lowing 100 mm agar plates and incubate at 30°C for 3–5 days.

SD/–T rp ? SD/–Leu

? SD/–Leu/–T rp (DDO)

? NOTE: This step is essential to calculate the number of clones screened (see Step 14).

Plate the remainder of the culture, 200 μl per 150 mm on DDO/X/A (50–55 plates). Incubate at 30°C for

13. 3–5 days.Calculate the number of screened clones 14. (diploids) by counting the colonies from the DDO plates after

3–5 days.

Number of Screened Clones = cfu/ml of diploids x resuspension volume (ml)

? It is imperative that at least 1 million diploids are screened, since using less than this will result in less ? chance of detecting genuine interactions on Aureobasidin A plates (DDO/X/A).Example Calculation

Resuspension volume (Step 11) = 11.5 ml ? Plating Volume = 100 μl

? 50 colonies grew on the 1/1,000 dilution on DDO plates.

? Therefore Number of Clones screened = 50 x 11.5 x 10 x 1,000 = 5.75 million

15. Determine the Mating Efficiency.

Mating efficiencies of 2–5% are readily achieved using this procedure. If your mating efficiency is less than 2% and you cannot screen 1 million diploids (Step 14), refer to the T roubleshooting Guide (Section XI) for tips on improving the mating efficiency, and screen more clones.Measure viabilities

a. No. of cfu/ml on SD/–Leu = viability of the Prey Library ? No. of cfu/ml on SD/–T rp = viability of Bait ? No. of cfu/ml on SD/–Leu/–T rp = viability of diploids

?

Matchmaker?Gold Y east T wo-Hybrid System User Manual

VIII. T wo-Hybrid Library Screening Using Y east Mating continued

NOTE: The strain (bait or prey) with the lower viability is the "limiting partner."

Calculate Mating Efficiency (percentage of diploids):

b. No. of cfu/ml of diploids x 100 = % Diploids

No. of cfu/ml of limiting partner

Patch out all the blue colonies that grew on DDO/X/A onto higher stringency QDO/X/A agar plates using a

16.

flat sterile toothpick or yellow pipette tip (Figure 6).

NOTE: Although it is possible to screen directly on high stringency QDO/X/A, Clontech recommends screening first on lower stringency DDO/X/A to detect as many positives interactors as possible before confirming those by patching on highest stringency plates.

All QDO/X/A positive interactions must be further analyzed (Section X) to identify duplicates and to verify

17.

that the interactions are genuine.

Figure 6. High stringency screening of potential interactors.

DDO/X/A

QDO/X/A

酵母双杂交技术

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的 结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113 个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而 转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不 能激活基因转录,单独的转录激活域也不能激活UAS的下游基因,它们之间只 有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细 胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建 成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱 饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立 为研究这一问题提供了有利的手段和方法。 缺点 尽管该系统己被证实为一种非常有效的方法,但它也有自身的缺点和问题。1、它并非对所有蛋白质都适用,这是由其原理所决定的。双杂交系统要求两种杂 交体蛋白都是融合蛋白,都必须能进入细胞核内。因为融合蛋白相互作用激活 报告基因转录是在细胞核内发生的。2、假阳性的发生较为频繁。所谓假阳性,即指未能与诱饵蛋白发生作用而被误认为是阳性反应的蛋白。而且部分假阳性 原因不清,可能与酵母中其他蛋白质的作用有关。3、在酵母菌株中大量表达外源蛋白将产生毒性作用,从而影响菌株生长和报告基因的表达。 使用酵母双杂交技术应注意的问题 真正明了酵母双杂交技术的主要原理及筛选方法是进行酵母双杂交实验的前提,构建成功的诱饵质粒及大量的材料准备是进行酵母双杂交实验的保证。只 有明了双杂交的原理,才有可能设计实验进程、才能有目的的进行材料准备, 并能对实验结果作出预测与分析,尤其要对具体实验中各种选择性压力培养基 的使用目的要十分清楚。大量的材料准备、较长的实验流程是酵母双杂交有别

酵母双杂交H2Y和Y187系统protocol

目录 (一)介绍 4 (二)试剂盒物品清单 7 (三)额外附加物品列表9 (四)酵母菌株11 (五)酵母载体14 (六)方法简述:单杂交文库的构建和筛选16 方法简述:双杂交文库的构建和筛选17 (七)构建用于酵母单杂交的报告质粒载体18 (八)构建用于酵母双杂交的DNA-BD融合载体19 (九)构建生成cDNA文库21 (十)构建和筛选酵母单杂交和双杂交文库(简述)27 (十一)酵母单杂交文库的构建和筛选28 (十二)酵母双杂交文库的构建和筛选30 方法A:通过酵母配对(Yeast Mating)来筛选目的蛋白30 方法B:通过共转化的方法筛选目的蛋白35 (十三)分析阳性相互作用结果38 (十四)问题解决指南44 (十五)参考文献47 (十六)相关产品50 附录A: 双链 cDNA合成的典型结果51 附录B: 酵母感受态的制备—LiAc 法52 附录C:单杂交对照载体信息53 附录D:双杂对照载体信息54 表格列表 Table I. BD Matchmaker酵母菌株的基因型11 Table II. BD Matchmaker酵母菌株的表型11 Table III.单杂交系统的载体14 Table IV.双杂交系统的载体15 Table V.各BD-Matchmaker DNA-BD 载体的比较19 Table VI. RNA起始浓度和PCR扩增循环数之间的关系24 Table VII.单杂交共转化的对照实验的设置29 Table VIII.单杂共转化对照实验:期望的结果29 Table IX.双杂交转化的对照实验的设置33 Table X.双杂交配对筛选的对照实验的设置 Table XI.双杂交共转化的对照实验的设置 Table XII.双杂交共转化的对照实验:期望的结果 Table XIII.用于PCR筛选菌落的Assembling Master Mixs

酵母双杂交原理(网摘综合)

酵母双杂交系统原理 https://www.360docs.net/doc/7716042751.html, 2005-6-5 16:04:32 来源:丁香园 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB,?BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转

!!酵母双杂交操作步骤(中文翻译)

各种SD培养基: 1)SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(? “四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的) ; 葡萄糖20g (即2%) 2)SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3)SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4)SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的) 葡萄糖 20g (即2%) 5)SD/-trp (1000 ml) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.74g ; (购买来就配好的) 葡萄糖 20g (即2%) 注意:YNB有两种,一种含有硫酸胺,另外一种不含硫酸胺。我们这用的是含硫酸铵的。(买来就加进去了的)。如果不含硫酸铵,那么要在终浓度0.17%的YNB中再加入0.5%的硫酸铵,即最终在1000 ml溶液中加入总量为6.7g的YNB与硫酸铵。 实际配制的方法是: 1.配制40%的葡萄糖贮存液(贮存在4℃),过滤除菌,待高压灭菌的溶液温度降至55℃ 以下时,再将50ml葡萄糖贮存液加入。(李博士经验这一步不高压,过滤即可使用)2.酵母氮源6.7g,加DO supplement 在920ml水中溶解,调PH至5.8(李博士的经验大 约加10M NaOH 200ul即可),之后补水至950 ml。 3.高压完后待温度降至55℃以下,加入50 ml40%葡萄糖。

酵母双杂交系统及其应用

酵母双杂交系统及其应用 Y east Two-hybrid System and Its Application 1.酿酒酵母(Saccharomyces cerevisiae)的生物学特性 (1)单细胞真核生物 尽管酵母细胞比较简单,但它们具有所有真核生物细胞的主要特征,如含有一个独立的细胞核、多条线性染色质包装成染色体、细胞质包含了全部的细胞器和细胞骨架结果(如肌动蛋白纤维)。 (2)与其它真核生物相比,它们的基因组较小,基因数目也较少; 1996年已完成酵母全基因组测序( 1.5 x 107 bp),是第一个被测序的真核生物。大约有6000个基因。目前已经建立了一个6000个菌株的文库,每一个菌株中只删除了一个基因。其中5000多株在单倍体状态时能够存活,表明大多数酵母基因时非必需的。 (3)易于培养和操作,可以在实验室快速繁殖 在指数生长期每90分钟繁殖一代,从单个细胞可以繁殖称克隆群体。 (4)单倍体和双倍体的存在使酿酒酵母便于进行遗传分析 酿酒酵母可以以单倍体状态和双倍体状态生长。单倍体和双倍体之间的转换是通过交配和孢子形成来实现的。 有两种单倍体细胞类型,分别为a型和α型。在一起生长时,这些细胞因交配而形成a/α双倍体细胞。在营养匮乏时,a/α双倍体发生减数分裂,产生一个子囊的结构,每个子囊含有4个单倍体孢子(两个a-孢子和两个α-孢子)。但当生长条件改善时,这些孢子可以出芽并以单倍体细胞的形式生长或交配而重新形成双倍体。 一个酵母细胞可同时兼容几种不同质粒 bud,芽, 蓓蕾starvation,饥饿, 饿死 ascus,n.[微生物]子囊meiosis,n.减数分裂, 成熟分裂 haploid,n.[生物]单倍体, 仅有一组染色体的细胞adj.单一的 diploid,adj.双重的, 倍数的, 双倍的n.倍数染色体 ascospore,n.[植]囊孢子 rupture,v.破裂, 裂开, 断绝(关系等), 割裂。n.破裂, 决裂, 敌对, 割裂 spore,n.孢子vi.长孢子germinate,v.发芽, 发育, 使生长

酵母双杂交系统的发展和应用

酵母双杂交系统的发展和应用 随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。 酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。 酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。 根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY 载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了 酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。 基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。

酵母双杂交操作步骤(中文翻译)

(酵母菌储存在-70℃中,引物和质粒DNA储存在-20℃中) 概念: 1. 次序转化:指的是先将一种质粒转化进酵母中(常是DNA-BD/bait plasmid),在选择培养基中选择出阳性克隆,之后再将另外一个质粒(AD fusion library)转化进去。优点:就是比共转化使用更少的质粒DNA,也就是节约质粒DNA。 2. 共同转化:将两种质粒一起转化进酵母中。优点:比次序转化更容易操作。 pGBKT7----的选择物是:kanamycin(卡那霉素)? pGADT7----的选择物是:ampicillin (氨苄西林) ? 各种SD培养基: 1) SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(?“四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的); 葡萄糖 20g (即2%) 2) SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3) SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4) SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的)

酵母双杂交系统

酵母双杂交技术的研究与应用 摘要:酵母双杂交系统是在20世纪90年代初发展起来的利用遗传学方法在酵母真核细胞体内研究蛋白质之间相互作用的一种高度灵敏的分子生物学技术,它可以有效分离新基因或新的能与一种已知蛋白相互作用的蛋白质及其编码基因,被广泛应用于蛋白质组学、细胞信号转导和功能基因组学等领域,已成为分子生物学研究领域的重要实验手段之一,获得了许多有价值的重要发现。 关键词:酵母双杂交系统;蛋白质组学;功能基因组学Abstract:Yeast two-hybrid system is a highly sensitive molecular biology technique,which uses genetic methods to study protein-protein interaction in eukaryotic yeast cells,developed in the early 1990s.It can effectively separate new genes or new protein which has interaction with a known protein and protein-coding genes, is widely used in the field of proteomics, cellular signal transduction and functional genomics, has become one of the important experimental methods in the molecular biology areas, gained a lot of valuable important discovery. Key words:Yeast two-hybrid system;Proteomics;Functional Genomics.

酵母双杂交原理ppt演示

. 酵母双杂交系统原理(Yeast Two-hybrid System) 生物谷谷友:jnulynn提供

a genetic assay for detecting protein-protein interactions X Y Suppose we have two proteins... One way of answering this question is to use the yeast two hybrid method. To understand the method we must first consider how gene expression is regulated in yeast...... and the question, do these two protein bind each other?

Regulation of gene expression in yeast g e n e U A S (u p s t r e a m a c t i v a t i o n s e q u e n c e ) t r a n s c r i p t i o n a c t i v a t o r D N A b i n d i n g d o m a i n a c t i v a t i o n d o m a i n t r a n s c r i p t i o n m a c h i n e r y and now back to the question... a genetic assay for detecting protein-protein interactions

(完整版)酵母双杂交原理

酵母双杂交系统原理 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB,?BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转

酵母双杂交试验流程

4月4日划线配培养基TE/LIAC PEG/LIAC 配置培养基(YPD YPDA)取酵母细胞划线30°生长3天。 需要用品:三角瓶灭菌封口膜酵母提取物蛋白胨 注:以下所有涉及菌的操作均需在超净台中完成。 4月6号星期三 (1)选择2-3mm的单克隆(枪头吸取)放入3-5ml的YPDA液体培养基,30°摇菌200rpm,8h 7号下午开始,过夜培养,次日若菌液浓度达到标准,可先置于4度冰箱保存。 需要用品:200ul灭菌枪头、50ml三角瓶、YPDA液体培养基、摇床。 4月7号星期四 (2)吸取2.5-10ul酵母培养液,加入25mlYPDA液体培养基,摇菌16-20h直到OD值0.15-0.3。 下午4点开始8号8点结束 Tips:由于第一次活化的菌夜浓度不一,此处建议设置梯度,分别取2.5、5、10 ul酵母培养液,加入25ml YPDA液体培养基(转化5个以下质粒的话,25ml菌量就够后续使用)。 4月8号星期五 (3)将菌液转移至灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。 (4)弃掉上清,加入50ml新鲜的YPDA液体重悬菌体(由于离心转速较低,沉淀易悬起来,故倒掉上清液时要小心操作)。 (5)30°震荡培养,直到OD值达到0.4-0.5 (3-5h)。8号8点开始下午一点结束进行以下操作之前,配置好TE/LiAc溶液,并准备好冰浴。 (6)将上述菌液转移至一个灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。(7)弃掉上清,用30ml无菌水重悬菌体(小心操作)。 (8)再次用天平配平后,室温下700g离心5分钟,弃去上清,加入1.5ml 1.1xTE/LIAC重悬菌体。(9)将上述溶液转移到灭菌的1.5mlEP管中,高速离心15s。 (10)弃去上清,加入600ul 1.1x TE/LIAC,感受态细胞制备完成,置于冰上待用。 需要物品:50ml灭菌离心管、50ml 三角瓶、1.5ml EP管、5ml灭菌枪头、1ml灭菌枪头、灭菌ddH2O、YPDA液体培养基、1.1x TE/LIAC。 1.1x TE/LIAC10ML 10xTE 1.1ml 10xliac 1.1ml Dh2O8.8ml

酵母双杂交系统及其应用

酵母双杂交系统及其应用 Yeast Two-hybrid System and Its Application 1. 酿酒酵母(Saccharomyces cerevisiae)的生物学特性 (1)单细胞真核生物 尽管酵母细胞比较简单,但它们具有所有真核生物细胞的主要特征,如含有一个独立的细胞核、多条线性染色质包装成染色体、细胞质包含了全部的细胞器和细胞骨架结果(如肌动蛋白纤维)。 (2)与其它真核生物相比,它们的基因组较小,基因数目也较少; 1996 年已完成酵母全基因组测序(1.5 x 10 7 bp ),是第一个被测序的真核生物。大约有6000个基因。目前已经建立了一个6000 个菌株的文库,每一个菌株中只删除了一个基因。其中5000 多株在单倍体状态时能够存活,表明大多数酵母基因时非必需的。 (3)易于培养和操作,可以在实验室快速繁殖 在指数生长期每90 分钟繁殖一代,从单个细胞可以繁殖称克隆群体。 (4)单倍体和双倍体的存在使酿酒酵母便于进行遗传分析 酿酒酵母可以以单倍体状态和双倍体状态生长。单倍体和双倍体之间的转换是通过交配和孢子形成来实现的。 有两种单倍体细胞类型,分别为a 型和α型。在一起生长时,这些细胞因交配而形成a/ α双倍体细胞。在营养匮乏时,a/ α双倍体发生减数分裂,产生一个子囊的结构,每个子囊含有4 个单倍体孢子(两个a-孢子和两个α-孢子)。但当生长条件改善时,这些孢子可以出芽并以单倍体细胞的形式生长或交配而重新形成双倍体。一个酵母细胞可同时兼容几种不同质粒bud,芽, 蓓蕾starvation ,饥饿, 饿死ascus,n.[微生物]子囊meiosis,n.减数分裂, 成熟分裂 haploid,n.[生物]单倍体, 仅有一组染色体的细胞adj.单一的diploid ,adj.双重的, 倍数的, 双倍的n.倍数染色体ascospore,n.[植]囊孢子rupture,v.破裂, 裂开, 断绝(关系等), 割裂。n.破裂, 决裂, 敌对, 割裂 germinate,v.发芽, 发育, 使生长 spore,n.孢子vi. 长孢子

文库构建及酵母双杂交技术

第四章基因文库构建及酵母双杂交技术 1 基因组文库的构建 基因组文库(genomic library)将某种生物细胞的整个基因组DNA切割成大小合适的片断,并将所有这些片断都与适当的载体连接,引入相应的宿主细胞中保存和扩增。 理论上讲,这些重组载体上带有了该生物体的全部基因,称为基因文库。 1. 1构建基因文库的载体选用 载体能够容载的DNA片断大小直接影响到构建完整的基因文库所需要的重组子的数目。

第四章基因文库构建及酵母双杂交技术1.1.1对载体的要求:载体容量越大,所要求的DNA片断数目越少,所需的重组子越少。 1.1.2目前常用的载体: 载体系列(容量为24 kp )、cosmid载体(容量为50 kb )、YAC(容量为1 Mb )、BAC (容量为300 kb) 1.2 基因文库构建的一般步骤 1.2.1染色体DNA大片段的制备:断点完全随机,片断长度合适于载体连接。不能用一般的限制性内切酶消化法,使用物理切割法或不完全酶切法。 1.2.2载体与基因组DNA大片段的连接:直接连接、人工接头或同聚物加尾。

噬菌体载体构建基因组文库

第四章基因文库构建及酵母双杂交技术2 cDNA文库的构建 cDNA克隆的基本过程是通过一系列,酶酶催作用,使poly(A) mRNA转变成双链cDNA群体并插入到适当的载体分子上,转化大肠杆菌寄主细胞,构建包含所有基因编码序列的cDNA基因文库。 2.1高质量mRNA的制备 应用Promega PolyAT tract mRNA Isolation System 分离Poly(A)RNA。将Biotinylated Oligo(dT)引物与细胞总RNA共温育,加入与微磁球相连的Streptavidin,用磁场吸附与PMP相连的SA-Biotinylated Oligo(dT)-mRNA。

蛋白的酵母双杂交操作手册

蛋白的酵母双杂交实验 ——以钓饵蛋白筛选cDNA 文库研究蛋白相互作用 第一部分 系统简介 1. 实验原理 蛋白的酵母双杂交实验是以酵母的遗传分析为基础,研究反式作用因子之间的相互作用 对真核基因转录调控影响的实验。很早就已知道,转录活化蛋白可以和DNA 上特异的序列结合而启动相应基因的转录反应。这种DNA 个相互独立的结构域即DNA 结合结构域(Binding Domain, BD)和转录活化结构域(Activation Domain, AD)分别来完成的,并且这两个结构域对于基因的转录活化都是必须的。目前酵母双杂交实验采用的系统有LexA 系统和Gal4 LexA DNA 结合结构域由一个完整的原核蛋白LexA 构成,转录活化结构域则由一个88个氨基酸的酸性的大肠杆菌多肽B42构成,它在酵母中可以活化基因的转录; 在Gal4系统中,BD 和AD 分别由Gal4蛋白上不同的两个结构域(1-147aa 与768-881aa)构成。cDNA 文库或DNA 与文库蛋白或要验证的蛋白相结合。一般情况下,单独的BD 可以与GAL4上游活化序列()结合但不能引起转录,单独的AD 则不能与GAL UAS 结合,只有当BD 与AD BD 与AD 才能与GAL UAS 结合并且引起报道基因的转录。在BD 与AD 要导入的酵母菌AH109通过基因工程的方法在GAL4 UASs 和启动子的下游构建了3个报道基因——ADE2,HIS3,MEL1(或LacZ ),否存在相互作用。GAL4系统的原理如图所示: 图一:酵母双杂交系统工作原理 Kan r Amp r pGBKT7-bait pACT2-cDNA

酵母双杂交实验流程

模块七蛋白质之间的相互作用 1. 实验目的 本实验以重组质粒和酵母细胞为材料,学习检测蛋白质相互作用的基本原理和技术方法。主要介绍酵母双杂交的基本原理与操作技术;让学生了解和掌握酵母双杂交系统的应用;掌握酵母感受态的制备的基本原理和主要的操作步骤。 2. 实验原理 1989年Fields和Song等人根据当时人们对真核生物转录起始过程调控的认识(即细胞内基因转录的起始需要转录激活因子的参与),提出并建立了酵母双杂交系统。该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,近几年得到了广泛的运用和发展。 相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1)检测在真核活细胞内进行,在一定程度上代表细胞内的真实情况。(2)作用信号是在融合基因表达后,在细胞内重建转录因子的作用而给出的,省去了纯化蛋白质的繁琐步骤。(3)检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互作用。(4)酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA文库,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。(5)通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型、X-Gal 及HIS3 蛋白表达等检测方法均很敏感。 酵母双杂交系统也具有一定的局限性。首先,经典的双杂交系统分析蛋白间的相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白的研究。酵母双杂交系统的另一个局限性是“假阳性”。在酵母双杂交系统建立的初期阶段,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表达往往不能十分严谨地被控制,因此容易产生假阳性。由于某些蛋白本身具有激活转录的功能或在酵母中表达时发挥转录激活作用,使DNA结合结构域融合蛋白在无特异激活结构域的情况下也可被激活转录。另外某些蛋白表面含有对多种蛋白质的低亲和力区域,能与其他蛋白形成稳定的复合物,从而引起报告基因的表达,产生“假阳性”结果。产生“假阴性”结果的原因可能有许多蛋白质间的相互作用依赖于翻译后加工如糖基化、磷酸化和二硫键形成,还有些蛋白的正确折叠和功能有赖于某些非酵母蛋白的辅助等。 现在的酵母双杂交系统大都采用多种报告基因,如AH109酵母株含有三类报告基因—ADE2、HIS3、MEL1/lacZ,这三类报告基因受控于三种完全不同、异源性的GAL4-反应元件和三类启动子元件-GAL1、GAL2以及MEL1(如图6-1-1)。通过这种方法就消除了两类最主要的假阳性,一类是融合蛋白可以直接与GAL4结合位点结合或者是在结合位点附近结合所带来的假阳性;另一类是融合蛋白和某种转录因子结合后再结合到特定的TA TA盒上所带来的假阳性。ADE2一种报告基因就已经能够提供较强的营养选择压力,这时选择性地使用HIS3报告基因,一来可以降低假阳性率;二来可以控制筛选的严格性(如果需要筛选与诱饵蛋白具有较强结合的蛋白,就可以同时使用ADE2、HIS3两种报告基因;如果只需要筛选与诱饵蛋白具有中等强度或较弱结合的蛋白,就可以使用ADE2或HIS3两者中的一种)。MEL1和lacZ分别编码α-半乳糖苷酶和β-半乳糖苷酶,可以作用于相应的底物

热—酵母双杂交

酵母双杂交 酵母双杂交系统由Fields和Song等首先在研究真核基因转录调控中建立i 。 典型的真核生长转录因子,如GAL4 GCN4等都含有二个不同的结构域:DNA 结合结构域(DNA-binding domain)和转录激活结构(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。 基本原理 二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而 且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白—蛋白的相互作用。主要有二类载体:a 含DNA -binding domain 的载体;b 含DNA-activating domain 的载体。 上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读 框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱 动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequenee),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。目前研究中常用bin di ng-doma in 基因有:GAL4(1-147); LexA (E coli 转录抑制因子)的DNA-bd 编码序列。常用的activating-domain 基因有:GAL4(768-881)和 疱疹病毒VP16的编码序列等。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点:〈1〉易于转化、便 于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。 〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活

酵母双杂交实验流程(精).doc

模块七蛋白质之间的相互作用 1.实验目的 本实验以重组质粒和酵母细胞为材料, 学习检测蛋白质相互作用的基本原理和 技术方法。主要介绍酵母双杂交的基本原理与操作技术 ; 让学生了解和掌握酵母双 杂交系统的应用 ; 掌握酵母感受态的制备的基本原理和主要的操作步骤。 2.实验原理 1989 年Fields 和Song 等人根据当时人们对真核生物转录起始过程调控的认 识(即细胞内基因转录的起始需要转录激活因子的参与,提出并建立了酵母双杂交系 统。该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平 台 ,近几年得到了广泛的运用和发展。 相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1 检测在真核活细 胞内进行 ,在一定程度上代表细胞内的真实情况。(2 作用信号是在融合基因表达后, 在细胞内重建转录因子的作用而给出的 ,省去了纯化蛋白质的繁琐步骤。(3 检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互 作用。(4 酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA 文库 ,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。(5 通过mRNA 产生多种稳定的酶使信号放大。同时,酵母表型、X-Gal 及 HIS3 蛋白表达等检测方法均很敏感。 酵母双杂交系统也具有一定的局限性。首先 , 经典的双杂交系统分析蛋白间的 相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白 的研究。酵母双杂交系统的另一个局限性是“假阳性”。在酵母双杂交系统建立的 初期阶段 ,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表 达往往不能十分严谨地被控制,因此容易产生假阳性。由于某些蛋白本身具有激活 转录的功能或在酵母中表达时发挥转录激活作用, 使DNA 结合结构域融合蛋白在 无特异激活结构域的情况下也可被激活转录。另外某些蛋白表面含有对多种蛋白

酵母双杂交实验步骤

LexA酵母双杂交系统简介 一、LexA酵母双杂交系统的设计原理 报告质粒p8op-LacZ的GAL4 UAS编码序列被完全去除,因此在缺乏LexA融合激活剂的情况下,报告基因LacZ的转录活性为零,该基因的筛选标志为URA3,可以作为有自主复制能力的质粒存在于酵母EGY48菌株中,也可以被整合到EGY48基因组DNA上。 质粒pLexA的筛选标志为HIS3,在双杂交系统中用于表达DNA-BD(202个氨基酸残基组成的LexA蛋白)与目标蛋白(钓饵,Bait)的融合蛋白,该融合体的表达受酵母强启动子ADH1的调控,选择与报告基因的操纵子LexA×8结合。 质粒pB42AD的筛选标志为TRP1,在其供外源基因插入的多克隆位点(EcoR I与Xho I)上游,含有SV40核定位(SV40 nuclear localization)、HA(血凝素)及AD(来自于的88个氨基酸残基组成的B42蛋白)等几种编码序列,共同组成可以启动报告基因转录表达的激活成份。在酵母EGY48的基因组中还整合有另一个报告基因Leu,它与LacZ报告基因具有相同的操纵子-LexA,但两者启动子不同。 根据双杂交系统的原理,如果某一复合物同时具有DNA-BD和AD的活性,即可激活报告基因的转录和表达。分别将待测蛋白X、Y的编码序列插入pLexA质粒载体和pB42AD质粒载体的多克隆位点中,然后共同转入含有报告基因的酵母菌株,如果蛋白X与Y能相互作用,则启动报告基因的转录和表达,通过检测报告基因的表达情况,就可以间接反映蛋白X、Y是否具有相互作用以及作用的强弱。 如果将蛋白Y换为取自组织或血液的cDNA文库,则可用X从该文库中筛选出能与其相互作用的蛋白,并且可以获得编码这些蛋白的cDNA。 二、商品化酵母双杂交系统的组成 1. 载体质粒:pLexA、pB42AD、p8op-LacZ、pB42AD-DNA文库 2. 酵母菌株:EGY48、EGY48(p8op-LacZ)、YM4271(EGY48的伴侣菌株) 3. 大肠杆菌菌株: KC8株 4. 对照质粒:

相关文档
最新文档