混凝搅拌实验操作方法

混凝搅拌实验操作方法
混凝搅拌实验操作方法

混凝搅拌试验作业指导书

混凝搅拌实验是一种模拟混合、反应、沉淀三个工艺过程的实验手段,自来水厂可

以通过混凝搅拌试验选择混凝剂的品种以及混凝剂最佳投量。

一、仪器及器皿

1、六联混凝实验搅拌机(带 6 个原水杯) 1 台、电子天平 1 台、散射光浊度仪 1 台、pH 计 1 台;

2、 100mL的容量瓶 2 个、100mL烧杯 2 个、收集瓶( 250mL-300mL)6 个、 1 升量筒1 个、刻度吸管( 1mL、 2mL、5mL、10mL)各 1 支;

3、 10 升~ 15 升的水桶 1 只、玻棒 2 根、洗耳球 1 个、定时器 1 个,温度计 1 支、蒸馏水洗瓶 1 个。

二、混凝剂溶液的配制

取固体混凝剂约单位实验室常用毫克

10 克备用(可装在磨口试剂瓶中以避免受潮)。混凝剂溶液的浓度 / 升(mg/L)表示,生产上用于投加量计算时往往采用公斤 / 千立方

33

米( Kg/Km),这两个浓度单位是等价的,即:1mg/L=1Kg/Km。

配制混凝剂溶液浓度的高低取决于投药量的大小,混凝搅拌机投药试管的体积一般

约10 毫升,所以当投药量大时应提高混凝剂的配制浓度,以保证投药试管能容纳下

所投加的混凝剂溶液(投加混凝剂溶液的体积不超过 9mL)。

1、 1 mL=1 mg(1 mg/L )混凝剂溶液的配制

用天平准确称取 0.1g 固体混凝剂之于 100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1mL=1mg(1mg/L)的混凝剂溶液。

2、 1 mL=10 mg( 10 mg/L )混凝剂溶液的配制

用天平准确称取1g 固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成 1 mL=10 mg(10 mg/L )的混凝剂溶液。

表 1投药量与混凝剂溶液浓度的关系

投药量( mg/L、Kg/Km3)配制混凝剂溶液的浓1mL混凝剂溶液投加到1L 原

度( mg/L)水中的浓度( mg/L)1~ 1011

10~501010

三、混凝试验模拟投药量的确定

混凝试验 6 个原水杯中混凝剂的模拟投药量,一种方法是根据当时生产实际投药量

来确定,另外一种方法是根据形成矾花所用的最小投加量来确定。

1、根据生产实际投药量来确定 6 个模拟投药量

假如当时原水浊度为20NTU、投药量为 5mg/L,则可以 5mg/L 为中心点来确定 6 个

原水杯的投药量,即1~6 号杯的投药量分别为3mg/L、4mg/L、5mg/L(中心点)、6mg/L (或以此为中心点)、 7mg/L、8mg/L。

2、根据形成矾花所用的最小投加量来确定 6 个模拟投药量

①确定形成矾花所用的最小投加量,在烧杯中加入200mL原水,慢速搅拌,每次增

加0.5mL 混凝剂溶液投加量,直至出现矾花为止,这时的混凝剂溶液量作为形成矾花

的最小投加量。

②根据得出的形成矾花最小混凝剂投加量,来确定混凝实验6 个原水杯的模拟投药量。假如形成矾花最小混凝剂投加量为 3mg/L, 则取其 1/4 (即约 1mg/L)作为 1 号杯的混凝剂

投药量,取其 2 倍(即 6mg/L)作为 6 号杯的投药量,用依次增加投加量相等的

方法求出 2-5 号烧杯混凝剂投药量,即 2-5 号原水杯的投加量分别为2mg/L、3mg/L、4mg/L、5mg/L。

四、搅拌试验步骤

1、取 10L 原水,检测其浑浊度、 pH 值、水温等,并做好记录。

2、将原水充分混匀, 6 个原水杯分别注入1L 原水,将原水杯置于搅拌机相应位置。

3、根据 6 个模拟投药量( mg/L),计算出需要量取混凝剂溶液的体积 (mL) 。若投药

量在 10mg/L 以内,建议使用浓度为 1mL=1mg的混凝剂溶液。

原水杯号 1 号 2 号 3 号 4 号 5 号 6 号

模拟投药量( mg/L)1mg/L2mg/L3mg/L4mg/L5mg/L6mg/L

1mL=1mg混凝剂投药体积1mL2mL3mL4mL5mL6mL

1mL=10mg混凝剂投药体积0.1mL 0.2mL 0.3mL 0.4mL 0.5mL0.6mL

4、用刻度吸管分别向 1~6 号投药试管加入 1 mL=1mg的混凝剂溶液 1mL、2mL、3mL、4mL、5mL、 6mL,并加入蒸馏水至10mL使每支试管中的药液体积一致。

5、编制搅拌试验程序

混凝搅拌实验分为快速混合、慢速絮凝(反应)及沉淀三个过程。混合过程是使混凝剂

与原水充分混合均匀,要求水流紊动剧烈并快速完成。可参考生产工艺参数设置搅拌机转

速和搅拌时间,一般设置转速为 150 转 / 分钟~ 200 转/ 分钟,搅拌时间为 1 分钟~ 3 分钟。

絮凝过程是混合均匀的混凝剂与水中的胶体颗粒相互碰撞、絮凝,逐渐形成絮凝体(矾花)的过程,要求搅拌强度或水流速度随着絮凝体的成长而逐渐降低,以避免形成

的絮凝体(矾花)被打碎。一般设置转速为40 转/ 分钟~ 50 转/ 分钟,搅拌时间为15

分钟~ 20 分钟。

沉淀是混凝剂与原水中胶体形成的使絮凝体下沉的过程,静止沉淀时间一般为15

分钟~ 20 分钟。

6、启动编制好的搅拌试验程序,例如搅拌试验程序为:自动加药;160 转 / 分钟、 1分钟; 50 转/ 分钟、 15 分钟;静止 20 分钟。启动程序后,药液即自动加入 6 个原水杯

中(此时快速用蒸馏水冲洗投药试管并将冲洗水倒入原水杯,以使试管内的药液完全投

加的原水杯中),并按程序执行搅拌。在搅拌过程中,注意观察每个原水杯中絮凝体(矾花)形成的过程、状态,并做好记录。

7、搅拌试验程序结束后,水样静止20 分钟,分别取上清液(沉淀水)于 6 个收集

瓶中。然后分别检测其浑浊度、pH值等,并做好记录。

8、根据混凝试验数据绘制混凝试验曲线,以混凝试验沉淀水浑浊度为横坐标、投

药量为纵坐标绘制出浑浊度- 投药量关系曲线。

9、选取混凝沉降速度最快、絮凝体结构最好、投药量最小、沉淀水浊度最低的,

作为该原水条件下最佳混凝剂投药量,提供生产运行人员参考使用。

混凝搅拌实验记录表

试验人:试验日期:

水样名称取样点

取样人取样时间

pH水温(℃)浑浊度( NTU)

混名称生产厂家

批号形态固体()液体()试快速搅拌慢速搅拌沉淀

速度( r/min )时间 (min )速度( r/min )时间 (min )时间 (min )

混凝剂溶液配制浓度: 1mL=()mg,()mg/L

原水杯编号123456

投药量( mg/L)

投药体积( mL)

絮凝体形成时间( min)

絮凝体沉降时间( min)

絮凝体尺寸大小

沉淀水浑浊度

沉淀水 pH

最佳投药量( mg/L)

结论

水处理实验报告-混凝实验

水处理实验报告-混凝实验 降低或降低不多~胶粒不能相互接触~通过高分子链状物吸附胶粒~一般形成广西民族大学水污染控制工程实验报告 2012 年 6 月 10 日絮凝体。消除或降低胶体颗粒稳定因素的过程叫脱稳。脱稳后的胶粒~在一定 姓名实验混凝的水利条件下~才能形成较大的絮凝体~俗称矾花~自投加混凝剂直至形成矾 名称实验投加混凝剂的多少~直接影响混凝效果。水质是千变万化的~最花的过程叫混凝。同组者 佳的投药量各不相同~必须通过实验方可确定。实验目的: 在水中投加混凝剂如 A1(SO)、 FeCl后~生成的AI、 Fe的化合物对胶体的脱1、通过实验学会求一般天然水体最佳混凝条件,包括投药量、PH、水流速度梯度,的2433 稳效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响~还受水的 pH 值影响。基本方法。 如果pH值过低(小于4)~则混凝剂水解受到限制~其化合物中很少有高分子物质存在~2、加深对混凝机理的理解。 絮凝作用较差。如果pH值过高(大于9—10)~它们就会出现溶解现象~生成带负电荷实验原理: 的络合离子~也不能很好地发挥絮凝作用。混凝阶段所处理的对象主要是水中悬浮物和胶体杂质~是水处理工艺中十分重要的

投加了混凝剂的水中~胶体颗粒脱稳后相互聚结~逐渐变成大的絮凝体~这时~一个环节。水中较大颗粒悬浮物可在自身重力作用下沉降~而胶体颗粒不能靠自然沉降 水流速度梯度G值的大小起着主要的作用。得以去除。胶体表面的电荷值常用电动电位ξ表示~又称为Zeta电位。一般天然水中的胶体 颗粒的Zeta电位约在-30mV以上~投加混凝剂之后~只要该电位降到-15mV左右即可得到较好的实验步骤及装臵图: 混凝效果。相反~当电位降到零~往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负1.最佳投药量实验步骤 电的粘土颗粒。胶体间存在着静电斥力~胶粒的布朗运动~胶粒表面的水化作用~使胶,1,、用6个1000mL的烧杯~分别取1000mL原水~放臵在实验搅拌机平台上, 粒具有分散稳定性~三者中以静电斥力影响最大~若向水中投加混凝剂能提供大量的正,2,、确定原水特征~即测定原水水样混浊度、 pH值、温度。离子~能加速胶体的凝结和沉降。水化膜中的水分子与胶粒有固定联系~具有弹性较高,3,、确定形成矾花所用的最小混凝剂量。,混凝剂A、B,方法是通过慢速搅拌烧杯的粘度~把这些水分子排挤出去需克服特殊的阻力~这种阻力阻碍胶粒直接接触。有些中200mL原水~并每次增加1mL混凝剂的投加量~逐滴滴入200mL原水杯中直到出现水化膜的存在决定于双电层状态。若投加混凝结降低ζ电位~有可能是水化作用减弱~矾花为止。这时的混凝剂量作为形成矾花的最小投加量, 混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。即使ζ电位没 有 ,4,、确定实验时的混凝剂投加量。根据步骤3得出的形成矾花的最小混凝剂投加量~ 取其1,3作为1号烧杯的混凝剂投加量~取其2倍作为6号烧杯的混凝剂投加量~用

混凝沉淀实验

实验一混凝沉淀实验 1 实验目得 通过本实验希望达到下述目得: 1. 学会求得最佳混凝条件(包括投药量、pH 值)得基本方法; 2。加深对混凝机理得理解、 2实验原理 分散在水中得胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除,致使水中这种含浊状态稳定。向水中投加混凝剂后,由于(1)能降低颗粒间得排斥能峰,降低胶粒得ζ电位,实现胶粒“脱稳”,(2)同时也能发生高聚物式高分子混凝剂得吸附架桥作用,(3)网捕作用,从而达到颗粒得凝聚,最终沉淀从水中分离出来。由于各种原水有很大差别,混凝效果不尽相同,混凝剂得混凝效果不仅取决于混凝剂投加量,同时还取决于水得pH值、水流速度梯度等因素。 3实验装置与设备 3、1 实验装置 混凝实验装置主要就是六联搅拌机。搅拌机上装有电机调速设备、 3。2 实验设备及仪器仪表 1。混凝试验搅拌仪(MY3000-6) 1台 2。浊度仪(2100N)1台 3. 数显pH计(FE20/EL20) 1台 4. 温度计刻度0~100 oC1支 5。精制硫酸铝Al2(SO4)3·18H2O 国药集团北京化学试剂有限公司 6、三氯化铁FeCl3·6H2O 国药集团北京化学试剂有限公司 4 实验步骤

混凝实验分为最佳投药量、最佳pH 值三部分。在进行最佳投药量实验时,先选定一种搅拌速度变化方式与pH值,求出最佳投药量。然后按照最佳投药量求出混凝最佳pH值。最后根据最佳投药量、最佳pH值,在混凝实验中所用得实验药剂可参考下列浓度进行配制: 1。Al2(SO4)3·18H2O 浓度10 gL-1; 2. FeCl3·6H2O 浓度10 gL-1; 3.HCI10%(v/v); 4、NaOH 10%(w/v)。 4、1 最佳投药量实验步骤 1。确定原水特征,即测定原水水样混浊度、pH值、温度、 2。确定形成矾花所用得最小混凝剂量。方法就是通过慢速搅拌烧杯中50mL原水,并每次增加0.2mL混凝剂投加量,直至出现矾花为止。这时得混凝剂量作为形成矾花得最小投加量。 3。在实验杯中放入100 mL原水,置于实验搅拌器平台上。 4。确定实验时得混凝剂投加量。根据步骤2得出得形成矾花最小混凝剂投加量,取其1/4作为1号实验杯混凝剂投加量,取其2倍作为6号实验杯混凝剂投加量,用依次增加混凝剂投加量相等得方法求出2~5号烧杯混凝剂投加量,把混凝剂分别加入1~6号实验杯中。 5。启动搅拌器,快速搅拌0.5 min、转速约300 rpm,中速搅拌6 min,转速约100rpm;慢速搅拌6min、转速约50 rpm。如果用污水进行混凝实验,污水胶体颗粒比较脆弱,搅拌速度可适当放慢、 6、静止沉淀5min,关闭搅拌器,用60mL注射针筒抽出实验杯中得上清液(共约100mL)放入200mL 烧杯内,立即用浊度仪测定浊度、 4、2 最佳pH值实验步骤 1、在实验杯中分别放入150 mL原水,置于实验搅拌器平台上、 2、确定原水特征,测定原水浑浊度、pH值,温度。本实验所用原水与最佳投药量实验时相同。 3、调整原水pH值,用移液管依次向1、2、3号实验杯中分别加入2、1.0、0、

普通混凝土试验报告

普通混凝土试验报告 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

普通混凝土配合比通知单 委托单位:四川省华蓥市南方送变电有限公司汾阳分公司报告编号:3 建设单位:山西西山晋兴能源有限责任公司收样日期:2012年3月12日 工程名称:斜沟矿井风井场地35KV线路新建工程试配日期:2012年3月12日 监理单位:山西煤炭建设监理咨询公司试验类别:见证取样 检验员:审核人:批准人: 见证人及编号:刘银成晋见1201604 汾阳市恒昌建设工程检测试验有限公司(章) 2012年3月24日 公司地址:汾阳市建昌村 山西省建设工程质量监督管理总站监制 水泥物理性能检验报告 委托单位:四川省华蓥市南方送变电有限公司汾阳分公司报告编号:HCJS/SN2

建设单位:山西西山晋兴能源有限责任公司收样日期:2012年3月10日 工程名称:斜沟矿井风井场地35KV线路新建工程检验日期:2012年3月10日 至2012年4月20日 监理单位:山西煤炭建设监理咨询公司试验类别:见证取样 检验员:审核人:批准人: 见证人及编号:刘银成晋见1201604 汾阳市恒昌建设工程检测试验有限公司(章) 2012年4月20日 公司地址:汾阳市建昌村 山西省建设工程质量监督管理总站监制 建设用碎石(卵石)检验报告

委托单位:四川省华蓥市南方送变电有限公司汾阳分公司报告编号:7 建设单位:山西西山晋兴能源有限责任公司收样日期:2012年3月12日 工程名称:斜沟矿井风井场地35KV线路新建工程检验日期:2012年3月12日 监理单位:山西煤炭建设监理咨询公司试验类别:见证取样 检验员:审核人:批准人: 见证人及编号:刘银成晋见1201604 汾阳市恒昌建设工程检测试验有限公司(章) 2012年3月24日 公司地址:汾阳市建昌村 山西省建设工程质量监督管理总站监制

混凝搅拌实验操作方法

混凝搅拌试验作业指导书 混凝搅拌实验是一种模拟混合、反应、沉淀三个工艺过程的实验手段,自来水厂可以通过混凝搅拌试验选择混凝剂的品种以及混凝剂最佳投量。 一、仪器及器皿 1、六联混凝实验搅拌机(带6个原水杯)1台、电子天平1台、散射光浊度仪1台、pH计1台; 2、100mL的容量瓶2个、100mL烧杯2个、收集瓶(250mL-300mL)6个、1升量筒1个、刻度吸管(1mL、2mL、5mL、10mL)各1支; 3、10升~15升的水桶1只、玻棒2根、洗耳球1个、定时器1个,温度计1支、蒸馏水洗瓶1个。 二、混凝剂溶液的配制 取固体混凝剂约10克备用(可装在磨口试剂瓶中以避免受潮)。混凝剂溶液的浓度单位实验室常用毫克/升(mg/L)表示,生产上用于投加量计算时往往采用公斤/千立方米(Kg/Km3),这两个浓度单位是等价的,即:1mg/L=1Kg/Km3。 配制混凝剂溶液浓度的高低取决于投药量的大小,混凝搅拌机投药试管的体积一般约10毫升,所以当投药量大时应提高混凝剂的配制浓度,以保证投药试管能容纳下所投加的混凝剂溶液(投加混凝剂溶液的体积不超过9mL)。 1、1 mL=1 mg(1 mg/L)混凝剂溶液的配制 用天平准确称取0.1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1mL=1mg(1mg/L)的混凝剂溶液。 2、1 mL=10 mg(10 mg/L)混凝剂溶液的配制

用天平准确称取1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1 mL=10 mg(10 mg/L)的混凝剂溶液。 表1 投药量与混凝剂溶液浓度的关系 三、混凝试验模拟投药量的确定 混凝试验6个原水杯中混凝剂的模拟投药量,一种方法是根据当时生产实际投药量来确定,另外一种方法是根据形成矾花所用的最小投加量来确定。 1、根据生产实际投药量来确定6个模拟投药量 假如当时原水浊度为20NTU、投药量为5mg/L,则可以5mg/L为中心点来确定6个原水杯的投药量,即1~6号杯的投药量分别为3mg/L、4mg/L、5mg/L(中心点)、6mg/L (或以此为中心点)、7mg/L、8mg/L。 2、根据形成矾花所用的最小投加量来确定6个模拟投药量 ①确定形成矾花所用的最小投加量,在烧杯中加入200mL原水,慢速搅拌,每次增加0.5mL混凝剂溶液投加量,直至出现矾花为止,这时的混凝剂溶液量作为形成矾花的最小投加量。 ②根据得出的形成矾花最小混凝剂投加量,来确定混凝实验6个原水杯的模拟投药量。假如形成矾花最小混凝剂投加量为3mg/L,则取其1/4(即约1mg/L)作为1号杯的混凝剂投药量,取其2倍(即6mg/L)作为6号杯的投药量,用依次增加投加量相等的方法求出2-5号烧杯混凝剂投药量,即2-5号原水杯的投加量分别为2mg/L、3mg/L、4mg/L、5mg/L。 四、搅拌试验步骤

混凝沉淀实验

实验项目名称:混凝沉淀实验 (所属课程:水污染控制工程) 院系:专业班级:姓名:学号: 实验日期:实验地点:合作者:指导教师: 本实验项目成绩:教师签字:日期: 一、实验目的 (1)观察混凝现象及过程,了解混凝的净水机理及影响混凝的重要因素。 (2)确认某水样的最佳投药量及其相应的pH值。 (3)测定计算反应过程的G值和GT值,是否在适宜的范围内。 二、实验原理 水中的胶体颗粒,主要是带负电的黏土颗粒。胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。因此,胶体颗粒靠自然沉淀是不能除去的。向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使ξ电位降低,静电斥力减小。此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚、水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤除去需要克服特殊的阻力,阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。即使ξ电位没有降低或减低不多,胶粒不能相互接触,通过高分子连状物媳妇叫李,也能形成絮凝体。 投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。这时,水流速度梯度G值的大小起着主要的作用,具体计算见有关教材。 三、实验设备与试剂 (1)无极调速六联搅拌机1台。 (4)秒表1块。 (5)1000mL量筒1个。 (6)1mL,2mL,5ml,10mL移液管各1支。 (7)200mL烧杯1个,吸耳球等。 (8)1000mL烧杯6个。

沉淀实验实验报告

沉淀实验实验报告 篇一:自由沉淀实验报告 六、实验数据记录与整理 1、实验数据记录 沉降柱直径水样来源柱高 静置沉淀时间/min 表面皿表面皿编号质量/g 表面皿 和悬浮物总质量/g 水样中悬浮物质量/g 水样体积/mL 悬浮物沉降柱浓度/工作水(g/ml)深/mm 颗粒沉沉淀效 速/率/%(mm/s) 残余颗 粒百分比/% 0 5 10 20 30 60 120 0 1 2 3 4 5 6 79.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.1241

31.0 30.0 30.0 30.0 30.0 31.0 31.0 0.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363 846.0 808.0 780.0 724.0 664.0 500.0 361.0 1.860 0.883 0.395 0.230 0.069 0.021 11.40 20.44 26.28 30.11 32.30 33.76 100 87.96 79.56 73.72 69.89 67.70 66.24 2、实验数据整理 (2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下: 图2.2:沉淀时间t与沉淀效率E的关系曲线 2-2、绘制去除率与沉淀速度的曲线如下: 图2.2:颗粒沉速u与沉淀效率E的关系曲线 2-3、绘制去除率与沉淀速度的曲线如下: 图2.3:颗粒沉速u与残余颗粒百分比的关系曲线 (1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。原水悬浮物的浓度:C0? 水样中悬浮物质量1.6974 ??0.0548g/ml 水样体积31.0 悬浮物的浓度:C5? 水样中悬浮物质量1.1508

混凝实验

混凝实验步骤 本实验分为混凝药剂的筛选、最佳投药量、最佳pH值部分。 一、混凝药剂的筛选 1、配制10L 1‰的藻土原水,开启机械搅拌机,使藻土始终保持悬浮状态; 2、按讲义配制1%的硫酸铝铵、硫酸铝和氯化铁混凝剂,10%的HCl和NaOH; 3、取4只锥形瓶(0#—3#),分别放入200mL原水,在1#-3#中分别滴加上述三种混凝剂(由3个同学配合同时滴加,其他同学观察现象并记录),每次滴加5滴并摇动直到出现矾花(0#也要同时摇动),静置30s,比较这三种混凝剂所形成的矾花状态(0#作为参照)。继续滴加,进一步比较矾花的状态、大小、沉降速度和上清液的澄清度,筛选出一种混凝剂,做以下实验。 二、最佳投药量实验步骤 1、取6个500mL的烧杯,分别放入200mL原水; 2、确定原水特征,即测定原水水样的浊度(FTU)、pH值、温度; 3、确定形成矾花所用的最小混凝剂量。方法是通过慢速搅拌烧杯中200mL 原水,并每次增加0.5mL混凝剂投加量,直到出现矾花为止。这时的混凝剂量作为形成矾花的最小投加量; 4、确定实验时的混凝剂投加量。根据步骤3得出的形成矾花的最小混凝剂投加量,取其1/3作为1号烧杯的混凝剂投加量,取其2倍作为6号烧杯的混凝剂投加量,用依次增加相等混凝剂投加量的方法求出2—5号烧杯的混凝剂投加量,把混凝剂分别加入到1—6号烧杯中(参考:对于FTU=60°的自配水,可分别加入1%的混凝剂1、2、4、 5、 6、8mL); 5、在1号烧杯中放入搅拌子,启动磁力搅拌器,快速搅拌1.5min,慢速搅拌5min;关闭磁力搅拌器,静置沉淀10min,用移液管吸取上清液至比色皿中(注意:吸取上清液时不要扰动底部沉淀物,吸取位置也要尽量相同),立即用浊度仪测定浊度,并对测定结果进行纪录。 6、重复步骤“5”,分别测定2-6号烧杯上清液的浊度。 附:WGZ-200型散射式浊度仪操作步骤 1、预热20分钟 2、置量程10,先以空气调零,将标准浊度片(18.1°)放入光程中调校准 3、先测纯水+比色皿的浊度,以后水样的的浊度测定值要扣除此值 4、水样测定(如果读数超出量程,可置量程于100,但必须重新校正仪器) 三、最佳pH值实验步骤 1、取6个500ml的烧杯,分别放入200mL原水; 2、确定原水特征,即测定原水水样的浊度、pH值、温度。本实验所用原水

混凝土配合比实验报告

混凝土配合比实验报告 班级:10工程管理2班 组别:第七组 组员:

一.实验目的:掌握混凝土配合比设计的程序和方法以及相关设备的使用方法;自行设计强 度等级为C30的混凝土,并通过实验检验其强度。 二、初步配合比的计算过程: 1.确定配制的强度(o cu f ,) o cu f ,= k cu f ,+1.645σ ; o cu f ,=30+1.645×5.0=38.225 Mpa 其中:o cu f ,—混凝土配制强度,单位:Mpa ; k cu f ,—设计的混凝土强度标准值,单位:Mpa σ—混凝土强度标准差,单位:Mpa 2.初步确定水灰比(C W ) C W =ce b a o cu ce a f a a f f a +,=0.48 其中: 07.0;46.0==b a a a —回归系数(碎石); ce f =γc ce f ;g :γc —水泥强度等级的富裕系数,取1.1; g ce f ,—水泥强度等级值,Mpa ; 3.初步估计单位用水量:wo m =185Kg 4.初步选取砂率(s β) 计算出水灰比后,查表取砂率(碎石,粒径40mm)。s β=30% 5.计算水泥用量(co m ) co m =C W m wo /=48 .0185=385Kg 6.计算砂、石用量(质量法) co m +go m +so m +wo m =cp m ; s β= go so so m m m +×100% co m --每立方混凝土的水泥用量(Kg);go m --每立方混凝土的碎石用量(Kg) so m --每立方混凝土的砂用量(Kg );wo m --每立方混凝土的水用量(Kg ) cp m --每立方混凝土拌合物假定容量(Kg ),取2400Kg 计算后的结果为:so m =549Kg go m =1281Kg

混凝实验指导书

《混凝沉淀实验》 一、实验目的 (1)熟悉混凝操作,观察混凝现象,深入理解混凝机理。 (2)确定混凝剂的最佳投药量。 (3)计算反应过程的G值和GT值。 二、实验原理 水中的胶体颗粒,主要是带负电的黏土颗粒。胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。因此,胶体颗粒靠自然沉淀是不能除去的。向水中投加的混凝剂能提供大量的正离子,压缩胶团的扩散层使ζ电位降低,静电斥力减少。此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚。水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤出去需要克服特殊的阻力,阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态,投加混凝剂降低电动电位,有可能使水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。 混凝是凝聚和絮凝的总称。向水中投加混凝剂,可以使胶体颗粒脱稳,脱稳后的胶粒后相互聚结形成微絮粒的过程,称为凝聚;微絮粒相互粘附聚集或通过高分子物质吸附架桥作用而使微粒相互黏结,而形成絮凝体的过程,称为絮凝。根据混凝过程的特点,混凝操作分为两个阶段,即混合阶段和絮凝阶段,两个阶段的操作要求明显不同。混合阶段的操作要求是快速(1min之内)和剧烈搅拌(速度梯度G在500~1000s-1),而絮凝反应阶段的操作要求是反应时间较长(15~30min),搅拌强度较小(速度梯度G为10~70s-1),一般Gt值应控制在104~105之间。 三、实验设备与试剂 (1) 无级调速六联混凝搅拌机。 (2) pH酸度计。 (3 )浊度计。 (4) 1ml,2ml,5ml,10ml, 移液管各1支。 (5) 200mL、500ml烧杯,1000ml量筒,吸耳球等。 (6)混凝剂为硫酸铝(AS)和聚合氯化铝(PAC),使用时分别配置成10g/L的溶液。 (7) 10%的NaOH溶液和l0%HCI溶液500mL各l瓶。 (8) 实验原水为高岭土悬浊液,进行混凝操作前将原水pH值调节至6-8之间。 四、实验步骤 (1)测定原水的浊度,将原水pH值调节至6-8之间。 (2)用1000mL量简量取6份水样至6个1000mL烧杯中,将装有水样的烧杯放在搅拌器下,保持各烧杯中的搅拌器位置相同

混凝实验报告

混凝实验报告/正交设计 一、实验目的 1、通过实验,观察混凝现象,加深对混凝理论的理解。 2、选择和确定最佳混凝工艺条件。 二、实验原理 天然水中存在大量胶体颗粒,使原水产生浑浊度。我们进行水质处理的根本任务之一,则正是为了降低或消除水的浑浊度。 水中的胶体颗粒,主要是带负电的粘土颗粒。胶体间静电斥力、胶粒的布朗运动以及胶粒表面水化作用的存在,使得它具有分散稳定性。混凝剂的加入,破坏了胶体的散稳定性,使胶粒脱稳。同时,混凝剂也起吸附架桥作用,使脱稳后的细小胶体颗粒,在一定的水力条件下,凝聚成较大的絮状体(矾花)。由于矾花易于下沉,因此也就易于将其从水中分离出去,而使水得以澄清。 由于原水水质复杂,影响因素多,故在混凝过程中,对于混凝剂品种的选用和最佳投药量的决定,必需依靠原水和混凝实验来决定。混凝实验的目的即在于利用少量原水、少量药剂。 三、实验仪器及设备 1. 1000 ml烧杯1只 2. 500 ml矿泉水瓶6只 3. 100 ml烧杯2只 4. 5 ml移液管1只 5. 400 ml烧杯2只 6. 5ml量筒1台

7. 吸耳球1个 8. 温度计(0-50℃)1只 9. 100 ml量筒1个 10. 10 ml;量筒1只 四、实验试剂 本实验用三氯化铁作混凝剂,配制浓度2g/L,800ml;以阴型聚丙烯酰胺为助凝剂,配制浓度0.05g/L,500 ml。三氯化铁用量2g,阴离子聚丙烯酰胺用量 0.0250 g 五、实验步骤 (一)配置药品 1、用台秤称取2g三氯化铁,溶解,配置1000 ml,三氯化铁配制浓度2 g/L;用电子天平称取0.05g阴离子聚丙烯酰胺,溶解,配置1000 ml,阴型聚丙烯酰胺配制浓度0.05 g/L。 2、测定原水特征。 (二)混凝剂最小投加量的确定 1、取6个500 ml瓶子,分别取400 ml原水。 2、分别向烧杯中加入氯化铁,每次加入1.0 ml,同时进行搅拌,直至出现矾花,在表1中记录投加量和矾花描述。 3、停止搅拌,静止10min。 4、根据矾花描述确定最小投加量A。 (三)混凝剂的最佳投加量的选择 1、用6个500 ml瓶子,分别取400 ml原水。

钢筋混凝土结构试验指导书及试验报告

《结构设计原理》试验指导书 及试验报告 班级 姓名 学号 淮阴工学院建筑工程学院结构试验室 二O一五年九月

试验一矩形截面受弯构件正截面承载力试验 一、试验目的 1、了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程; 2、观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征; 3、测定受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。 二、试件、试验仪器设备 1、试件特征 (1)根据试验要求,试验梁的混凝土强度等级为C25,纵向受力钢筋为HRB335。 (2)试件尺寸及配筋如图1所示,纵向受力钢筋的混凝土净保护层厚度为20mm。 图1 试件尺寸及配筋图 (3)梁的中间500mm区段内无腹筋,在支座到加载点区段配有足够的箍筋,以保证梁不发生斜截面破坏。 (4)梁的受压区配有两根架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。 2、试验仪器设备 (1)静力试验台座、反力架、支座 (2)30T手动式液压千斤顶 (3)30T荷载传感器 (4)静态电阻应变仪 (5)位移计(百分表)及磁性表座 (9)电阻应变片、导线等 三、试验装置及测点布置 1、试验装置见图2(支座到加载点的距离根据实际情况标出) (1)在加荷架中,用千斤顶通过梁进行两点对称加载,使简支梁跨中形成长500mm的纯弯曲段(忽略梁的自重); (2)构件两端支座构造应保证试件端部转动及其中一端水平位移不受约束,基本符合铰支承的要求。 2、测点布置 (1)在纵向受力钢筋中部预埋电阻应变片,用导线引出,并做好防水处理,设ε1、ε2为跨中受

拉主筋应变测点; (2)纯弯区段内选一控制截面,侧面沿截面高度布置四个应变测点,用来测量控制截面的应变分布。 千斤顶 压力传感器 分配梁 2 f 500 2000 图2正截面试验装置图 四、试验步骤 1.加载方法 (1)采用分级加载,每级加载量为10kN; (2)试验准备就绪后,首先预加一级荷载,观察所有仪器是否工作正常; (3)每次加载后持荷时间为不少于10分钟,使试件变形趋于稳定后,再仔细测读仪表读数,待校核无误,方可进行下一级加荷。 2.测试内容 (1)试件就位后,按照试验装置要求安装好所有仪器仪表,正式试验之前,应变仪各测点依次调平衡,并记录位移计初值,然后进行正式加载; (2)测定每级荷载下纯弯区段控制截面混凝土和受拉主筋的应变值ε1和ε2,以及混凝土开裂时的极限拉应变εcr与破坏时的极限压应变εcu; (3)测定每级荷载下试验梁跨中挠度,并记录于表中; (4)仔细观察裂缝的出现部位,并在裂缝旁边用铅笔绘出裂缝的延伸高度,在顶端划一水平线注明相应的荷载级别,试件破坏后,绘出裂缝分布图; (5)测定简支梁开裂荷载、正截面极限承载力,详细记录试件的破坏特征; (6)绘制M-f变形曲线。 五、注意事项 务必明确这次试验的目的、要求,熟悉每一步骤及有关注意事项,如有不清楚的地方可以进行研究、讨论或询问指导人员,对与本次试验无关的仪器设备不要随便乱动。 在试验时一定要听从指导人员的指挥,特别是试件破坏时要注意安全。

混凝搅拌实验操作方法

混凝搅拌实验是一种模拟混合、反应、沉淀三个工艺过程的实验手段,自来水厂可以通过混凝搅拌试验选择混凝剂的品种以及混凝剂最佳投量。 一、仪器及器皿 1、六联混凝实验搅拌机(带6个原水杯)1台、电子天平1台、散射光浊度仪1台、pH计1台; 2、100mL的容量瓶2个、100mL烧杯2个、收集瓶(250mL-300mL)6个、1升量筒1个、刻度吸管(1mL、2mL、5mL、10mL)各1支; 3、10升~15升的水桶1只、玻棒2根、洗耳球1个、定时器1个,温度计1支、蒸馏水洗瓶1个。 二、混凝剂溶液的配制 取固体混凝剂约10克备用(可装在磨口试剂瓶中以避免受潮)。混凝剂溶液的浓度单位实验室常用毫克/升(mg/L)表示,生产上用于投加量计算时往往采用公斤/千立方米(Kg/Km3),这两个浓度单位是等价的,即:1mg/L=1Kg/Km3。 配制混凝剂溶液浓度的高低取决于投药量的大小,混凝搅拌机投药试管的体积一般约10毫升,所以当投药量大时应提高混凝剂的配制浓度,以保证投药试管能容纳下所投加的混凝剂溶液(投加混凝剂溶液的体积不超过9mL)。 1、1 mL=1 mg(1 mg/L)混凝剂溶液的配制 用天平准确称取固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL容量瓶中,加蒸馏水至刻度,摇匀,即配成1mL=1mg(1mg/L)的混凝剂溶液。 2、1 mL=10 mg(10 mg/L)混凝剂溶液的配制 用天平准确称取1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1 mL=10 mg(10 mg/L)的混凝剂溶液。

混凝搅拌实验报告

混凝搅拌实验报告 时间:2016年4月23日 实验人员: 一、实验目的及要求 1、通过实验观察矾花生成过程,加深对絮凝理论的理解; 2、确定混凝的最佳用量及最佳pH值; 3、了解影响混凝效果的因素。 二、实验原理 混凝是用来去除水中无机物和有机的胶体悬浮物。通常在废水中所见到的胶体颗粒其大小变化约在100nm-10nm之间,而其τ电位在15-20毫伏之间。胶体悬浮物的稳定性是由于高τ电位引起的斥力,或者是由于在亲水的胶体上吸附了一层非离子的聚合物所造成的。混凝过程包括胶体悬浮物的脱稳和接着发生的使颗粒增大的凝聚作用。随后这些大颗粒可以用沉淀、悬浮和过滤等方法去除。 脱稳是通过投加强的用离子电解质如Al3+、Fe3+或阳离子高分子电解质来降低τ电位,或者由于形成了带正电荷的含水氧化物如Al x(OH)Y+而吸附于胶体上,或者是通过阴离子和阳离子高分子电解质的自然凝聚,或是由于胶体悬浮物被围于含水氧化物的矾花内等方式来完成的。 形成矾花最佳的条件是要求pH值在等电离点或接近等电离点(对于铝来说,要求pH值得范围为5.0-7.0),同混凝剂的反应必须有足够的碱度,对于碱度不够的废水应该投加Na2CO3、NaOH或石灰。 最有效的脱稳是使胶体颗粒同小的带正电荷含水氧化物的微小矾花接触,这种氧化物的微小矾花是在小于0.1s的时间内产生的,因此要在短时间内剧烈搅拌,在脱稳之后,凝聚促使矾花增大,从而使矾花能从水中去除。铝和铁的矾花在搅拌时较容易破碎和离散。投加2-5ml/L活性硅有可能提高矾花的强度。在凝聚阶段将近结束时,投加0.2-1.0ml/L长链阴离子或非离子聚合物,通过桥联吸附作用,有助于矾花的聚集和长大。所需混凝剂的投加量将由于盐和阴离子表面活性剂的存在而增加。脱稳也能通过投加阳离子聚合物来完成。 混凝的通常顺序是: 1、将混凝剂与水迅速剧烈的搅拌。如果水中碱度不够,则要在快速搅拌之前投加碱性助凝剂。 2、如果使用活性硅和阳离子高分子电解质,则它们应在快速搅拌将近结束时投加。使用阴离子高分子电解质,应在凝聚阶段的中期投加。 3、需要20-30min的凝聚时间,以促使大矾花的产生,在这一过程中,要

大学生混凝土坍落度实验报告

混凝土坍落度实验 试验单位:云南工商学院建筑工程学院 试验班级:2012级土木工程5班 组号:第1组 组长:金端斌 成员:金端斌,陈飞,马伊帅,唐国银,柳帅,熊安林,李雄伟,饶启彬。 指导老师:肖松涛 一.混凝土坍落度。 混凝土坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、衡器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 二.实验目的。 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落度”试验。 试验设备和器材:坍落度筒和弹头型捣棒、铁锹、卷尺、镘刀、磅称等。 适用范围:适用于坍落度大于10mm,集料公称最大粒径不大于31.5mm水泥混凝土的坍落度。 三.试验步骤: 1.先用湿布抹湿坍落筒,铁锹,拌和板等用具。坍落筒为上口直径100mm,下口直径200mm,高300mm,呈喇叭状。 2.称量材料: (1)C42.5的普通硅酸盐水泥:5.6Kg; (2)砂子:11.2Kg; (3)石子:20.7Kg(最大粒径不得超过40mm);

混凝实验

混凝实验 一实验目的 通过本实验希望达到下述目的:(1)学会求得最佳混凝条件(包括投药量、pH值,水流速度梯度)的基本方法;(2)加深对混凝机理的理解。 二实验原理分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除,致使水中这种含浊状态稳定。向水中投加混凝剂后,由于(1)能降低颗粒间的排斥能峰,降低胶粒的ζ电位,实现胶粒“脱稳”,(2)同时也能发生高聚物式高分子混凝剂的吸附架桥作用,(3)网捕作用,从而达到颗粒的凝聚,最终沉淀从水中分离出来。由于各种原水有很大差别,混凝效果不尽相同,混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。 三实验装置与设备 (一)实验装置 (二)混凝实验装置主要是实验搅拌机。搅拌机上装有电机的调速设备,电源采用稳压电源。 (三)实验设备及仪器仪表1.混凝试验搅拌机ZR4-6型 1 台3.光电式浊度仪GDS-3型1台4.酸度计pH-3型1台5.磁力搅拌器1台6.烧杯200mL 1个7.量筒1000mL 1个8,移液管1、2.5、10mL 各2支9.注射针筒、温度计、秒表、卷尺等。 四实验步骤 混凝实验分为最佳投药量、最佳pH值、最佳水流速度梯度三部分. 在进行最佳投药量实验时,先选定一种搅拌速度变化方式和pH值,求出最佳投药量。然后按照最佳投药量求出混凝最佳pH值。最后根据最佳投药量、最佳pH值,求出最佳的速度梯度, 在混凝实验中所用的实验药剂可参考下列浓度进行配制: 1 精制硫酸铝Al2(SO4)3·18H2O 浓度10g/L 2 三氯化铁FeCl3·6H2O 浓度10g/L 3 聚合氯化铝[A12(OH)mC16-m] 浓度10g/L 4 化学纯盐酸HCI 浓度10% 5 化学纯氢氧化钠NaOH 浓度10% (一)最佳投药量实验步骤 1.确定原水特征,即测定原水水样混浊度、pH值、温度。如有条件,测定胶体颗粒的Zeta电位。 2.确定形成矾花所用的最小混凝剂量。方法是通过慢速搅拌(或50r/min)烧杯中200mL原水,并每次增加0.5mL混凝剂投加量,直至出现矾花为止。这时的混凝剂量作为形成矾花的最小投加量。 3.用6个1000mL的烧杯,分别放入1000mL原水,置实验搅拌机平台上。 4.确定实验时的混凝剂投加量。根据步骤2得出的形成矾花最小混凝剂投加量,取其1/4作为1号烧杯的混凝剂投加量,取其2倍作为6号烧杯的混凝剂投加量,用依次增加混凝剂投加量相等的方法求出2-5号烧杯混凝剂投加量、把混凝剂分别加入1—6号烧杯中。5.启动搅拌机,快速搅拌半分钟、转速约300r/min:中速搅拌6分钟,转速约100r/min;慢速搅拌6分钟、转速约50r/min。如果用污水进行混凝实验,污水胶体颗粒比较脆弱,

混凝沉淀实验

水污染控制工程实验2010/2011第二学期 实验一、混凝沉淀实验 实验安排 2011、5、10星期二、环境08--2班30人分4组 实验地点:二实验楼;C区107实验室 一组A1和二组B1、下午2:00---4:00大约15人左右。 三组A2和四组B2、下午4:30---6:30大约15人左右。 2011、5、11星期三、环境08--1班35人分4组 实验地点:二实验楼;C区107实验室 一组A1和二组B1、上午9:00---11:00大约18人左右。 三组A2和四组B2、中午11:30---1:30大约16人左右。 2011、5、11星期三、环境08--3班32人分4组 实验地点:二实验楼;C区107实验室 一组A1和二组B1、下午2:30---4:30大约16人左右。 三组A2和四组B2、下午5:00---7:00大约16人左右。 注意: 1、A组、B组的同学用不同的混凝剂。(A1做三氯化铁最佳投加量的确定,A2在A1的基础上做ph值的影响。B1做自制混凝剂的最佳投加量,B2在B1的基础上,做PH值的影响。) 2、实验完毕后填好实验报告。

实验一:混凝沉淀实验 一、实验目的: 1、通过实验观察混凝现象、加深对混凝理论的理解; 2、选择和确定最佳混凝工艺条件。 3、了解影响混凝条件的相关因数。 4、通过对比传统混凝剂的混凝效果了解粉煤灰及混凝剂的混凝效果,并确定最佳混凝剂投加量。 二、实验原理 混凝阶段所处理的对象主要是水中悬浮物和胶体杂质,是水处理工艺中十分重要的一个环节。水中较大颗粒悬浮物可在自身重力作用下沉降,而胶体颗粒不能靠自然沉降得以去除。胶体表面的电荷值常用电动电位ξ表示,又称为Zeta 电位。一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。相反,当电位降到零,往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负电的粘土颗粒。胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。水化膜中的水分子与胶粒有固定联系,具有弹性较高的粘度,把这些水分子排挤出去需克服特殊的阻力,这种阻力阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态。若投加混凝结降低ζ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。即使ζ电位没有降低或降低不多,胶粒不能相互接触,通过高分子链状物吸附胶粒,一般形成絮凝体。消除或降低胶体颗粒稳定因素的过程叫脱稳。脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花,自投加混凝剂直至形成矾花的过程叫混凝。 投加混凝剂的多少,直接影响混凝效果。水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。 在水中投加混凝剂如 A1 2(SO 4 ) 3 、 FeCl 3 后,生成的AI、 Fe的化合物对胶体的脱稳 效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响,还受水的 pH值影响。如果pH值过低(小于4),则混凝剂水解受到限制,其化合物中很少有高分子物质存在,絮凝作用较差。如果pH值过高(大于9—10),它们就会出现溶解现象,生成带负电荷的络合离子,也不能很好地发挥絮凝作用。 投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体,这时,水流速度梯度G值的大小起着主要的作用。 三、实验水样:黄河水

混凝沉淀实验报告

实验名称:混凝沉淀实验 一、实验目的 1、通过实验观察混凝现象、加深对混凝沉淀理论的理解; 2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件; 3、了解影响混凝条件的相关因数。 二、实验原理 1.混凝作用原理包括三部分:1)压缩双电层作用;2)吸附架桥作用;3)网捕作用。这三种混凝机理在水处理过程中不是各自孤立的现象,而往往是同时存在的,只不过随不同的药剂种类、投加量和水质条件而发挥作用程度不同,以某一种作用机理为主。对高分子混凝剂来说,主要以吸附架桥机理为主。而无机的金属盐混凝剂则三种作用同时存在。 胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位。一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。相反,当电位降到零,往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负电的粘土颗粒。胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。 2.混凝剂向水中投加的能使水中胶体颗粒脱稳的高价电解质,称之为“混凝剂”。混凝剂可分为无机盐混凝剂和高分子混凝剂。水处理中常用的混凝剂有:三氯化铁、硫酸铝、聚合氯化铝(简称PAC)、聚丙烯酰胺等。本实验使用PAC,它是介于AlCl3和Al(OH)3之间的一种水溶性无机高分子聚合物,化学通式为[Al2(OH)nCl(6-n)]m其中m代表聚合程度,n表示PAC产品的中性程度。 3.投药量单位体积水中投加的混凝剂量称为“投药量”,单位为mg/L。混凝剂的投加量除与混凝剂品种有关外,还与原水的水质有关。当投加的混凝剂量过小时,高价电解质对胶体颗粒的电荷斥力改变不大,胶体难以脱稳,混凝效果不明显;当投加的混凝剂量过大时,则高价反离子过多,胶体颗粒会吸附过多的反离子而使胶体改变电性,从而使胶体粒子重新稳定。因此混凝剂的投加量有一个最佳值,其大小需要通过试验确定。 4.影响混凝作用的因素投药量、水中胶体颗粒的浓度、水温、水的pH值等。 5.浊度仪浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。浊度仪采用90°散射光原理。由光源发出的平行光束通过溶液时,一部分被吸收和散射,另一部分透过溶液。与入射光成90°方向的散射光强

混凝土坍落度实验报告

混凝土 试验单位:云南工商学院建筑工程学院 试验班级:2012级土木工程5班 组号:第1组 组长:金端斌 成员:金端斌,陈飞,马伊帅,唐国银,柳帅,熊安林,李雄伟,饶启彬。指导老师:肖松涛一?混凝土坍落度。 混凝土坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、衡器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。 坍落度是指混凝土的和易性,具体来说就是保 证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、 水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 二.实验目的。 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的 指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现 行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落度”试验。试验设备和器材:坍落度筒和弹头型捣棒、铁锹、卷尺、镘刀、磅称等。 适用范围:适用于坍落度大于10mm集料公称最大粒径不大于31.5mm水泥混 凝土的坍落度。 三.试验步骤: 1. 先用湿布抹湿坍落筒,铁锹,拌和板等用具。坍落筒为上口直径100mm下口直径200mm 高 300mm呈喇叭状。 2. 称量材料: (1)C42.5的普通硅酸盐水泥: 5.6Kg ; (2)砂子:11.2Kg ; (3)石子:20.7Kg (最大粒径不得超过40mn); (4)水:3.08Kg ; (5 )含水率:10% 3. 按配合比拌制混凝土,先称取水泥和砂并倒在拌和板上搅拌均匀,再称出石子一起拌和。将

相关文档
最新文档