无源滤波简介

无源滤波简介
无源滤波简介

无源滤波器

1. 源滤波器的发展历程

1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。20世纪50年代无源滤波器日趋成熟。自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和廉价方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展;到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。

2. 我国滤波器行业现状

我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。

经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。

无源滤波器- 无源滤波器和有源滤波器的区别

无源滤波器和有源滤波器,存在以下的区别:

工作原理

无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。

谐波处理能力

无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。

系统阻抗变化的影响

无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。

频率变化的影响

无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。

负载增加的影响

无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。

负载变化对谐波补偿效果的影响

无源滤波器补偿效果随着负载的变化而变化;有源滤波器不受负载变化影响。设备造价

无源滤波器较低;有源滤波器太高。

应用场合对比分析

1.有源滤波容量单套不超过100KVA,无源滤波则无此限制;

2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。

3.有源滤波目前最高适用电网电压不超过450V,而低压无源滤波最高适用电网电压可达3000V。

4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。

无源滤波器- 主要发展情况

由于无源滤波的具有大容量低价位的优点,钢铁行业的滤波都采用无源滤波,目前国内滤波市场(电力谐波治理市场)上主要以无源滤波为主。国际上以诺基亚、ABB、施耐德、西门子为代表,国内以温州清华电子、山大华天、哈工大、西安赛博、绿波杰能为代表。发展形势以快速反映,谐波治理彻底,综合控制为主。

无源滤波器- 无源滤波器与并联电容器的应用

谐振

谐波与并联电容器在低压电网中并存时,最怕的就是引发串联谐振与并联谐振

串联谐振

若谐波来自电源系统,则变压器的电抗和低压并联电容器的电容在一定的参数下配合,就能引发串联谐振,文献[1]有数字实例,一台Uk为6%的1000kVA 变压器,在低压母线上接有160kVar的并联电容器,结果引发了11次谐波的谐

振,使电容器中的11次谐波电流达175A,电容器中的基波电流只有233A,总有效电流Iceff为313A,过载1.35倍,已超过允许值1.30倍。负载母线上11次谐波电压畸变系数达6.9%,也已超过允许值,而低压电源(含变压器阻抗ZT在内)母线上的畸变率只有1.5%。

并联谐振

若谐波源来自低压侧的非线性负荷,例如变频器,则变压器的电抗(加上电源系统的少量电抗)和低压侧的电容可构成并联谐振,文献[1]也有数字实例,低压侧接有300kvA的驱动装置,其它如变压器和电容器参数同,1.1节串联谐振中的实例,结果引发11次谐波的并联谐振,使电容器中11次谐波电流达到212A,已大于电容器中基波的90%,总有效电流达334A,过载1.45倍,也超过允许值1.30倍,其实负载的11次谐波电流才39A,又11次谐波电压的畸变率已达8.3%,大大超过允许值。

避免谐振的措施

措施之一为改变网络元件的电抗电容量值,然而,它的可能性不大,特别当电容器组是自动控制的场合,将有许多谐振条件都要考虑。同时要注意,即使系统参数只是接近谐振频率也能使电容器组过电流和电压畸变率超过标准。

最常用的方法是与电容器串联一个电抗器,调谐的谐振频率低于网络中产生的最低次谐波的频率,这样,无论是串联谐振还是并联谐振就不会发生。

现代的工业和建筑物电网中完全没有谐波电压和电流是不可能的,那么是否凡并联电容器都要串电抗器呢?那也不一定,如果需要串,电抗值取多少呢?下面着重讨论1000V以下低压电网情况。

并联电容器组(不串电抗器)

当不存在谐振条件即电网的电抗值和并联电容器的电容值所构成的谐振频率比较高而负载产生的谐波电流和母线的谐波电压又很低时,此时,不需要考虑降低谐波值,但是IEC标准[1]并未给出划分界线的具体数据。笔者认为,谐波次数≥17就可以不考虑,即谐振频率≥17次谐波。

15次谐波是3的整数倍,一般只存在于单相220V的设备中,这样只考虑到了13次就可以了。什么场合一定要串联电抗,GB对此问题没有提及,厂家[4]在样本中规定的条件为GN/SN<15%,GN为产生谐波设备的现在功率。SN为变压器视在功率。笔者认为产生谐波的设备类型有几种,发射谐波电流的大小也不同,还与一些外部条件的变动有关。因此,规定GN/SN<15%似乎并不明确说明什么问题,还不如IEC标准[1]的条件,至少概念上是明确的。

失谐滤波器(detune dfilter)

失谐滤波器是一种滤波器,它的调谐频率比有相当大(considerable),电压(电

流)副值的最低次谐波频率还要小过10%多。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

无源带通滤波器

无源带通滤波器 无源带通滤波器电路,有源带通滤波器电路图1.根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。图4-1分别为四种滤波器的实际幅频特性的示意图。滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC元件或RC元 无源带通滤波器电路,有源带通滤波器电路图 1.根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。图4-1 分别为四种滤波器的实际幅频特性的示意图。滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可由RC 元件和有源器件构成的有源滤波器。 图4-1 四种滤波器的幅频特性 2.四种滤波器的传递函数和实验模拟电路如图4-2 所示:(a)无源低通滤波器(b)有源低通滤波器 (c) 无源高通滤波器 (d)有源高通滤波器 (e)无源带通滤波器 (f)有源带通滤波器 (g)无源带阻滤波器 (h)有源带阻滤波器

图4-2 四种滤波器的实验电路 3.滤波器的网络函数H(jω),又称为正弦传递函数,它可用下式表示

式中A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。它们均可通过实验的方法来测量。

无源滤波器和有源滤波器(互联网+)

实验报告 课程名称:信号分析与处理 指导老师: 成绩: 实验名称:无源滤波器有源滤滤波器 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 熟悉滤波器的构成及其特性 2. 学会测量滤波器幅频特性的方法 二、实验内容和原理 滤波器的一般结构如图所示。图中的V i (t )表示输入信号,V o (t )为输出信号。 假设滤波器是一个线性时不变网络,则在复频域内有 式中A (s )是滤波器的系统函数,一般为复数。V o (s )和V i (s )分别对应输出、输入信号的拉普拉斯变换。对于实际频率(s =j w )来说,有) ωφωω(j )j ()j (e A A =。这里ωωφ-)(为相 频特性。此外,在滤波器中关心的另一个量是时延特性ω ωφωτd ) (d )(- =。 通常用幅频也行来表征一个滤波电路的特性,欲使信号通过滤波器的失真很小,则相频和时延特性均需要考虑。当相频特性为线性,而时延特性为常数时,输出信号不失真。 对于幅频特性,通常把能够通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带的界限频率称为截止频率,实际滤波器的截止频率一般指归一化幅频特性在幅为0.707(-3dB )时对应的频率,若以信号的幅值平方表示信号功率,则该频率对应的点为半功率点。 理想滤波器在通带内应具有零衰减的幅频特性和线性的相频特性,而在阻带内应具有无限大的幅度衰减。通常通带和阻带的相互位置不同,滤波器通常可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器和全通滤波器等。 无源滤波器主要由R 、L 、C 构成。有源滤波器主要由运放、R 、C 构成,具有输入阻抗

有源和无源滤波器的区别

无源滤波器:这种电路主要有无源元件R、L和C组成。 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 无源滤波装置 该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。 国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。 1)单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。 2)高通(宽频带)滤波器,一般用于某次及以上次的谐波抑制。当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。 有源滤波器 虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(Active PowerFliter,缩写为APF)。 APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下特点: a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理; b.滤波特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险;c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

(完整word版)基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的

使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。 3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=w r/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以f c作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件

5.二阶无源低通滤波器

二阶低通滤波器设计 一:实验目的 .设计、焊接一个二阶低通滤波器,要求:截止频率为1KHz。二:实验原理 利用电容通高频阻低频的特性,使一定频率范围内的频率通过。从而设计电路,使得低频率的波通过滤波器。 三:实验步骤 1:设计电路,在仿真软件上进行仿真,在仿真电路图上使功能实现。2:先定电容,挑选合适的电阻,测量电阻的真实值,再到仿真电路替换掉原来的电阻值,不断挑选电阻,找到最逼近实验结果的值 3:根据仿真电路进行焊接,完成之后对电路进行功能检测,分别挑选频率为100hz,1khz,10khz的电源进行输入检测,观察输出的波形,并进行实验记录 四:实验电路 图1.1仿真电路设计

图1.2电路波特图 五:实验测量 我们用100hz,1khz,10khz三种不同正弦频率信号检测,其仿真与实测电路图如下: 图1.3 f=100Hz 时正弦信号仿真波形图

图1.4 f=100Hz 时正弦信号实测波形图 表1 f=100Hz 时实测结果与仿真数据对比表 分析:由图1.3的仿真波形与图1.4的实测电路波形和表1中的数据可知,输入频率为100Hz 的正弦信号时,该信号能够通过,输入输出波形间有较小相位差和较小衰减。仿真和实测数据间存在误差,误差值较小,在允许范围内。 数据项目 输入幅值/V 输出幅值/V 衰减/dB 相位差 仿真电路 169.706 167.869 0.0945 0.018π 实测电路 0.468 0.440 0.0536 0π

图1.5 f=1kHz 时正弦信号仿真波形图 图1.6 f=300Hz 时正弦信号实测波形图

表2 f=1kHz时实测结果与仿真数据对比表 数据项目输入幅值/V 输出幅值/V 衰减/dB 相位差 仿真电路169.631 121.047 2.931 0.140π 实测电路0.480 0.328 3.307 0.120π 分析:由图1.5的仿真波形与图1.6的实测电路波形和表2中的数据可知,输入频率为1kHz的正弦信号时,该信号能够通过,输入输出波形间有一定的相位差和衰减。仿真和实测数据间存在误差,误差值较小,在允许范围内。 图1.7 f=10kHz 时正弦信号仿真波形图

有源滤波器与无源滤波器的区别梳理

有源滤波器与无源滤波器的区别梳理 滤波器是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路,滤波器种类很多,有源滤波器和无源滤波器的区别我们最简单的分别办法是看看是否需要电源,在作用上最大的区别在于有源滤波器可以有增益,无源滤波器无增益是衰减的。 无源滤波器的特点 无源滤波器又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻旁路。其主要优点是结构简单,成本低廉,运行可靠性高,运行费用较低。缺点是通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时,滤波器的体积和重量都比较大,在低频段范围不适用。 有源滤波器的特点 有源滤波器的频率范围是由直流到500kHz,在低频范围内已取代了传统的LC滤波器,其主要特点为: 1、有源滤波器的输入阻抗高,输出阻抗极低,因而具有良好的隔离性能,所以各级之间均无阻抗匹配要求; 2、易于制作截止频率或中心频率连续可调的滤波器且调整容易; 3、如果使用电位器、可变电容器,有源滤波器的频率精度易于达到0.5%;

4、不用电感器,体积小,重量轻,在低频情况下,这种优点更为突出; 5、设计有源滤波器比设计LC滤波器更具灵活性,也可得到电压增益。 但应当注意,有源滤波器以集成运放作为有源元件,所以一定要电源,输入小信号时受运放带宽限制,输入大信号时受运放压摆率的限制,这就决定了有源滤波器不适用于高频范围。 有源滤波器与无源滤波器的区别? 有源滤波器和无源滤波器存在如下几大区别: 1、工作原理。无源滤波器由LC等元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道。有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出; 2、谐波处理能力。无源滤波器只能滤除某个特定阶次的谐波,有源滤波器可动态滤除各次谐波; 3、频率变化的影响。无源滤波器谐振点偏移,效果降低;有源滤波器不受影响; 4、系统阻抗变化影响。无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险,而有源滤波不受影响。 5、负载变化对谐波补偿效果的影响。无源滤波器补偿效果随着负载的变化而变化,有源滤波器不受负载变化影响;

无源滤波器和有源滤波器特点

无源滤波器:这种电路主要有无源元件R、L和C组成。 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 无源滤波装置 该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。 国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。 1单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。 2高通(宽频带滤波器,一般用于某次及以上次的谐波抑制。当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。 有源滤波器 虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(Active PowerFliter,缩写为APF。 APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下特点: a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理; b.滤波特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险; c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点 一、无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应

如何正确区别无源和有源电力滤波器

如何正确区别无源和有源电力滤波器 安科瑞王志彬2019.03 有源电力滤波器装置:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 无源电力滤波器装置:这种电路主要有无源元件R、L和C组成。 无源电力滤波器装置 该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。 有源电力滤波器装置 虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源电力滤波器(Active PowerFliter,缩写为APF)。 APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下三个特点: a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理; b.有源电力滤波器特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险; c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点。 国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。 (1)高通(宽频带)滤波器,一般用于某次及以上次的谐波抑制。当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。 (2)单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。 安科瑞ANAPF有源电力滤波器 1、概述 1.1谐波的产生 电力系统中理想的电压、电流波形都是频率为50Hz的正弦波,但是非线性电力设备(大功率可控硅、变频器、UPS、开关电源、中频炉等)的广泛应用产生了大量畸变的谐波电流,谐波电流耦合在线路上产生谐波电压。对非正弦的畸变电流作傅立叶级数分解,其中频率与工频相同的分量为基波,频率是基波频率整数倍的分量为谐波。谐波是电能质量的重要指标。 1.2谐波的危害

常见几款的无源滤波电路

常见几款的无源滤波电路 无源滤波器缺点:带负载能力差,无放大作用,特性不理想边沿不陡峭,各级互相影响。 RC滤波1,C值的选取:C不能选的太小,否则负载电容对滤波电路的影响很大,一般IC的输入电容往往有l~lOpF的输入电容。C值选的太大,则会影响滤波电路的高频特性,因为大电容的高频特性一般都不好。 2,R值的选取:R值过小会加大电源的负载,R值过大则会消耗较多的能量。 RC滤波电路的最大缺陷就是他不仅消耗我们希望抑制的信号能量,而目也消耗我们希望保留的信号能量。另外由于受电容高频特性的限制也不能用在太高频的场合,例如数MHz 以上需要用LC滤波器。 1. 电容滤波电路 电容滤波电路 分析电容滤波电路工作原理时,主要是用到了电容器的隔直通交特性和储能特性。前面整流电路输出的脉动性直流电压可分解成一个直流电压和一组频率不同的交流电,交流电压部分就会从电容器流过到地,而直流电压部分却因电容器的通交隔直特性而不能接地才流到下一级电路。这样电容器就把原单向脉动性直流电压中的交流部分的滤去掉了。 另外电容滤波电路也可以用电容储能特性来解释,当单向脉动直流电压处于高峰值时电容就充电,而当处于低峰值电压时就放电,这样把高峰值电压存储起来到低峰值电压处再释放。把高低不平的单向脉动性直流电压转换成比较平滑的直流电压。 滤波电容的容量通常比较大,并且往往是整机电路中容量最大的一只电容器。滤波电容的容量大,滤波效果好。电容滤波电路是各种滤波电路中最常用一种。 电源滤波电容如何选取,掌握其精髓与方法,其实也不难。 1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的SFR参数,这表示频率大于SFR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对

低通无源滤波器设计详细

低通无源滤波器仿真与分析 、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1) 按所处理的信号: 按所处理的信号分为和两种。 2) 按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3) 按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L 较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器) 组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件) ;缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4) 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为 x(t) ,输出为 y(t ) ,滤波器的脉冲响应函数为 h(t ) 。转换到频域,激励信号为 X(j ) ,经过一个线性网络得到的响应信号为 Y( j )

实验-无源与有源滤波器

实验二、无源和有源滤波器 一、实验目的 1、了解RC 无源和有源滤波器的种类、基本结构及其特性 2、分析和对比无源和有源滤波器的滤波特性 3、掌握扫频仪的使用方法 二、实验设备 1、信号与系统实验箱(参考型号:TKSS —B 型) 2、双踪示波器 三、实验原理 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可以由RC 元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )或带阻滤波器(BEF )四种。把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的分界点的频率称为截止频率或转折频率。图2-1中的|)(|Ωj H 为通带电压放大倍数, 0Ω为中心频率,CL Ω和CU Ω称为低端和高端截止频率。 图2-1 四种滤波器幅频特性示意图 四种滤波器的实验电路如图2-2所示。

图2-2 各种滤波器的实验线路图 3、图2-3中,滤波器的频率特性)(|)(|)(θ?∠Ω=Ωj H j H 式中|)(|Ωj H 为滤波器的幅频特性,)(θ?为相频特性,它们可以通过实验方法测量出来。

图2-3 滤波器 四、实验重难点 1、本实验以RC无源/有源低通滤波器为重点进行实验数据的观测。 2、熟悉函数信号发生器的使用。 五、实验步骤 1、示波器的通道1和通道2校准; 2、滤波器的输入端接正弦信号发生器或扫频电源,滤波器的输出端接示波器或交流数字毫伏表。 3、测试无源和有源低通滤波器的幅频特性。 ①测试RC无源低通滤波器的幅频特性。 调节函数信号发生器,产生200Hz,1V的正弦波信号。将其接到图2-2(a)所示电路的输入端,保持输入电压U I的幅值不变,逐渐改变其频率,观察输出电压U O幅值,并将测得的数据记录表一。作图(a)RC无源低通滤波器的幅频特性曲线。 ②测试RC有源低通滤器的幅频特性 实验电路如图2-2(b)所示。将实验数据记入表二中。 RC无源低通滤器的幅频特性RC有源低通滤器的幅频特性 4、测试无源和有源高通滤波器的幅频特性。

低通无源滤波器设计详细

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器(filter),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为和两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4)按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为)(t y,滤波器的脉冲响应函数为)(t h。转换到 x,输出为)(t 频域,激励信号为) Y。 (ωj (ωj X,经过一个线性网络得到的响应信号为)

无源滤波电路和有源滤波电路

三、无源滤波电路和有源滤波电路 无源滤波电路:若滤波电路仅由无源元件(电阻、电容、电感)组成。 有源滤波电路:若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成。 1. 无源低通滤波器 如图所示为RC低通滤波器及其幅频特性,当信号频率趋于零时,电容的容抗趋于无穷大,故低频信号顺利通过。 带负载后,通带放大倍数的数值减小,通带截止频率升高。可见,无源滤波电路的通带放大倍数及其截止频率都随负载而变化,这一缺点不符合信号处理的要求,因而产生有源滤波器。 2.有源滤波电路 为了使负载不影响 滤波特性,可在无源滤波 电路和负载之间加一个 高输入电阻低输出电阻 的隔离电路,最简单的方 法是加一个电压跟随器, 如右图所示,这样就构成 了有源滤波电路。 在理想运放的条件下,由于电压跟随器的输入电阻为无穷大, 输出电阻为零,因而 仅决定于RC的取值。输出电压 = , 负载变化,输出不变。 有源滤波必须在合适的直流电源供电的情况下才能起作用,还可以放大,只适合于信号处理,不适合高电压大电流的负载。

RC低通滤波器的响应特性 曲电阻(R)和电容(C)构成的RC电路是电子电路中使用最多的电路。首先,研究简单的RC电路的特性,针对在CMOS数字电路中的应用进行实验。 图1是各使用一个电阻、一个电容的RC电路。这种电路从频率轴来看,可作为1次低通滤波器处理。所谓低通滤波器是指低频率时通过、高频率时截止,能除去噪声等不需要的高频率的滤波器。 图1 RC电路的频率一增益/相位特性 使用比RC常数所决定的频率f,(称截止频率)低的输人频率时,信号的衰减小;相反地,高频时,因电容C的阻抗(IhoC)与电阻R相比变小,故衰减将变大,并与频率成反比。 一般将低通滤波器上增益为-3dB()处的频率称为截止频率,表示为: 超过截止频率fc的高频域的衰减特性,是以-GdB/oct(频率为2倍时衰减6dB)或-20dB/dec(频率为10倍时衰减20dB,变为1/10)特性的倾率使增益下降。 另外,输入输出间的相位特性也与输人频率f有关。随着频率f的上升,相位延迟角θ变大,在截止频率fc处,变为如下关系: 高频处可接近-90°。 图1是为研究R=10kΩ、C=1000pF(fc=15.92kHz)的增益/本目位特性,用增益相位分析器测定出来的结果。照片上夂处放入的标识点(·)与理论值不同,增益为-3.49 dB(正确值—3.0 dB)、相位为-46.8°(正确值-45°),这是因为分析器的输入阻抗及RC的值存在误差的原因。

Filter Solutions滤波器设计教程

一、FilterSolutions滤波器设计软件中的英文注解 Lowpassnotchfilters:低通陷波滤波器Order:阶 filtercircuits:滤波电路frequencyresponse:幅频响应Passband:通频带、传输带宽repeatedlycycle:重复周期maximumsignaltonoiseratio:最大信噪比 gainconstants:增益系数,放大常数circuittopologies:电路拓扑结构gainshortfall:增益不足maximumoutput:最大输出功率laststage:末级 precedingstage:前级 stagefilter:分级过滤器GainStage:增益级voltageamplitude:电压振幅Componentvalues:元件值maximumvalued:最大值minimumvalued:最小值standardvalue:标准值 resistors:电阻器 capacitors:电容器operationalamplifiers:运算放大器(OA) circuitboard:(实验用)电路板activefilters:有源滤波器supplycurrents:源电流powersupplies:电源bypassingcapacitors:旁路电容optimal:最佳的;最理想的GainBandwidth:带宽增益passivecomponent:无源元件activecomponent:有源元件overallspread:全局;总范围Componentcharacteristics:组件特性Modification:修改;更改databook:数据手册typicalvalues:标准值;典型值defaultvalues:省略补充programexecution:程序执行Resetbutton:复原按钮positivetemperaturecoefficient:正温度系数 variableresistors:可变电阻器cermetresistor:金属陶瓷电阻器outputresistance:输出电阻distortion:失真 singleamplifier:单级放大器voltagefollower:电压输出跟随器troubleshooting:发现并修理故障controlpanel,:控制面板 二、FilterSolutions滤波器设计的基本步骤 1、打开crack的软件后,根据滤波器的设计要求,在filtertype中选择滤波器的类型(Gaussian:高斯滤波器、Bessel:贝塞尔滤波器、butterworth:巴特沃斯;Chebyshev1切比雪夫1;Chebyshev2切比雪夫2;Hourglass:对三角滤波器、Elliptic:椭圆滤波器、Custom:自定义滤波器、RaisedCos:升余弦滤波器、Matche:匹配滤波器、Delay:延迟滤波器); 2、在filterclass中选择滤波器的种类(低通、高通、带通、带阻); 3、在filterAttributes中设置滤波器的阶数(Order)、通频带频率(Passband frequency);

实验四 无源和有源滤波器

实验四无源和有源滤波器 实验性质:验证性实验级别:必做 开课单位:信息与通信工程学院学时:2 一、实验目的 1、了解RC无源和有源滤波器的种类、基本结构及其特性 2、分析和对比无源和有源滤波器的滤波特性 二、仪器设备 1、信号与系统实验箱 2、双踪示波器。 三、原理说明 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC 元件或RC元件构成的无源滤波器,也可以由RC元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的分界点的频率ωc称为截止频率或称转折频率。图4-1中的|H(jω)|为通带的电压放大倍数,ω0为中心频率,ωcL和ωcH分别为低端和高端截止频率。 图4-1 各种滤波器的理想频幅特性 四种滤波器的实验线路如图4-2所示:

(a)无源低通滤波器 (b)有源低通滤波器 (c) 无源高通滤波器 (d)有源高通滤波器 (e)无源带通滤波器 (f)有源带通滤波器 (g)无源带阻滤波器 (h)有源带阻滤波器 图4-2 各种滤波器的实验线路图

3、图4-3所示,滤波器的频率特性H (jω)(又称为传递函数),它用下式表示 21 ()()()u H j A u ωωθω= =∠ (4-1) 式中A (ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。它们都可以通过实验的方法来测量。 + - 图4-3 滤波器 四、预习要求 1、 为使实验能顺利进行,做到心中有数,课前对教材的相关内容和实验原理、目的与要求、步骤和方法要作充分的预习(并预期实验的结果)。 2、 推导各类无源和有源滤波器的频率特性,并据此分别画出滤波器的幅频特性曲线 3、在方波激励下,预测各类滤波器的响应情况。 五、 实验内容及步骤 1、滤波器的输入端接正弦信号发生器或扫频电源,滤波器的输出端接示波器或交流数字毫伏表, 2、测试无源和有源低通滤波器的幅频特性。 (1)测试RC 无源低通滤波器的幅频特性。 用图4-2-1(a )所示的电路,测试RC 无源低通滤波器的特性。实验时,必须在保持正弦波信号输入电压(U 1)幅值不变的情况下,逐渐改变其频率,用实验箱提供的数字式真有效值交流电压表(10Hz

有源滤波和无源滤波的区别

有源滤波和无源滤波的区别

————————————————————————————————作者:————————————————————————————————日期:

有源滤波和无源滤波的区别 滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。谐波治理首先要控制好谐波产生的源头,其次我们还要通过增加滤波装置进行谐波的消除。如何正确选择有效的谐波质量方案非常关键。 一、无源滤波 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道。如图1所示为无源滤波原理图。

图1 无源滤波原理图 优缺点 优点:无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低。 缺点:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 应用 由于无源滤波的具有大容量低价位的优点,钢铁行业的滤波都采用无源滤波,目前国内滤波市场(电力谐波治理市场)上主要以无源滤波为主。国际上以ABB、施耐德、西门子为代表,国内以Satons、温州清

华电子、山大华天、哈工大、西安赛博、绿波杰能为代表。发展形势以快速反映,谐波治理彻底,综合控制为主。 二、有源滤波 有源滤波器(Active Power Filter,简称APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿。之所以称为有源,顾名思义该装置需要提供电源(用以补偿主电路的谐波),其应用可克服LC无源滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功。 三相电路瞬时无功功率理论是APF发展的主要基础理论,APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高。如图 2所示为有源滤波结构图。

无源低通滤波器分析

无源低通滤波器分析 一、研究目的 滤波器是一种选择装置,它对输入信号处理,从中选出某些特定信号作为输出。如果滤波器主要由无源元件R、L、C构成,称为无源滤波器。滤波器按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。针对电气专业的实际特点,文中主要对无源低通滤波器进行分析讨论,并希望总结出无源滤波器在实际工程应用中的相关选用原则。 要求:1、分析讨论无源低通滤波器的各基本形式;2、通过仿真测试滤波器实际效果并分析结果;3、总结滤波器选用原则和体会 二、滤波器类型简介 无源滤波器通常是以L-C R-C等无源器件组成的一种只允许通过给定的频 带信号而阻止其它频率信号通过的选频网络。工业电源中一般把400HZ以下的电源称为工频电源,400-10KHZ的电源称为中频电源,10KHZ以上称为高频电源。用于交流电源输入端滤除电源网络中高频干扰的低通滤波器,整流电路中用于滤除纹波的平滑滤波器,用于抑制放大器产生低频振荡为目的的电源去耦滤波器等,都属于无源滤波器的范畴。 而RC电路多用于低频、功率输出较小的场合,LC电路适用于高频应用场合。 按滤波器结构分类,常用的基本形式有L型、倒L型、T型、n型等电路形式。 图1、L型、倒L型、T型、n型电路形式

三、滤波元件特性 常用元器件低频特性和高频特性: 图2、元器件低频特性和高频特性图 电感L的基本特性为通直阻交,电路中具有稳定电流的作用。高频时电感的阻抗与频率呈现如下关系 10* 10fl10 询IO111O IJ 频杯H工 图3、电感高频特性图 电容C的基本特性为通交阻直,电路中具有稳定电压的作用。按功能可分为1、旁路电容2、去耦电容3、滤波电容。高频时电容的阻抗与频率呈现如下关系: io4----------- --- ---------------- 烦率/7皿 图4、电容高频特性图 滤波电容不是理想的低通滤波器,存在ESL和ESR是以自谐振点为中心的带通滤波器。同为0805封装的陶瓷电容,0.01卩f的电容比0.1卩f的电容有更好的高频滤波特性,实际使用中要注意选择合适的电容。 电匝-AM- T1 电蛭 2 器 件 IL.vpcd nruoii

相关文档
最新文档