量子力学导论第12章答案

量子力学导论第12章答案
量子力学导论第12章答案

第十二章 散射

12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2

2

c o s s i n 121∑∞

=+=

l l l i P e

l k

l

θδθσδ

只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2

11002

cos sin 3cos sin 11

θ

δθδθσδδP e

P e

k

i i +=

()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得

()2

102

cos sin 3sin 11

θ

δδθσδδi i e

e

k

+=

()2

2

12

101002

2cos sin 9cos cos cos sin 6sin

δθδδδδδ+-+=k

2

2

2102

cos cos 1θ

θA A A k

++=

其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。

12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()??

?><-=.

,

0;,0a r a r V r V

(b ) ()2

0r

e

V r V α-= (c ) ()r

e

r V αγ

κ-=

(d ) ()().r r V γδ=

解:本题的势场皆为中心势场,故有

()()

?

-

=0

'

''

'

2

sin 2dr qr r V r q

u f θ ,2

sin

k q = (1)

()()

()

2

'

'

'

'

2

4

22sin 4?

=

=dr

qr r V r q

u

f θθσ (1)

(a )()()qa qa qa q

V dr qr V r a

cos sin sin 2

00

'

'

0'

--

=-?

()()2

6

4

2

02cos sin 4 qa qa qa q

V u -=

∴ θσ

(b )()?

?

--∞

--=

??? ??0

'

'00

''0'

'

'

2

'2'2sin dr

e

e

e

r i

V dr qr e V r iqr

iqr

r

r αα

???

?

???

?-

=?

?∞

-

???

?

?+-∞-

??

? ??--0

'

42'

0'

42'0

2

2'2

2'2dr e

r dr e r i V q iq r q iq r αααααα ???

?

???

?-

=

?

?∞

?

?? ?

?+-∞??

? ??-

--0

'

2'

0'

2'402

'2

'2

2dr e

r dr e r e

i

V iq r iq r q

ααααα

[]21402

2I I e

i

V q

-=

(3)

其中 1I ?

?

?? ?

?--=

'

2'

2

'dr

e

r iq r αα()

?

?∞

?

??

?

?--∞

?

??

?

?--+

-=

'

20

'

2'

2

'2

'22dr e

iq dr e

iq r

iq r iq r ααααα

α

?

?

-∞

-+

=

2

2

2ξα

ξξαξ

αξ

d e

iq d e

2

3421α

πα

iq +

=

(4)

类似地可求得 2I ?

?

??

?

?+-=

'

2'

2

'dr e

r iq r αα2

3421α

πα

iq -

=

(5)

(4)、(5)代入(3),得

α

α

ααπαπ42

3023400

''0'2

2

2'422sin q q r e q V iq e i

V dr qr e V r --∞

--=???

? ??-=??? ???

(6)

代入(2),得

()α

α

πθσ23

4

2022

4q

e

V u -=

(7)

(c )I dr qr e dr qr r e r r r ==??? ?

???

∞-∞

-0

'

'0

''''

sin sin ''

αακκ?

--=0

''

sin r

de

qr αακ

??

?

??

?--=?∞

-∞-0

'

'0

'cos sin '

'

dr

qr e

q e

qr r

r

ααακ?

-??

? ??-=0

''cos 1r

de

qr q ααακ ??

?

??

?+-=?∞

-∞-0

'

'

'2sin cos '

'dr

qr e

q e

qr q r

r

ααακ ??

?

?

??+--

=I q q κακ12 由此解得 =

I 2

20

'

'''

s i n '

q

q dr qr r e r r +=??? ???

-ακκα (8) 代入(2),解得 ()(

)

2

2

2

4

2222

2

2

4

244q

u q

q q u

+=

+=

α

κα

κ

θσ (9)

将()().r r V γδ=代入§12.3.2式(18),

()???

? ??-=?-''

3

2

'

2,r V e

r d

u f r

q i π?θ,得 ()???? ??-

=?-'

'

32

'

2,r e

r d u f r

q i γδπ?θ

22

πγu -= ()=∴θσ ()

4

2

222

2,

πγ

?θu f =

(10)

可见,()θσ与?θ,均无关,是各项同性的,=σ4

22

πγ

u 。

12-3)计算低能粒子散射截面(只考虑 波),设粒子自旋为21,相互作用为

()?

?

?>≤?=a

r a r V r V ,0,21

0σσ (1)

,00>V 入射粒子和靶粒子均未极化。

提示:计及粒子的全同性,对于s 态(0=l ,空间波函数对称),两粒子自旋之和必为0=s (单态),所以

()?

?

?>≤-=a

r a r V

r V ,

0,30

(1’)

解:自旋为21的二全同粒子体系的总波函数必须是交换反对称的,s 波(0=l )波函数是两粒子空间坐标的对称函数,所以自旋波函数必须是反对称的,即为自旋单态,因此,体系总自旋为0, 321-=?σσ

亦即,对于低能s 波散射,式(1)等价于球方势阱

()??

?>≤-=a

r a r V r V ,

0,

30 (1’)

在质心系中,s 波空间波函数可以写成

()()r r u r =ψ (2) 其中r

为两粒子的相对距离,即0→-=E r 时。径向方程为

()02"

2

=+-u r V u u

(3)

亦即

a

r u a r u k u >=≤=+,

0,0"

2

0" ()0→E (3’)

其中 00036mV uV k == (4)

m 为粒子质量,2m =μ为两粒子体系的约化质量。

方程(3’)满足边界条件()00=u 的解为

()???

??>???

? ?

?

-≤=a

r a r C a r r k A r u ,1,sin 00 (5)

其中0a 为散射密度(待定),()0a -即散射振幅,利用a r =处u u '的连续条件,求得

0a ?

???

??--=1tan 00a k a k a (6) ()0a f -=θ?

??

?

??-=1tan 00a k a k a (7) 由于是全同粒子散射,s 波微分截面为

()θσ()()2

02

4a f f =-+=θπθ (8)

总截面(自旋单态,s 波)为

()2

0164a t πθπσσ== (9)

考虑到入射粒子和靶粒子都是未极化的,自旋指向取随机分布,两粒子形成自旋单态()0=s 的几率为4

1,形成

自旋三重态()1=s 的几率为4

3,后若对s 波散射无贡献。因此,有效的总截面为

2

002

2

1tan 444

1?

??

? ??-===a k a k a a t ππσσ有效 (10) 在不发生共振散射的条件下,散射振幅和散射截面均和入射能量无关,这是低能散射的特点。 共振散射的条件为±∞→0a ,亦即(参考式(6))

,2

5,

2

3,

2

0πππ

=

a k (11)

这正是势阱的“阱口”出现束缚能级()-

=0

E 的条件,这时式(9)和(10)应改为

mE

uE k

f

c

t 2

2

2

2

3281616

ππππσ=

=

=

= (12)

mE

t 2

84

1 πσσ=

=

有效

其中E 为实验室坐标系中入射中子动能,2E E c =为质心系中总动能,u k E c 22

2 =。

量子力学第二章总结

第二章 1.波函数/平面波: (1)频率和波长都不随时间变化的波叫平面波。 (2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数 2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子. 3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。 由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。 (2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。 4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|2 5.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2 d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2 d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。 7.归一化: C ∫∞|Φ(x,y,z,t)|2 d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2 d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ?Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2 故把(1)式改写成 ∫∞|Ψ(r , t)|2 d τ=1 把Φ换成Ψ的步骤称为归一化。 8.δ—函数 δ(x-x 0)= 0 x ≠x 0 ∞ x=x0 ∫+∞ -∞δ(x-x 0)dx=1 9.波函数的标准化条件: (1)单值、有限、连续 (2)正交 归一 完备 10.态叠加原理: 态叠加原理一般表述:若Ψ1 ,Ψ2 ……Ψn …… 是体系的一系列可能的状态,则这些态的线性叠加 Ψ= C 1Ψ1+ C 2Ψ2+……+C n Ψn 也是体系的一个可能状态。 11.能量算符/哈密顿算符 定态波函数满足下面两个方程: 两个方程的特点:都是以一 个算符作用于Ψ(r, t)等于E Ψ(r, t)。 →哈密顿算符 这两个算符都是能量算符 12.薛定谔方程: 13.几率流密度 单位时间内通过τ的封闭 表面S 流入(面积分前面的负号)τ内的几率,因而可以自然的把J 解释为概率密度矢量。 14.质量守恒定律: 15.电荷守恒定律:

量子力学导论第6章答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + =+= (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p +=2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212121 ,m m m m m m M +=+=μ 证: 2 12 211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ???? ? ??-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()22 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

量子力学导论 答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + = + = (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p += 2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212 121 ,m m m m m m M +=+=μ 证: 2 12211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ????? ? ?-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()2 2 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

最新量子力学导论期末考试试题内含答案

量子力学试题(1)(2005) 姓名 学号 得分 一. 简答题(每小题5分,共40分) 1. 一粒子的波函数为()()z y x r ,,ψψ=? ,写出粒子位于dx x x +~间的几率。 2. 粒子在一维δ势阱 )0()()(>-=γδγx x V 中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。 3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开: ∑=n n n x c x )()(ψψ, 写出展开式系数n c 的表达式。 4. 给出如下对易关系: [][][] ?,? ,? ,===z x y z L L p x p z 5. 何谓几率流密度?写出几率流密度),(t r j ? ?的表达式。 6. 一维运动中,哈密顿量)(22 x V m p H +=,求[][]?,?,==H p H x 7. 一质量为μ的粒子在一维无限深方势阱?? ?><∞<<=a x x a x x V 2,0, 20,0)( 中运动,写出其状态波函数和能级表达式。 8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态: b b b B =,本征值 0≠b 。求在态b 中,算符A 的平均值。

二. 计算和证明题 1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 2. 考虑如下一维波函数:0/0()n x x x x A e x ψ-?? = ??? , 其中0,,A n x 为已知常数。利用薛定谔 方程求位势()V x 和能量E 。对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。 3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处 的势阶运动。当0≤x 时,该势为0;当0>x 时,该势为 E 4 3 。问在0=x 处粒子被反射的的几率多大?(15分) 0 X 4.设粒子处于()?θ,lm Y 状态下, 1)证明在的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L η=-, []y L i η=-=z x x z x z L L L L L ,L 求平均。) 2)求()2 x L ?和() 2 y L ? (附加题)5. 设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ?? =?? -=η η 整函数是指),(p x F 可以展开成∑∞ ==0 ,),(n m n m mn p x C p x F 。

量子力学导论习题答案(曾谨言)

第五章 力学量随时间的变化与对称性 5.1)设力学量A 不显含t ,H 为本体系的Hamilton 量,证明 [][]H H A A dt d ,,2 2 2 =- 证.若力学量A 不显含t ,则有[]H A i dt dA ,1 =, 令[]C H A =, 则 [][]H C H C i dt C d i dt A d ,1 ,112 22 -===, [][]H H A A dt d ,, 2 2 2 =-∴ 5.2)设力学量A 不显含t ,证明束缚定态,0=dt dA 证:束缚定态为::() () t iE n n n e t -=ψψ,。 在束缚定态()t n ,ψ,有()()()t E t t i t H n n n n ,,,ψψψ=?? = 。 其复共轭为()()()t r E e r t i t r H n n t iE n n n ,,** * * ψψψ=?? -= 。 ??? ??=n n dt dA dt dA ψψ,()??? ??-??? ??-=??n n n n n n A A A dt d ψψψψψψ,,, ?? ? ??-??? ??-= n n n n H i A A H i dt dA ψψψψ 1,,1 []()()n n n n AH i HA i H A i t A ψψψψ,1 ,1,1 -++??= []()()n n HA AH i H A i ψψ--= ,1,1 [][]() 0,,1=-=A H H A i 。 5.3)(){} x x iaP x a a D -=? ?? ??? ??-=exp exp 表示沿x 方向平移距离a 算符.证明下列形式波函数(Bloch 波函数)()()x e x k ikx φψ=,()()x a x k k φφ=+ 是()a D x 的本征态,相应的本征值为ika e - 证:()()()() ()a x e a x x a D k a x ik x +=+=+φψψ ()()x e x e e ika k ikx ika ψφ=?=,证毕。

最新量子力学导论习题答案(曾谨言)(1)

第九章 力学量本征值问题的代数解法 9—1) 在8.2节式(21)中给出了自旋(2 1)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于2 1,21===s j l j 的耦合。试由8.2节中式(21)写出表9.1(a )中的CG 系数 jm m m j 21121 解:8.2节式(21a )(21b ): ()21),0( 21+=≠-=m m l l j j j ljm φ???? ??-+++=+11121 lm lm Y m l Y m l l () ????? ??-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-= j l j ljm φ???? ??++---=+11121 lm lm Y m l Y m l l () ????? ??+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b ) ()21++j l 此二式中的l 相当于CG 系数中的1j ,而2 12==s j ,21,~,,~21±=m m m m j 。 因此,(21a )式可重写为 jm ∑=222112 211m jm m j m j m j m j 2 12121212121212111111111--+=m j jm m j m j jm m j ??????? ? ??-???? ??++-???? ??++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 , 21111112212121??? ? ??++=+j m j jm m j 而2 12-=m 时,

量子力学导论习题答案(曾谨言)

第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ?? ?∞<<<<=其余区域 ,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为 m E y x n n 222π = )(2 22 2b n a n y x + ,2,1, ,sin sin 2== y x y x n n n n b y n a x n ab y x ππψ 若b a =,则 )(22 22 22y x n n n n ma E y x +=π a y n a x n a y x n n y x ππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11' ' ==y x n n ) 3.2)设粒子限制在矩形匣子中运动,即 ? ??∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。如c b a ==,讨论能级的简并度。 解:能量本征值和本征波函数为 )(222 2 222 22c n b n a n m n n n E z y x z y x + +=π , ,3,2,1,, , sin sin sin 8 == z y x z y x n n n c z n b y n a x n abc n n n z y x πππψ 当c b a ==时, )(2222222z y x n n n ma n n n E z y x ++=π a y n a y n a x n a n n n z y x z y x πππψsin sin sin 22 3 ??? ??= z y x n n n ==时,能级不简并; z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。

曾谨言《量子力学导论》习题解答

曾谨言《量子力学导论》习题解答第三章一维定态问题 3.1)设粒子处在二维无限深势阱中, ,,,,0, 0xa,0yb,V(x,y), ,,, 其余区域, a,b求粒子的能量本征值和本征波函数。如,能级的简并度如何, 解:能量的本征值和本征函数为 2222nn,,yx(,)E, nn22xy2mab ny,nx,2yx,sinsin, n,n,1,2,? ,nnxyxyabab 22,,22a,bE,(n,n)若,则 nnxy2xy2ma ny,nx,2yx,sinsin ,nnxyaaa n,10,n,5这时,若n,n,则能级不简并;若n,n,则能级一般是二度简并的(有偶然简并情况,如xyxyxy ''n,11,n,2与) xy 3.2)设粒子限制在矩形匣子中运动,即 ,,,,,,0, 0xa,0yb,0zc,,V(x,y,z) ,,, 其余区域, a,b,c求粒子的能量本征值和本征波函数。如,讨论能级的简并度。 解:能量本征值和本征波函数为 22222nnn,,yxzE, ,(,,)222nnnm2abcxyz ny,nxnz,,8yxz,sinsinsin,,nnn abcabcxyz n,n,n,1,2,3,?xyz a,b,c当时, 22,,222 E,(n,n,n)xyz2nnn2maxyz 32ny,nxny,,2,,yxz ,sinsinsin,,,nnnaaaaxyz,,

n,n,n时,能级不简并; xyz n,n,n三者中有二者相等,而第三者不等时,能级一般为三重简并的。 xyz 三者皆不相等时,能级一般为6度简并的。 n,n,nxyz 222222,5,6,8,3,4,10(1,7,9),(1,3,11)如 ,22222210,12,16,6,8,20(1,5,10),(3,6,9), 3.3)设粒子处在一维无限深方势阱中, 0, 0,x,a,V(x,y), ,,, x,0,x,a, 证明处于定态的粒子 ,(x)n 2aa62x,,,, (x-x)(1) 22212n,讨论的情况,并于经典力学计算结果相比较。n , , 证:设粒子处于第n个本征态,其本征函数 ,2n(x),sinx. ,naa 2aa2n,a分部2 (1) ,,sin xxdxxxdx,n,,002aa 2a2a2222(,),,,,, xxxxxdxn,04 2a212n,xa2,,(1,cos), xdx ,024aa 2a6,,(1) (2) 22n,12 在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改,,0, a dxxxdx,,变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 a adxa , (3) ,,,xx,02a 2adxa22,,,xx, ,03a 222aa22() (4) x,x,x,x,,34 当时,量子力学的结果与经典力学结果一致。 n,,

第三章 量子力学导论

闽江学院 教案 课程名称:原子物理 课程代码: 21100430 授课专业班级: 2010级物理学(师范类)授课教师:翁铭华 系别:电子系 2012年8 月30 日

第三章量子力学导论 教学目的和要求: 1.了解量子化物质波粒二象性的概念。 2.理解测不准原理; 3.掌握波函数及物理意义; 4.了解薛定谔方程;了解量子力学问题的几个简例; 5.了解氢原子的薛定谔方程;了解量子力学对氢原子的描述。 教学重点和难点: 1. 教学重点:波函数及统计解释 2.教学难点:波函数及统计解释 教学内容: 1. 玻尔理论的困难 2. 波粒二象性 3. 不确定关系 4. 波函数及其统计解释 5. 薛定谔方程及应用 19世纪末的三大发现(1896年发现放射性,1897年发现电子,1900年提出量子化概念)为近代物理学的序幕。1905年爱因斯坦在解释光电效应时提出光量子概念,1913年玻尔将普朗克-爱因斯坦量子概念用于卢瑟福模型,提出量子态观念,成功地解释了氢光谱。此外,利用泡利1925年提出的不相容原理和同年乌仑贝克、古兹米特提出的电子自旋假说,可很好地解释元素周期性、塞曼效应的一系列实验事实。至此形成的量子论称为旧量子论,有严重的缺陷。 在“物质粒子的波粒二象性”思想的基础上,于1925-1928年间由海森堡、玻恩、薛定谔、狄拉克等人建立了量子力学,它与相对论成了近代物理学的两大理论支柱。 量子力学的本质特征在1927年海森堡提出的不确定关系中得到明确的反映,它是微观客体波粒二象性的必然结果。量子力学的主要内容:1)相关的几个重要实验;2)有别于经典物理的新思想; 3)解决具体问题的方法。 §3-1玻尔理论的困难 玻尔理论将微观粒子视为经典力学中的质点,把经典力学的规律用于微观粒子,使其理论中有难以解决的内在矛盾,故有重大缺陷。如:为什么核与电子间的相互作用存在,但处于定态的加速电子不辐射电磁波?电子跃迁时辐射(或吸收)电磁波的根本原因何在?……(薛定谔的非难“糟透的跃迁”:在两能级间跃迁的电子处于什么状态?) 玻尔理论在处理实际问题时也“力不从心”,如无法解释氢光谱的强度及精细结构,无法解释简单程度仅次于氢原子的氦光谱,无法说明原子是如何组成分子及构成液体和固体。…… §3-2波粒二象性 1.经典物理中的波和粒子 经典物理学中,波和粒子各自独立,在逻辑上不允许同时用这两个概念描写同一现象。粒子可视为质点,具有定域性,有确定的质量、动量、速度和电荷等,波可以在空间无限扩展,波有确定

量子力学 第二章 算符理论

第二章(一维)算符理论 本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。最后,作为对上述内容的综合应用,讨论了不确定性原理。 1.算符:每一个可观测量,在态空间中被抽象成算符。在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上 ①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =?=αβ 。总之,方阵与线性变换一一对应。由于方阵性质比矩阵更丰富,我们将只研究方阵。 ②微分算子:在微积分中2222,,,i i x f x f dx f d dx df ???? 也可简写成f f f D Df 22,,,??。前两种在解 欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算 ③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f D mix μ=中,把μ称为问题本征值,f 称为本征函数 ⑤线性算符:现在把上述概念统一为线性算符理论。 考虑一个可测量Q ,定义它的对应算符为Q ?,它的本征方程是ψ=ψλQ ?或λψψ=Q ?,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」 (或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ, 如后面将遇到的坐标算符本征态x 、动量算符本征态p ) ⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ?作用于系统粒子的态矢量ψ,测量值只能为算符Q ?的本征值i λ。在这次测量后,假设得到

量子力学导论第8章答案

第八章 自旋 8.1) 在z σ表象中,求x σ的本征态。 解:在z σ表象中,x σ的矩阵表示为:x σ ??? ? ? ?=0110 设x σ的本征矢(在z σ表象中)为??? ? ??b a ,则有??? ? ??=???? ?????? ??b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。 ,1=λ 则; b a = ,1-=λ 则b a -= 利用归一化条件,可求出x σ的两个本征态为 ,1=λ ;1121???? ?? ,1-=λ ??? ? ??-1121 。 8.2) 在z σ表象中,求n ?σ的本征态,()??θ?θcos ,sin sin ,cos sin n 是()?θ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为 x σ ??? ? ? ?=0110, y σ??? ? ? ?-=00 i i , z σ??? ? ? ?-=1001 (1) 因此, z z y y x x n n n n n σσσσσ++=?= ??? ? ??-=???? ?? -+-=-θθθθ ?? cos sin sin cos i i z y x y x z e e n in n in n n (2) 设n σ的本征函数表示为Φ??? ? ??=b a ,本征值为λ,则本征方程为 ()0=-φλσn ,即 0cos sin sin cos =? ??? ?????? ??----b a e e i i λθθθλ θ? ? (3) 由(3)式的系数行列式0=,可解得1±=λ。 对于1=λ,代回(3)式,可得 x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ?? θθ θθ 归一化本征函数用()?θ,表示,通常取为 ()???? ? ?=? θθ ?θφi e 2sin 2cos ,1或??? ? ? ? ?-222sin 2cos ? ? θθi i e e (4)

量子力学第二章习题解答

第二章习题解答 p.52 2.1.证明在定态中,几率流与时间无关。 证:对于定态,可令 )] r ()r ()r ()r ([m 2i ] e )r (e )r (e )r (e )r ([m 2i ) (m 2i J e )r ( ) t (f )r ()t r (**Et i Et i **Et i Et i **Et i ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(, 可见t J 与 无关。 2.2 由下列定态波函数计算几率流密度: i k r i k r e r e r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。 解:分量只有和r J J 21 在球坐标中 ? θθ?θ?? +??+??=?s i n r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr 3 020 220 1* 1*111 )]11(1)11(1[2 )]1(1)1(1[2 ) (2 )1(==+----=??-??=?-?=--ψψψψ r J 1 与同向。表示向外传播的球面波。

r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i ) (m 2i J )2(3020 220 ik r ik r ik r ik r * 2*222 -=-=---+-=??-??=?-?=--ψψψψ 可见,r J 与2反向。表示向内(即向原点) 传播的球面波。 补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化? ∞==? ? ∞ ∞ dx dx ψψ* ∴波函数不能按1) (2 =? dx x ψ方式归一化。 其相对位置几率分布函数为 12 ==ψω表示粒子在空间各处出现的几率相同。 2.3 一粒子在一维势场 ??? ??>∞≤≤<∞=a x a x x x U ,, ,0 00)( 中运动,求粒子的能级和对应的波函数。 解:t x U 与)(无关,是定态问题。其定态S —方程 )()()()(22 2 2x E x x U x dx d m ψψψ=+- 在各区域的具体形式为 Ⅰ: )()()()(2 011122 2x E x x U x dx d m x ψψψ=+- < ① Ⅱ: )()(2 0 222 2 2x E x dx d m a x ψψ=-≤≤ ② Ⅲ: )()()()(2 3332 2 2x E x x U x dx d m a x ψψψ=+- > ③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须 0)(1=x ψ

《量子力学导论》习题答案(曾谨言版-北京大学)1

第一章 量子力学的诞生 1.1设质量为m 的粒子在一维无限深势阱中运动, ???<<><∞=a x a x x x V 0,0,0,)( 试用de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有 ),3,2,1(2 =? =n n a λ n a /2=∴λ (1) 又据de Broglie 关系 λ/h p = (2) 而能量 () ,3,2,12422/2/2 2222 222 22==?===n ma n a m n h m m p E πλ (3) 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==? ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, ,3,2,1,,=z y x n n n 粒子能量 ??? ? ??++=++=222222222 222)(21c n b n a n m p p p m E z y x z y x n n n z y x π ,3,2,1,,=z y x n n n 1.3设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221 ()2 x a E V x m a ω=== 。 a - 0 a x

量子力学导论习题答案(曾谨言)

第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则 ()BA AB +21 和()BA AB i -21也是厄米算符。由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且 ()()+++-=+= F F i F F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=?? ? ???++++++ 21212121 ()BA AB +∴2 1 为厄米算符。 ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=?? ? ???-+++++ 21212121 ()BA AB i -∴21 也为厄米算符。 ⅲ)令AB F =,则()BA A B AB F ===+++ +, 且定义 ()()+++-=+= F F i F F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+ -++ +==F F F F ,,即+F 和-F 皆为厄米算符。 则由(1)式,不难解得 -++=iF F F 4.2)设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ??=?? -= 整函数是指),(p x F 可以展开成∑∞ == ,),(n m n m mn p x C p x F 。 证: (1)先证[ ][] 11 , ,,--=-=n n m m p ni p x x mi x p 。 [][][][][ ] [][ ] []()() []()1 111 11 3 3 1 3 32312 2211 1 1,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m m x m i x i x i m x x p x i m x x p x i x x p x x p x x i x x p x x p x x i x x p x p x x p 同理,

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

量子力学导论习题答案(曾谨言)

第十章 定态问题的常用近似方法 10-1) 设非简谐振子的Hamilton 量表为'0H H H += 2 22 2202 12x u dx d u H ω+-= 3'x H β=(β为实常数) 用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。 解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα 2 ) 0(2 2-=, () ω 21) 0(+=n E n , ωαu = ()[] 11121 +-++=n n n n n x x ψψα ψ ()()()()()[ ]222 22112121 +-+++ +++= n n n n n n n n n x x ψψψαψ ()()()()()()()[ ]31133 3321113321221++--++++ ++++--= n n n n n n n n n n n n n n n x x ψψψψα ψ计算 一级微扰:n n n H E ψψ' ) 1(=03 ==n n x ψψβ。 (也可由()?+∞ ∞ -?==dx x x H E n nn n 32 ' ) 1(βψ0=(奇)直接得出) 计算二级微扰,只有下列四个矩阵元不为0: ()()' ,33 332122n n n n H n n n x --=--=α βψβψ ' ,13 31322n n n n H n n x --=?=α βψβψ ()' ,13 3111322n n n n H n n x ++=++?= α βψβψ ()()() ',33 3332122n n n n H n n n x ++=+++?= α β ψβψ 计算2' kn H :()()6 22' ,3821αβ--=-n n n H n n 6232 ',19αβn H n n =- 6232 ',189αβn H n n =+ ()()()622' ,38321αβ+++=+n n n H n n

量子力学导论答案-第一章

waterysun 似水骄阳 1 第一章 量子力学的诞生 1.1设质量为m 的粒子在一维无限深势阱中运动, ? ??<<><∞=a x a x x x V 0,0,0,)( 试用de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有 ),3,2,1(2 =?=n n a λ n a /2=∴λ (1) 又据de Broglie 关系λ/h p = (2) 而能量 () ,3,2,12422/2/222222 22 22==?===n ma n a m n h m m p E πλ (3) 1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()∫==? ,3,2,1,x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, ,3,2,1,,=z y x n n n 粒子能量 ??? ?????++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n z y x π ,3,2,1,,=z y x n n n 1.3设质量为m 的粒子在谐振子势2221)(x m x V ω= 中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2, ,2,1,x V E m p n nh x d p ?===?∫ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2 x a E V x m a ω===。 a ? 0 a x

量子力学考研2021量子力学导论考研真题解析

量子力学考研2021量子力学导论考研真题解析一、考研真题解析 0粒子在势场(,)中运动,试用不确定关系估计基态能量。[中国科学院2006研] 【解题思路】 利用不确定关系求解哈密顿量的最小值问题。 【解析】 根据不确定原理有 即 因为 所以只需要求解出的最小值就可以估计基态的能量。 令 由 得出

所以基态能量为 【知识储备】 若[F,G]=0,则算符F和G有共同的本征函数系;其逆定理也成立。 对易算符的性质:在F和G的共同本征函数系中测量F和G,都有确定值。 若[F,G]≠0,则有不确定关系 或 经常使用的关系式 21设粒子所处的外场均匀但与时间有关,即,与坐标r无关,试将体系的含时薛定谔方程分离变量,求方程解的一般形式,并取,以一维情况为例说明V(t)的影响是什么。[中国科学院2006研] 【解题思路】 理解记忆含时薛定谔方程和定态薛定谔方程,以及分离变量法在求解薛定谔方程时的应用。 【解析】 根据含时薛定谔方程

令 带入可得 即 上式左边是关于时间t的函数,右边是关于坐标r的函数,因此令它们等于常数s,得 和 所以 对于 令

所以 因此 当 时, 相对于一维自由平面波函数, 使得波函数是自由平面波随时间做 改变的形式。 【知识储备】 薛定谔方程: 波函数随时间的变化规律由含时薛定谔方程给出 当U (r → ,t )与t 无关时,可以利用分离变量法,将时间部分的函数和空间部分的函数分开考虑,y (r → )满足定态薛定谔方程 此方程即是能量算符的本征方程。其中,整个定态波函数的形式为

一般情况下,若所求解能量的本征值是不连续的,则最后的波函数写成各个能量定态波函数的求和形式;如果能量是连续值,则相应的写成积分形式。 【拓展发散】 当粒子所处的外场与时间和位置坐标都有关,即,可以利用题解相同的方式去探索波函数的具体形式,并且和定态以及只与时间有关的两种情形相比较,得出在这些不同情况下相应的势场函数的具体形式变化对波函数的影响。22设U为幺正算符,若存在两个厄米算符A和B,使U=A+iB,试证:(1)A2+B2=1,且; (2)进一步再证明U可以表示成,H为厄米算符。 [中国科学院2006研] 【解题思路】 理解厄米算符和幺正算符的定义和物理含义,并注意辨析它们之间的区别,不要混淆。 【解析】 (1)因为U为幺正算符,所以和,由可得 由可得 因此 (2)因为,所以算符A和算符B有共同的本征函数,即,。

南开大学量子力学导论考研大纲和复习资料

南开大学量子力学导论考研大纲和复习资料 南开大学量子力学导论考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师。南开大学量子力学导论2018年考研大纲虽然未出,但根据往年大纲发布时间我们可以推测出今年考研大纲大概的发布时间,而且也可以根据历年的考研大纲内容作为参考。天津考研网预测2018年南开大学量子力学导论考研大纲内容上不会有太大变化,可参考2017年考研大纲内容。 在大纲公布之后,同学们就要开始选择考研资料来复习了,这时不能贪多嚼不烂,这是我们多年辅导经验总结出来的,每个科目都是如此,一定要选择内容最全面,资讯更新最及时的,推荐天津考研网主编的《南开大学物理学院量子力学导论(光学+量子力学导论)考研红宝书》,含对考研大纲解析,专业课复习启动阶段指导视频,历年真题和答案解析,甚至说复试的详细分析,大家可以参考一下。 下面是南开大学量子力学导论的考研大纲。 《量子力学导论》考试大纲 一、考试目的 本考试是全日制光学、光子学与光子技术和凝聚态物理硕士学位研究生的入学资格考试之专业基础课,各语种考生统一用汉语答题。 根据考生参加本考试的成绩和其他三门考试的成绩总分来选择参加第二轮,即复试的考生。 二、考试的性质与范围 本考试是测试考生量子力学基础理论与方法的尺度参照性水平考试。考试范围包括本大纲规定的量子力学基础理论与方法及其在实际问题中的运用。 三、考试基本要求 1、具备量子力学基本概念、理论和方法的相关知识。 2、具备运用量子力学基本概念、理论和方法解决实际问题的能力。 四、考试形式 本考试为闭卷考试,强调考生对于量子力学基本概念、基础理论和方法的理解和运用。 五、考试内容 本考试内容主要包括量子力学基本概念、基本理论和方法,以及运用量子力学基本概念、理论和方法解决具体问题。考试时间为3小时,总分150分。 答题和计分 要求考生用钢笔或圆珠笔做在答题卷上。 以上就是南开大学量子力学导论考研大纲的全部内容了,然而,大纲的概括性很高,你无法从中明确考研重点和难点,以及经常会出的考点,所以建议利用天津考研网主编的《南开大学物理学院量子力学导论(光学+量子力学导论)考研红宝书》,此资料对考研指定教

相关文档
最新文档