化工原理教学大纲---青岛科技大学

化工原理教学大纲---青岛科技大学
化工原理教学大纲---青岛科技大学

化工原理教学大纲---青岛科技大学

课程编号:0101101

化工原理Ⅰ

Principles of Chemical Engineering

总学时:48

总学分:3 课程性质:技术基础课

开设学期及周学时分配:第4学期,每周3学时

适用专业及层次:化学工程与工艺、轻化工

程、生物工程、生物技

术、制药工程、药物制

剂专业本科

相关课程:高等数学、物理化学、分离工程、传递过程原理等

教材:夏青、陈常贵编著,化工原理(上册),天津大学出版社,2005年

推荐参考书:

[1] 谭天恩、丁惠华等编著,化工原理,化学工业出版社,2000年

[2] 赵汝溥、管国锋编著,化工原理,化学工业出版社,1999年

[3] 陈敏恒、丛德滋等编著,化工原理,化

学工业出版社,2001年

[4] 赵文、王晓红等编著,化工原理,石油大学出版社,2001年

一、课程目的与要求

本门课程的目的是为学生今后学习相关的专业课程打好工程技术理论基础,并使他们受到必要的基本工程技能训练。

本门课程的任务是使学生初步掌握化工过程的基本原理,以三种传递原理为主线,以物料衡算、能量衡算、平衡关系、传递速率等基本概念为理论依据,使学生掌握典型单元操作通用的学习方法和分析问题的思路,培养理论联系实际的观点,进行典型单元操作设备的设计、操作及选型的计算,并进行基本实验技能和设计能力的训练,以增强学生解决工程实际问题的能力。

化工原理属于工程学科,要求通过本门课程的学习,培养学生工程技术观点及独立分析和解决实际工程问题的能力。

二、课程主要内容及学时分配

0绪论(1学时)

化工单元操作的历史梗概;本课程的性质及物料衡算与热量衡算等化工原理研究方法。

1流体流动(15学时)

1.1流体的物理性质

1.2 流体静力学方程式(2学时)

密度、压力、流体静力学基本方程式、静力

学方程的应用(液柱压差计、液封、液面测

量)。

1.3 流体流动基本方程(3学时)

流量与流速、定态流动与非定态流动、

连续性方程、柏努利方程、柏努利方程

的应用。

1.4 流体流动现象(2学时)

牛顿粘性定律、粘度、非牛顿型流体、

流动型态和雷诺准数、管内层流与湍流

的比较、边界层概念。

1.5 管内流动阻力损失(4学时)

阻力计算通式、圆形直管内层流流动阻

力损失、因次分析法、圆形直管内湍流

流动损失、非圆形管内流动阻力、局部

阻力。

1.6 管路计算(2学时)

管路计算的类型和基本方法(设计型和

操作型)、试差法、复杂管路计算(分支、

并联)。

1.7 流量测量(2学时)

测速管、孔板流量计、转子流量计。

2 流体输送机械(7学时)

2.1 离心泵(5学时)

离心泵工作原理及主要构件、基本方程

式、主要性能参数、特性曲线、安装高

度、工作点及流量调节、组合操作、类

型与选用。

2.2 其他类型泵(1学时)

往复泵、计量泵、隔膜泵、齿轮泵、旋涡泵。

2.3 气体输送机械(1学时)

离心式通风机、鼓风机、压缩机、旋转鼓风机、往复压缩机、真空泵。

3 非均相物系的分离和固体流态化(5学时)3.1颗粒及颗粒床层的特性(1学时)

颗粒、颗粒床层的特性、流体通过床层的压降

3.2 沉降分离(2学时)

重力沉降、离心沉降

3.3 过滤(1学时)

过滤基本概念、基本方程式、恒压过滤、恒速过滤及过滤设备

3.4 固体流态化(1学时)

流态化的基本概念、流化床的主要特征及操作特性

4 传热(16学时)

4.1 概述

4.2 热传导(2学时)

付立叶定律、导热系数、平壁和圆筒壁的定态热传导。

4.3 对流传热(4学时)

对流传热分析、传热边界层、对流传热系

数的影响因数、因此分析在对流传热中的

应用、流体作强制对流和自然对流时的对

流传热系数、蒸汽冷凝和液体沸腾时的对

流传热系数。

4.4 传热过程计算(4学时)

总传热速率方程、热量衡算、总传热系数、

平均温度差、传热面积、传热单元数法。

4.5 对流传热系数关联式(2学时)

影响对流传热系数的因素、流体有相变、

无相变时的对流传热系数

4.6 辐射传热(2学时)

基本概念、物体的辐射能力、物体间的辐射传热、对流和辐射的联合传热。

4.7 换热器(2学时)

换热器类型、换热器传热过程的强化途径、列管换热器的设计和选用。

5 蒸发(4学时)

5.1 蒸发设备(1学时)

蒸发器结构、辅助设备及选型

5.2 单效蒸发(2学时)

溶液沸点和温度差损失、单效蒸发计算、蒸发器的生产能力和生产强度

5.3 多效蒸发(1学时)

多效蒸发的操作流程、计算、与单效蒸发的比较及提高经济性的手段

三教学重点与难点

1 流体流动

本章重点:

(1)静力学基本方程的意义及应用

(2)连续性方程、柏努力方程的物理意

义、适用条件、应用柏努力方程解题

的要点和注意事项。

(3)雷诺准数的意义及流动型态的判断

(4)管路系统总能量损失的测量及计算(包括相关数据的获得)

本章难点:

柏努力方程的应用,运用静力学方程解题时等压面的选取为本章难点。

2 流体输送机械

本章重点:

(1)离心泵的基本结构、工作原理及离心泵特性曲线的应用

(2)掌握离心泵汽蚀现象的定义和安装高度的计算,了解操作特性、安装及选型。

本章难点:

离心泵基本方程式的推导

3 非均相物系的分离和固体流态化

本章重点:

(1)沉降分离(包括重力沉降和离心沉降)的原理、过程计算和相关典型设备的选型。

(2)过滤操作的原理,恒压过滤的计算、过滤常数的测定。

(3)固体流态化的基本概念、流化床的主要特征及操作特性。

本章难点:

如何将理论上讨论的颗粒与流体间相对运动问题,运用于实现非均相物系分离、固体流态化技术及固体颗粒的气力输送等工业过程。

4 传热

本章重点:

(1)单层、多层平壁热传导速率方程,单层、多层圆筒壁热传导速率方程及其应用。

(2)换热器的能量衡算,总传热速率方程和总传热系数的计算,用平均温度差

法进行传热计算。

(3)对流传热系数的影响因素及因次分析法。

本章难点:

对于传热单元数法的理解和运用;换热器的设计计算

5 蒸发

本章重点:

掌握单效蒸发中关于溶液的沸点和温度差及生产能力和生产强度的计算。

本章难点:

本章无难点

四主要教学方法

(1)在讲授每一章、每一节时,先用框图、表格、自行总结和提炼的几句话等形式简

明扼要地向学生讲清本章、本节、本次课

的主要内容,知识体系,教学思路、知识

的前后联系,以及重点、难点、注意事项

等,让学生在学习具体内容前先有一个整

体上轮廓式的了解,做到心中有数,听课

有针对性。

(2)关键是突出重点、破解难点。把重点和难点讲清、讲透。

(3)每讲完一节、一章后引导学生及时进行归纳总结、搞清知识点之间的联系,搞清

理论在实际生产中的应用,注重理论联系

实际,起到举一反三、触类旁通的作用。(4)坚持以课堂教学为主,同时结合采用投影、实物模型、电化教学、多媒体CAI课件等

教学手段进行辅助教学,以不断提高教学

效果。

五典型作业练习

第一章流体流动

1.如图所示,在两个压强不同的

密闭容器A,B内充满了密度

为的液体,两容器的上部与

下部分别连接两支规格相同

的U行管水银压差计,连接

管内充满密度为的液体。试

回答:

(1)p M和p N的关系;

(2)判断1-2,2-3,3-4及5-6,6-7,7-8等对应截面上

的压强是否相等;

(3)两压差计读数R与H的关系。

2.本题附图所示为一输水系统,高位槽的水面维持恒定,水分别从BC与BD两支管排

出,高位槽液面与两支管出口间的距离为

11m。AB管段内径为38mm、长为58m;BC

支管的内径为32mm、长为12.5m;BD支

管的内径为26mm、长为14m,各段长均包

括管件及阀门全开时的当量长度。AB与

BC管段的摩擦系数均可取为0.03。试计

算:(1)当BD支管的阀门关闭时,BC

支管的最大排水量为若干,m3/h?(2)

当所有的阀门全开时,两支管的排水量各

为若干,m3/h?BD支管的管壁粗糙度可

取为0.15mm,水的密度为1000kg/m3,粘

度为0.001Pa·s。

第一章流体输送机械

1.用4B15型的离心泵将常压、20℃的清水送往A、B两槽,其流量均为25m3/h,主

管段长50m,管内径为100mm,OA与OB

段管长均为40m,管内径均为60mm(以

上各管段长度包括局部阻力的当量长

度,OB段的阀门除外)。假设所有管段

内的流动皆进入阻力平方区,且摩擦系

数λ=0.02。分支点处局部阻力可忽略。

试求:

(1)泵的压头与有效功率;

(2)支路OB中阀门的局部阻力系数ζ;

(3)若吸入管线长(包括局部阻力当量

长度)为4m,泵的允许吸上真空度为

5m,试确定泵的安装高度。

第二章机械分离及固体流态化

1.在0.04m2的过滤面积上以1×10-4m3/s的速率进行恒速过滤试验。测得过滤100s

时,过滤压力为3×104Pa;过滤600s时,

过滤压力为9×104Pa。滤饼为不可压缩。

今欲用框内尺寸为635×635×60mm的板

框过滤机处理同一料浆,所用滤布与试验

时的相同。过滤开始时,以与试验相同的

滤液流速进行恒速过滤,在过滤压力达到

6×104Pa时改为恒压操作。每获得1m3滤

液所生成的滤饼体积为0.02m3。试求框内

充满滤饼所需的时间。

第三章传热

1. 有一套管换热器,长为6m内管内径为

38mm。环隙间用110℃的饱和水蒸气加热

管内湍流的空气(Re>104)。空气由25℃

被加热到60℃。若将内管改为

f25×2.5mm,而长度仍为6m,试计算能

否完成传热任务。若欲维持气体出口温

度,定性分析可采取的措施(计算时可作

合理简化)。

2. 有一单程列管式换热器,内装有

f25×2.5mm的钢管300根,管长为2m。

要求将质量流量为8000kg/h的常压空气

于管程由20℃加热到85℃,选用108℃

的饱和蒸气在壳方冷凝加热。若蒸气的冷

凝传热膜系数为1×104W/m2·K,忽略管

壁及两侧污垢热阻和热损失。已知空气在

平均温度下的物性常数为Cp

=1kJ/kg·K,l=2.85×10-2W/m·K,

m=1.98×10-5Pa·s,Pr=0.7。试求:(1)空气在管内的对流传热系数;

(2)换热器的总传热系数(以管子外表面为基准);

(3)通过计算说明该换热器能否满足需要;

(4)计算说明管壁温度接近哪一侧的流体温度。

3. 有一列管换热器由f25×2.5mm的120 根

钢管组成。110℃的饱和水蒸气在壳方冷

凝以加热在管内作湍流流动的某液体,且

冷凝水在饱和温度下排出。已知液体平均

比热为4.187 kJ/kg·℃,由15℃加热到

90℃。管内对流传热系数为

ai=800W/m2·℃,蒸气冷凝的对流传热系

数ao=1.1×104W/m2·℃,忽略污垢热阻、

壁阻和热损失,每小时收集冷凝水

2100kg,在饱和温度下蒸气冷凝潜热

g=2232kJ/kg,试求:

(1)每小时可处理的液体量;

(2)管程单程时的列管有效长度;

(3)其它条件均保持不变,将120根钢管改为两管程,列管有效长度为多少。

第四章蒸发(无计算要求)

六课程考核方式

本课程的理论课采用期末闭卷笔试的方式考核。

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验大纲

《化工原理》实验教学大纲 实验名称:化工原理 学时:32学时 学分:2 适用专业:化学工程与工艺、应用化学、环境工程、高分子材料与工程、生物工程、过程装备与控制专业等。 执笔人:傅家新,王任芳 审订人:吴洪特 一、实验目的与任务 化工原理实验课是化工原理课程教学中的一个重要教学环节,其基本任务是巩固和加深对化工原理课程中基本理论知识的理解,培养学生应用理论知识组织工程实验的能力及分析和解决工程问题的能力,并在实验中学会一些操作技能。 二、教学基本要求 化工原理实验由基础型实验、综合型试验、设计型实验和仿真型实验几部分组成。学生在进实验室之前应做好实验预习,了解实验装置流程及实验操作,掌握实验数据处理中的一些技巧,为能顺利完成实验做好准备。 三、实验项目与类型 注:本实验装置都可以开验证型实验,同时可以开设综合、设计和研究型实验。各专业可根据专业需要和实验学时进行选择和组合。 四、实验教学内容及学时分配 实验一离心泵性能测定(1验证)(4学时)1.目的要求 了解离心泵的操作;掌握离心泵性能曲线的测定方法;了解气缚现象;掌握离心泵的操作方法。 2.方法原理 依据机械能衡算式对离心泵作机械能衡算可得H~Q线,利用马达-天平测功器可测得N~Q线,利用有效功与轴功的关系可得η~Q线。 3.主要实验仪器及材料

离心泵性能曲线测定装置一套。 4.掌握要点 注意离心泵的气缚与气蚀现象。 5.实验内容: 测定离心泵在恒定转速下的性能曲线。 实验一离心泵性能测定—汽蚀现象测定(2演示) (2学时) 1. 目的要求 通过对离心泵汽蚀特性曲线的测定,以便在离心泵的安装过程中正确掌握其安装高度。 2.方法原理 离心泵汽蚀特性结合机械能衡算式。 3.主要实验仪器及材料 离心泵汽蚀现象测定装置一套。 4.掌握要点 5.实验内容 实验二 流体流动阻力测定(1验证) (4学时) 1. 目的要求 掌握因次分析方法,学会用实验数据关联摩擦因数与雷诺数的关系。 2.方法原理 由范宁公式知,管路阻力损失可表示成)2/)(/(2g u d l p f λ?=,在一连续、稳定、均一、且水平的恒截面直管段内,p p f ??-=。只要测定出两截面处的压强之差和管内流体的流速,即可关联出Re ~λ关系。 3.主要实验仪器及材料 阻力测定装置一套。 4.掌握要点 5.实验内容 实验二 流体流动阻力测定(2综合) (6学时) 2. 目的要求 掌握因次分析方法,学会用实验数据关联摩擦因数与雷诺数的关系,测定阀门及突然扩大的局部阻力。 2.方法原理 由范宁公式知,管路阻力损失可表示成)2/)(/(2g u d l p f λ?=,在一连续、稳定、均一、且水平的恒截面直管段内,p p f ??-=。只要测定出两截面处的压强之差和管内流体的流速,即可关联出Re ~λ关系。 管路局部阻力损失可表示)2/(h 2 g u f ζ=,只要测定出阀门两端的压强之差和管内流体的流速,即可关联出Re ~ζ关系。 3.主要实验仪器及材料 阻力测定装置一套。 4.掌握要点 5.实验内容 实验三 板框过滤实验(1验证) (4学时)

化工原理蒸馏考试题目

单项选择题(每题2分,共50题) 成绩查询 第九章蒸馏1. 蒸馏是利用各组分______不同的特性实现分离的目的。 A:溶解度B:等规度C:挥发度D:调和度2. 在二元混合液中,沸点低的组分称为______组分。 A :可挥发B :不挥发C :难挥发D:易挥发 3. 某真空操作精馏塔,因故真空度减小,而F,D,xf,q,加料位置,回流比R都不变。则塔底残液xw______。 A :变小B :变大C :不变D:不确定 4. 某二元混合物,其中A为易挥发组分,液相组成xA=相应的泡点为t1,与之相平衡的汽相组成yA=,相应的露点为t2,则:____。 A:t1= t2B:t1< t2C:t1> t2D:不能判断 5. 某二元混合物,其中A为易挥发组分。液相组成xA=,相应的泡点为t1;汽相组成yA= 相应的露点为t2。则: ____ A:t1= t2B:t1< t2C:t1> t2D:不能判断 6. 原料的数量和浓度相同,用简单蒸馏得汽相总组成为xD1,用平衡蒸馏得汽相总组成为 xD2。若两种蒸馏方法所得的汽相量相同,则: ____ A:xD1> xD2B:xD1= xD2C:xD1< xD2D:不能判断 7. 精馏中引入回流,下降的液相与上升的汽相发生传质使上升的汽相易挥发组分浓度提高,最恰当的说法是______________。 A:液相中易挥发组分进入汽相;

B:汽相中难挥发组分进入液相; C:液相中易挥发组分和难挥发组分同时进入汽相,但其中易挥发组分较多; D:液相中易挥发组分进入汽相和汽相中难挥发组分进入液相的现象同时发生。 8. 精馏理论中,“理论板”概念提出的充分而必要的前提是_____。 A:塔板无泄漏 B:板效率为 100% C :离开塔板的气液达到平衡D:板上传持推动力最大 9. 下列哪几条是指导精馏塔操作线方程的前提甲:恒摩尔流;乙:平衡精馏;丙:板式塔;丁:过程稳定(定常)。 A :甲、乙B :甲、丁C :丙、丁D:乙、丙 10. 已知q=,则加料中液体量与总加料量之比为_____。 A: :1B: 1:C: 1:1D::1 11. 精馏的操作线是直线,主要基于如下原因: ____ A :理论板假定B :理想物系C:塔顶泡点回流D:恒摩尔流假定 12. 操作中连续精馏塔,如采用回流比小于最小回流比,则 _____. A:xD,xw 均增加B:xD,xw均不变 C:不能操作 D:xD减小,xw增加 13. 再沸器的作用是提供一定量的________流。 A :上升物料B :上升组分C :上升产品D:上升蒸气 14. 冷凝器的作用是提供_____产品及保证有适宜的液相回流。 A :塔顶气相B :塔顶液相C :塔底气相D:塔底液相

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工热力学教学大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 化工热力学是化学工程的重要分支和基础学科,是热力学基本定律应用于化学工程领域中而形成的一门学科。本课程主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,主要涉及能量及组成的计算。能量计算包括功能互换,也包括物理热和化学热的计算,前者包括温度、压力对焓的影响及各种相变热,后者主要是反应热。组成计算包括化学平衡和相平衡。化学平衡包括平衡常数及平衡组成的计算,并确定反应方向;相平衡包括在不同温度、压力条件下各相组成的确定。化工热力学是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程,是化学工程与工艺专业的专业基础课程。 2.设计思路: 化工热力学应用热力学基本定律研究化工过程中能量的有效利用、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。 本课程主要包括四部分的内容,各部分的内容和基本要求如下: 第一部分,流体的p-V-T关系,要求掌握各种p-V-T关系使用范围,会应用各种p-V-T关系进行基本的p-V-T 计算。 第二部分,纯物质(流体)的热力学性质,要求掌握应用p-V-T关系求解纯物质的热力学性质的方法。 第三部分,热力学基本定律及其应用,要求掌握化工过程能量分析的方法,了解和掌握化工热力学原理的应用(压缩、膨胀、动力循环与制冷循环等)。 第四部分,均相混合物热力学性质,掌握利用混合规则求解均相混合物热力学性质的方法。 第五部分,相平衡,掌握气液相平衡的计算方法。 3. 课程与其他课程的关系: 本课程适宜安排在修完高等数学、大学物理、物理化学(上)等有关基础课课程之后开设,内容上注意与物理化学的衔接。 二、课程目标 通过本课程的学习,学生将系统地掌握运用化工热力学的基本概念、理论和计算方法,分析和解决化工生产中有关能量转换和有效利用、相平衡和化学变化的实际问题的能力,能利用化工热力学的方法对化工中涉及的物

化工原理大纲

一、课程的性质 本课程是化工及相关专业的一门专业基础课。通过本课程的教学使学生掌握流体流动、传热和传质基础理论及主要单元操作的典型设备的构造、操作原理;工艺设计、设备计算、选型及实验研究方法;培养学生运用基础理论分析和解决化工单元操作中的各种工程实际问题的能力。并通过实验教学,使学生能巩固加深对课堂教学内容的理解,强调理论与实际结合,综合分析问题、解决问题的能力。 二、课程的基本要求和内容 绪论 本课程的性质、任务、研究对象和研究方法,本课程与其他有关课程的关系。 Δ物理量的因次、单位与单位换算:单位制与因次的概念。几种主要单位制 (SI.CGS制.MKS工程单位制)及我国的法定计量单位。单位换算的基本方式。 第一章流体流动 流体的性质:连续介质的假定、密度、重度、比重、比容、牛顿粘性定律与粘度。 牛顿型与非牛顿型流体。 流体静力学:静压强及其特性;压强的单位及其换算;压强的表达方式;重力场中静止流体内压强的变化规律及其应用;离心力场中压强的变化规律。 流体流动现象:流体的流速和流量;稳定流动与不稳定流动;流体的流动型态;雷诺准数;当量直径与水力半径;滞流时流体在圆管中的速度分布;湍流时的时均速度与脉动速度;湍流时圆管中时均速度的分布;边界层的形成、发展及分离。 流体流动的基本方程:Δ 物料衡算——连续性方程及其应用;Δ能量衡算方程;柏势利方程;Δ能量衡算方程和柏势利方程的应用。 流体阻力:Δ阻力损失的物理概念;边界层对流动阻力的影响;粘性阻力与惯性阻力;湍流粘度系数;Δ沿程阻力的计算;滞流时圆管直管中沿程阻力计算;滞流时的摩擦系数;湍流时的摩擦系数;因次分析法:用因次分析法找出表示摩擦阻力关系中的数群;粗糙度对摩擦系数的影响;Δ局部阻力的计算。

青岛科技大学2005年研究生入学考试化工原理A考研真题

青岛科技大学2005年研究生入学考试试卷 考试科目:化工原理A (答案全部写在答题纸上) 一、(20分)如图所示,用泵将水从贮槽送至敞口高位槽,两槽液面均 恒定不变,输送管路尺寸为φ83×3.5mm,泵的进出口管道分别安 装有真空表和压力表,真空表安装位置离贮槽的水面高度H 1为 4.8m,压力表安装位置离贮槽的水面高度为H 2为5m。当输水量为 36m 3/h 时,进水管道全部阻力损失为1.96J/kg,出水管道全部阻 力损失为4.9J/kg (均包括局部阻力),压力表读数为2.452×105Pa, 泵的效率为70%,水的密度ρ为1000kg/m 3,试求: (1)两槽液面的高度H 为多少? (2)泵所需要的实际功率为多少kW? (3)真空表的读数为多少kgf/cm 2? 二、(10分)一种测定粘度的仪器由一钢球及玻璃筒组成。测试时筒内充被测液体,记录钢球下落一定距离的时间,球的直径为6mm,下落距离为200mm,测试一种糖浆时记下的时间间隔为7.32 秒,此糖浆的密度为1300kg/m 3,钢球的密度为7900kg/m 3,求此糖浆的粘度是多少厘泊。 三、(20分)在套管换热器中用120℃的饱和蒸汽于环隙间冷凝以加热管内湍流的苯。苯的流量为4000kg/h ,比热容为1.9kJ/(kg ·℃),温度从30℃升至60℃。蒸汽冷凝传热系数为1×104W/(m 2·℃),换热管内侧污垢热阻为4×10-4m 2·℃/W ,忽略管壁热阻、换热管外侧污垢热阻及热损失。换热管为φ54×2mm 的钢管,有效长度为12m 。试求: (1)饱和蒸汽流量(其冷凝潜热为2204kJ/kg ); (2)管内苯的对流传热系数αi ; (3)当苯的流量增加50%、但其他条件维持不变时,苯的出口温度为若干? 四、(20分)用连续精馏塔分离某双组分物系,原料液组成为0.20(摩尔分率,下同),流量为150kmol/h 。根据工艺要求,塔顶设分凝器,冷凝液部分入塔作回流L,部分作为产品D 2,由分凝器出来的气相经全凝器冷凝后作为产品D 1。要求产品D 1的组成不小于0.9,塔釜残液组成 不大于0.05。操作中取L/D 1=1.5,D 2/D 1=1/4,物系相对挥发 度为2.47,流程如图所示。试求:(1)馏出液流量D 1、D 2 及塔顶第一块理论板上升蒸汽流量V 1?(2)精馏段操作 线方程及塔顶第一块理论板上升蒸汽的组成?(3)若塔顶 只设全凝器,全回流操作时,测得相邻两板下降液体的组 成分别为0.82,0.75,求下一板的气相默弗里板效率? 五、(20分)一填料塔用清水逆流吸收混合气中的有害成分A。 已知操作条件下气相总传质单元高度为1.5m,进塔混合气 组成为0.04(A 的摩尔分率,下同),出塔尾气组成为0.0053, 出塔水溶液浓度为0.0128,操作条件下平衡关系为Y=2.5X。 试求:(1)液气比为最小液气比的倍数。(2)所需填料层高 度。(3)若气液流量和初始组成不变,要求尾气浓度降至 0.0033,需将填料层加高多少米? 六、(20分)某并流式干燥器的操作压力为101kPa ,湿物料流量为1200kg/h ,湿基含水量为15%,要求干燥产品的湿基含水量不超过0.5%。以温度为20℃、湿度为0.0723kg 水/Kg 绝干气的新鲜湿空气为干燥介质,在预热器中预热至90℃后送入干燥器,湿空气离开干燥器的温度仍为90F F x 22D x D 11D x D L 分凝器 全凝器11y V W W x

《化工传递过程》课程教学大纲

《化工传递过程》课程教学大纲 一、课程说明 课程编码4302026 课程类别专业主干课 修读学期第五学期学分 2 学时48 课程英文名称Transfer Processes in Chemical Engineering 适用专业化学工程与工艺 先修课程物理化学、化工原理、化工热力学 二、课程的地位及作用 《化工传递过程》是针对化学工程与工艺方向的必修课。是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程(三传)的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂,给学习带来一定的困难,但可运用三传的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。该课程的学习有助于学生深入了解各类传递过程的机理,为改进各种传递过程和设备的设计,操作和控制提供理论基础;为今后的科学研究提供各种的基础数学模型;为速度、温度、浓度分布及传递速率的确定提供必要的帮助,为分析和解决过程工程和强化设备性能等问题提供坚实的理论基础。 三、课程教学目标 1. 侧重于熟悉掌握传递过程的各种基本理论;正确的提供所求强度量的分布规律及传递速率表达式; 2. 掌握传递过程的微分方程并达到能够熟练地运用方程的水平;

3. 能够正确地分析、简化三传基本微分方程;对实际情况建立必要的数学模型; 4. 了解传递过程的发展趋势、方向和其在化学工程中的具体运用领域; 5. 通过学习加深对化学工程基本原理的理解,使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。 四、课程学时学分、教学要求及主要教学内容 (一) 课程学时分配一览表 章节主要内容总学时 学时分配讲授实践 第1章传递过程概论 2 2 0 第2章动量传递概论与动量传递微分方程 6 6 0 第3章动量传递方程的若干解 6 6 0 第4章边界层流动 6 4 0 第5章湍流 6 4 0 第6章热量传递概论与能量方程 6 6 0 第7章热传导 2 2 0 第8章对流传热 2 2 0 第9章质量传递概论与传质微分方程 4 4 0 第10章分子传质 4 4 0 第11章对流传质 2 2 0 第12章多种传递同时进行的过程 2 2 0 (二) 课程教学要求及主要内容 第一章传递过程概论 教学目的和要求: 1.流体流动的基本概念; 2.掌握传递过程的类似性; 3.传递过程的衡算方法。 教学重点和难点:

《化工原理》课程教学大纲

《化工原理》课程教学大纲 一、课程基本信息 课程代码:260353 课程名称:《化工原理》 英文名称:Principles of Chemical Engineering 课程类别:专业基础课 学时:90学时,化工原理(上册)40,化工原理(下册)40,实验10 学分:4个 适用对象:环境工程专业 考核方式:期末考试成绩(占70%)加平时成绩(占30%),其中期末考试为闭卷考试,平时成绩包括考勤,作业、实验和平时测验等。 先修课程:数学、物理、化学、物理化学 二、课程简介 中文简介:化工原理课程属化学工程技术科学学科,是理论性和实践性都很强的学科,是环境工程专业必修的一门专业基础课程。本课程的总学时为90学时,其中80学时为课堂教学,而10个学时为实践教学。其中课堂教学章节和实验教学内容都是按环境工程专业的专业特点而设定的,而与环境工程专业关系不为紧密的则建议自学。 英文简介:Chemical engineering is a technology of chemical engineering subdiscipline. This course specialize in strong theory, practice and is a compulsory courses to environmental engineering specialty. The total period is 90, including 80 period classroom teaaching and 10 period practice teaching. The content of this course is arranged according to the characteristics of environmental engineering. It is suggested that those content that has little relation with environmental engineering should be self-studied. 三、课程性质与教学目的 (一)课程性质 《化工原理》是环境工程专业一门重要的专业基础课,它的内容是讲述化工单元操作的基本原理、典型设备的结构原理、操作性能和设计计算。化工单元操作是组成各种化工生产过程、完成一定加工目的的基本过程,其特点是化工生产过程中以物理为主的操作过程,包括流体流动过程、传热过程和传质过程。 (二)教学目的 化工原理课程的目的是使学生获得常见化工单元操作过程及设备的基础知识、基

青科成人教育《化工原理》期末考试复习题及参考答案

2019/2020 学年第一学期化工原理课程考试试题(C)卷 类别继续教育学院 适用专业化学工程与工艺 (答案写在答题纸上,写在试题纸上无效) 一填空题 10小题,每小题一空,每空2分,共20分。 1. 离心泵用出口阀调节流量实质上是改变______曲线. 2. 湍流区直管摩擦系数 仅是相对粗糙度的函数,与______ 无关。 3. 采用相同型号的离心泵串联或并联操作,对于低阻管路,宜采用___ 联操作。 4. 一稳定流动系统中,水由细管流入粗管,细管与粗管的流速分别为2m/s 与1m/s。两管连接处的局部阻力系数ζ=0.27,则水通过该局部所产生的压强降为______Pa。。 5. 随着温度的增加,空气的导热系数______。 6. 大容积中的饱和沸腾传热可分为三个阶段,工业生产中常在______阶段操作。 7. 精馏操作中的理想物系,其汽相为理想气体,服从______定律 8. 常压下用水吸收 CO2,该过程基本属于______膜控制。 9. 在吸收塔的设计中,气体流量,气体进出口组成和液相进口组成不变,若减少吸收剂用量,则传质推动力______。

10. 两组分理想溶液连续精馏,混合物进料的q值大于0小于1,则进料热状况为_____。 二选择题,10小题,每小题2分,共20分。 1、在完全湍流区,直管流动阻力与()成正比。 A、管内流动的雷诺数 B、管内平均速度的平方 C、管长L D、液体的粘度 2. 层流底层越薄,则以下结论正确的是()。 A、近壁处速度梯度越小 B、流动阻力越小 C、流动阻力越大 D、流体湍动程度越小 3.两台型号相同的泵串联操作的总压头()单台泵压头的两倍。 A、低于 B、等于 C、大于 D、不能确定 4.下列命题中不正确的为 A 。 A上升气速过大会引起漏液 B 上升气速过大会引起液泛 C上升气速过大会使塔板效率下降 D 上升气速过大会造成过量的液沫夹带 5. 二元溶液连续精馏计算中,进料热状态的变化将引起以下线的变化 B 。 A平衡线 B 提馏段操作线与q线 C平衡线与操作线 D 平衡线与q线 6. 对于易溶气体,H值______.

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

教学大纲格式

《化工分离工程》课程教学大纲 课程名称:化工分离工程 课程类型: 专业基础课 总学时:54 讲课学时:54 学分:3 适用对象: 化学工程与工艺 先修课程:《化工原理》、《化工热力学》 一、课程性质、目的和任务 本课程是高等学校化工类专业的一门专业基础课,是学生在具备了物理化学、化工原理、化工热力学、传递过程原理等技术基础知识后的一门必修课。它是利用这些课程有关相平衡热力学、动力学、分子及其聚状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系的分离和提纯技术。 二、教学基本要求 通过本课程的学习,要求学生掌握有关特殊精馏、化学萃取、膜分离、吸附与离子交换及其它分离技术的基本概念、原理及过程。 三、教学内容及要求 1 绪论(2学时) 介绍分离操作在化工生产中的重要性;分离过程的分类,每一类分离过程的定义和实例分析。 2 特殊精馏(10学时) 2.1 恒沸精馏:定义,基本概念,恒沸精馏的基本原理及相关的工艺流程,恒沸精馏塔的计算。(2学时) 2.2 萃取精馏:萃取剂作用的微观机理;萃取精馏的定义,萃取剂的选择,萃取精馏的基本原理及相关的工艺流程。(2学时) 2.3 加盐精馏:盐效应定义和机理,溶盐精馏过程、应用及优缺点分析,加盐萃取精馏的基本原理及工艺过程。(2学时) 2.4 反应精馏:反应精馏的定义,分类,每类过程的原理及应用。(2学时) 2.5 作业及讨论:分组,每组自选一种特殊精馏过程为主题,查阅相关文献,写一篇课程小论文并制作PPT,每组派一个代表讲解,全班讨论。(2学时) 3 化学萃取(10学时) 3.1 化学萃取:概述,化学萃取过程的分类及每类过程的主要特点,化学萃取的相平衡,化学萃取过程的控制步骤。(2学时) 3.2 络合萃取法的应用:物理萃取与络合萃取的区别与联系,过程的特征,萃取体系选择,典型举例。(1学时) 3.3 液膜分离技术:概述,分类及每类过程的主要特点,液膜分离过程机理,影响液膜传质的因素及影响规律,工艺流程及应用。(3学时)

化工原理教学大纲

《化工原理》教学大纲 课程名称 :化工原理/Principles of Chemical Engineering 课程总学时:144 实验学时:24 先修课程 :数学、物理、化学、物理化学 适用专业 :应用化工技术 1、 课程性质与教学目的 1.课程性质: 《化工原理》是化工及其 相关专业学生必修的一门基础技术课程,它在 基础课与专业课之间,起着承上启下的作用,是自然科学 领域的基础课向工程科学的专业课过渡的入门 课程。其主要任务是介绍流体流动、传热和传质的基本原 理及主要单元操作的典型设备构造、操作原理 、过程计算、设备选型及实验研究方法等。这些都密切联系生产实际,以培养学生应用基本原理分析和解决化工单元操作中各种工程实际问题的能力,为专业课 学习和今后的工作打下坚实的基础。 2.教学目的: 《化工原理》属于工科课程,用自然科学的原理考察、解释和处理工程实际问题;研究方法主要是理论解析和理论指导下的实验研究。本课程强调工程观点、定量运算、实际技能和设计能力的训练。通过该课程的学习不仅要掌握以理论到实践所涉及的问题的研究方法,还注重培养学生综合运用所学知识分析问题、解决问题的能力。 二、课程的教学内容与基本要求 (一)教学内容: 1.绪论 化工过程与单元操作 ,单位与单位换算,物料衡算,能量衡算 2.流体流动与输送设备

流体静力学基本方程式:流体的物理性 质,静止流体的 压力,流体静力学基本方程式,流体静力学基本方程式的应用流体流动的基本方程:流 量、流速、稳态流动、非稳态流动的概念,连续性方程,柏努利方程,柏努利方程的应用流体流动现象 :流体流动类型,蕾诺数,管内流体速度分布,边界层的概念流体在管内的流动阻力:直管阻力,局部 阻力,总能量损失管路计算:简单管路计算,复杂管路计算流量测量:测速管,孔板流量计,文 丘里 流量计,转子流量计. 离心泵:工作原理,主要部件,离心泵的基本方程式 , 主要性能参数,特性曲线,允许安装高度,工 作点,流量调节,选型与使用其它类型液体输送机械:往复泵,旋转泵,旋涡泵,各类泵性能比较。气体输送和压缩机械:离心通风机、鼓风机、压缩机,旋转 鼓风机、压缩机,往复压缩机,真空泵 3.非均相物系的分离 颗粒及颗粒床层的特性:颗粒及 颗粒床层的特性,颗粒床层的特性,流体 通过床层的压降 沉降分离:重力沉降,离心沉降 过 滤:过滤基本方程式,恒压过滤,恒 速过滤,过滤常数的测定,过滤设备,过滤机的生产能力 4. 传热 概述:传热的基本方式,冷热 流体热交换方式,传热速率、热通量、稳态传热、非稳态传热的 概念,载热体及其选择 热传导:傅立叶定律,导热系数,通过平壁的稳态热传导,通过圆筒壁的稳 态热传导 对流传热概述:对流传热 速率方程,对流传热系数,对流传热机理,保温层的临界直径 传热过程计算:热量衡算,总传热速 率微分方程,总传热系数,平均温度差,总传热速率方程,总传热速率方程的应用,传热单元数法对流传热系数关联式:影响对流传热系数的因素,对流传热过程的 量

835化工原理考试大纲

青岛科技大学硕士研究生入学考试化工原理考试大纲 一、?本化工原理考试大纲适用于报考青岛科技大学化工类专业的硕士研究生入学考试。 二、考试内容: (一)流体流动 1、流体静力学方程式 密度、压力、流体静力学基本方程式、静力学方程的应用(液柱压差计、液封、液面测量)。 2、流体流动基本方程 流量与流速、定态流动与非定态流动、连续性方程、柏努利方程、柏努利方程的应用。 3、流体流动现象 牛顿粘性定律、粘度、非牛顿型流体、流动型态和雷诺准数、管内层流与湍流的比较、边界层概念。 4、管内流动阻力损失 阻力计算通式、圆形直管内层流流动阻力损失、因次分析法、圆形直管内湍流流动损失、非圆形管内流动阻力、局部阻力。 5、管路计算 管路计算的类型和基本方法(设计型和操作型)、试差法、复杂管路计算(分支、并联)。6、流量测量 测速管、孔板流量计、转子流量计。 (二)流体输送机械 离心泵的工作原理及主要构件、基本方程式、主要性能参数、特性曲线、安装高度、工作点及流量调节、组合操作、类型与选用。 (三)机械分离和固体流态化 1、重力沉降 沉降速度、降尘室。 2、离心沉降 离心沉降速度、旋风分离器。 (四)传热 1、概述 2、热传导 付立叶定律、导热系数、平壁和圆筒壁的定态热传导。 3、对流传热 对流传热分析、传热边界层、对流传热系数的影响因数、因此分析在对流传热中的应用、流体作强制对流和自然对流时的对流传热系数、蒸汽冷凝和液体沸腾时的对流传热系数。 4、传热过程计算 总传热速率方程、热量衡算、总传热系数、平均温度差、传热面积、传热单元数法。 5、辐射传热 基本概念、物体的辐射能力、物体间的辐射传热、对流和辐射的联合传热。 6、换热器 换热器类型、换热器传热过程的强化途径、列管换热器的设计和选用。 (五)蒸馏 1、二元物系的气液平衡 相律和拉乌尔定律、理想溶液相图、相对挥发度。 2、蒸馏方式

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工热力学教学大纲新编

化工热力学教学大纲新 编 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 热力学发展简史 化工热力学的主要研究内容 化工热力学的研究方法及其发展 化工热力学在化工中的重要性 第二章流体的p-V-T关系 纯物质的p –V –T关系 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 真实气体混合物的p-V-T关系 2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质 2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积 2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 焓变与熵变的计算 3.2.1 热容

化工原理教学大纲

《化工原理》课程教学大纲 上册102 学时,下册60 学时 一、课程性质、目的和任务 《化工原理》课程是化工类及相近专业的一门主要技术基础课,它是综合运用数学、物理、化学等基础知识,分析和解决化工类型生产中各种物理过程(或单元操作)问题的工程学科,本课程担负着由理论到工程、由基础到专业的桥梁作用。该课程教学水平的高低,对化工类及相近专业学生的业务素质和工程能力的培养起着至关重要的作用。 本课程属工科科学,用自然科学的原理(主要为动量、热量与质量传递理论)考察、解释和处理工程实际问题,研究方法主要是理论解析和在理论指导下的实验研究,本课程强调工程观点、定量运算和设计能力的训练、强调理论与实际相结合,提高分析问题、解决问题的能力。学生通过本课程学习,应能够解决流体流动、流体输送、沉降分离、过滤分离、过程传热、蒸发、蒸馏、吸收、萃取和干燥等单元操作过程的计算及设备选择等问题,并为后续专业课程的学习奠定基础。 二、教学基本要求 《化工原理》课程在第五、六学期(四年制)开设。教材内容分为课堂讲授、学生自学和学生选读三部分,其中课堂讲授部分由教师在教学计划学时内进行课堂教学,作为基本要求内容;学生自学部分由学生在教师的指导下,利用课外时间进行自学,作为一般要求内容;学生选读部分由学生根据自己的兴趣及能力,进行课外选读,不作要求。 本课程教学计划总学时112学时,其中上册102学时(课堂讲授80学时,习题课18学时、课堂讨论2学时,机动2学时);下册60学时(课堂讲授56学时,课堂讨论2学时,机动2学时)。 本课程课件依照学时安排制作,每次课一个文件,内容包括每次课讲授内容,思考题及课后作业。每次课后留2~3个作业题,由学生独立完成,教师可根据情况布置综合练习题和安排习题讨论课。本课程每周安排课外答疑一次(3小时)。 三、教学内容 本课程主要内容包括: 1.流体流动。流体的重要性质;流体静力学;能量衡算方程及其应用;流体的流动现象;流动在管内的流动阻力;管路计算;流量测量。 2.流体输送机械。离心泵的工作原理、性能参数与特性曲线、流量调节以及安装;其他液体输送机械简介;气体输送机械简介。 3.机械分离与固体流态化。颗粒与颗粒床特性;重力沉降与离心沉降的原理和操作;过滤分离原理与设备。 4.液体搅拌。搅拌器的性能和混合机理;搅拌功率简介。 5.传热。传热概述;热传导;对流传热概述;传热过程计算;对流传热系数关联式;辐射传热简介;换热器简介。 6.蒸发。蒸发设备、流程与操作特点;单效蒸发计算;多效蒸发简介。 7.传质与分离过程概论。质量传递的方式;传质设备简介。 8.气体吸收。吸收过程的平衡关系;吸收过程的速率关系;低组成气体吸收的计算(包

相关文档
最新文档