抽样技术上机实验_中心极限定理验证

抽样技术上机实验_中心极限定理验证
抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现:

clc

clear

n=200000; %/* ???′′?êy*/

k=100; %/* ?ù±???êy*/

mu=0;

u=0;

sigma=1/12;

population=0:0.001:1;

for i=1:n

y = randsample(population,k,1);

mu=[mu,mean(y)];

end

mu=(mu-0.5)/(sqrt(sigma)/sqrt(k));

%hist(mu(2:end),1000)

[f, x1] = ksdensity(mu(2:end));

plot(x1, f)

hold on

plot(x1,normpdf(x1,0,1),'r')

hold off %%%%%%%%%%%%%%%%%%%%%%%%

两点分布的实现:

clc

clear

n=10000; %/* ???′′?êy*/

k=100; %/* ?ù±???êy*/

mu=0;

u=0;

p=0.5;

sigma=p*(1-p);

population=0:1;

for i=1:n

y = randsample(population,k,1);

mu=[mu,mean(y)];

end

mu=(mu-p)/(sqrt(sigma)/sqrt(k));

%hist(mu(2:end),1000)

[f, x1] = ksdensity(mu(2:end));

plot(x1, f)

hold on

plot(x1,normpdf(x1,0,1),'r')

hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

clear

n=50000; %/* ????????*/

k=100; %/* ?¨′?à?????*/

mu=0;

u=0;

p=0.4;

sigma=p*(1-p);

a=0:0.1:1;

for i=1:n

y = randsample(a(2:end)<=p,k,1);

mu=[mu,mean(y)];

end

mu=(mu-p)/(sqrt(sigma)/sqrt(k));

hist(mu(2:end),1000)

[f, x1] = ksdensity(mu(2:end));

plot(x1, f)

hold on

plot(x1,normpdf(x1,0,1),'r')

hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

二项分布随机变量的中心极限定理检验:

-5-4-3-2-1012345

00.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

clear

n=50000; %/* ????????*/

k=100; %/* ?¨′?à?????*/

bino=0;

u=0;

p=0.4;

sigma=p*(1-p);

a=0:0.1:1;

for i=1:n

y = randsample(a(2:end)<=p,k,1);

bino=[bino,sum(y)] ;

end

bino=(bino-k*p)/sqrt((k*sigma));

hist(bino(2:end),n/10)

[f, x1] = ksdensity(bino(2:end));

plot(x1, f)

hold on

plot(x1,normpdf(x1,0,1),'r')

hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

卡方分布:

-5-4-3-2-1012345

00.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

clear

n=10000; %/* ???′′?êy*/

m=500;

v=5;%×?óé?è

R= chi2rnd(v,n,m);%%%可以换成以下任何一种分布;

r=sum(R')/m;%????′?êμ?é??áDè?oí

mu=(r-v)*sqrt(m)./sqrt(2*v);

[f, x1] = ksdensity(mu(2:end));

plot(x1, f)

hold on

plot(x1,normpdf(x1,0,1),'r')

hold off

(一)Matlab内部函数

a.基本随机数

Matlab中有两个最基本生成随机数的函数。

1.rand()

生成(0,1)区间上均匀分布的随机变量。基本语法:

rand([M,N,P ...])

生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

rand(5,1) %生成5个随机数排列的列向量,一般用这种格式

rand(5) %生成5行5列的随机数矩阵

rand([5,4]) %生成一个5行4列的随机数矩阵

生成的随机数大致的分布。

x=rand(100000,1);

hist(x,30);

由此可以看到生成的随机数很符合均匀分布。(视频教程会略提及hist()函数的作用) 2.randn()

生成服从标准正态分布(均值为0,方差为1)的随机数。基本语法和rand()类似。

randn([M,N,P ...])

生成排列成M*N*P... 多维向量的随机数。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

randn(5,1) %生成5个随机数排列的列向量,一般用这种格式

randn(5) %生成5行5列的随机数矩阵

randn([5,4]) %生成一个5行4列的随机数矩阵

生成的随机数大致的分布。

x=randn(100000,1);

hist(x,50);

由图可以看到生成的随机数很符合标准正态分布。

b.连续型分布随机数

如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。

3.unifrnd()

和rand()类似,这个函数生成某个区间内均匀分布的随机数。基本语法

unifrnd(a,b,[M,N,P,...])

生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

unifrnd(-2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式

unifrnd(-2,3,5) %生成5行5列的随机数矩阵

unifrnd(-2,3,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数都在(-2,3)区间内.

生成的随机数大致的分布。

x=unifrnd(-2,3,100000,1);

hist(x,50);

由图可以看到生成的随机数很符合区间(-2,3)上面的均匀分布。

4.normrnd()

和randn()类似,此函数生成指定均值、标准差的正态分布的随机数。基本语法

normrnd(mu,sigma,[M,N,P,...])

生成的随机数服从均值为mu,标准差为sigma(注意标准差是正数)正态分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

normrnd(2,3,5,1) %生成5个随机数排列的列向量,一般用这种格式

normrnd(2,3,5) %生成5行5列的随机数矩阵

normrnd(2,3,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的正态分布都是均值为2,标准差为3.

生成的随机数大致的分布。

x=normrnd(2,3,100000,1);

hist(x,50);

如图,上半部分是由上一行语句生成的均值为2,标准差为3的10万个随机数的大致分布,

下半部分是用小节“randn()”中最后那段语句生成10万个标准正态分布随机数的大致分布。

注意到上半个图像的对称轴向正方向偏移(准确说移动到x=2处),这是由于均值为2的结果。而且,由于标准差是3,比标准正态分布的标准差(1)要高,所以上半部分图形更胖(注意x

轴刻度的不同)。

5.chi2rnd()

此函数生成服从卡方(Chi-square)分布的随机数。卡方分布只有一个参数:自由度v。基本语

chi2rnd(v,[M,N,P,...])

生成的随机数服从自由度为v的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

chi2rnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式

chi2rnd(5,5) %生成5行5列的随机数矩阵

chi2rnd(5,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的卡方分布的自由度都是5

生成的随机数大致的分布。

x=chi2rnd(5,100000,1);

hist(x,50);

6.frnd()

此函数生成服从F分布的随机数。F分布有2个参数:v1, v2。基本语法

frnd(v1,v2,[M,N,P,...])

生成的随机数服从参数为(v1,v2)的卡方分布,这些随机数排列成M*N*P... 多维向量。如果只

写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

frnd(3,5,5,1) %生成5个随机数排列的列向量,一般用这种格式

frnd(3,5,5) %生成5行5列的随机数矩阵

frnd(3,5,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(v1=3,v2=5)的F分布

生成的随机数大致的分布。

x=frnd(3,5,100000,1);

hist(x,50);

从结果可以看出来, F分布集中在x正半轴的左侧,但是它在极端值处也很可能有一些取值。7.trnd()

此函数生成服从t(Student's t Distribution,这里Student不是学生的意思,而是Cosset.W.S.的笔名)分布的随机数。t分布有1个参数:自由度v。基本语法

trnd(v,[M,N,P,...])

生成的随机数服从参数为v的t分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

trnd(7,5,1) %生成5个随机数排列的列向量,一般用这种格式

trnd(7,5) %生成5行5列的随机数矩阵

trnd(7,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(v=7)的t分布

生成的随机数大致的分布。

x=trnd(7,100000,1);

hist(x,50);

可以发现t分布比标准正太分布要“瘦”,不过随着自由度v的增大,t分布会逐渐变胖,当自由度为正无穷时,它就变成标准正态分布了。

接下来的分布相对没有这么常用,同时这些函数的语法和前面函数语法相同,所以写得就简略一些——在视频中也不会讲述,你只需按照前面那几个分布的语法套用即可,应该不会有任何困难——时间足够的话这是一个不错的练习机会。

8.betarnd()

此函数生成服从Beta分布的随机数。Beta分布有两个参数分别是A和B。下图是A=2,B=5 的beta分布的PDF图形。

生成beta分布随机数的语法是:

betarnd(A,B,[M,N,P,...])

9.exprnd()

此函数生成服从指数分布的随机数。指数分布只有一个参数: mu, 下图是mu=3时指数分布的PDF图形

生成指数分布随机数的语法是:

betarnd(mu,[M,N,P,...])

10.gamrnd()

生成服从Gamma分布的随机数。Gamma分布有两个参数:A和B。下图是A=2,B=5 Gamma 分布的PDF图形

生成Gamma分布随机数的语法是:

gamrnd(A,B,[M,N,P,...])

11.lognrnd()

生成服从对数正态分布的随机数。其有两个参数:mu和sigma,服从这个这样的随机数取对数后就服从均值为mu,标准差为sigma的正态分布。下图是mu=-1, sigma=1/1.2的对数正态分布

的PDF图形。

生成对数正态分布随机数的语法是:

lognrnd(mu,sigma,[M,N,P,...])

12.raylrnd()

生成服从瑞利(Rayleigh)分布的随机数。其分布有1个参数:B。下图是B=2的瑞利分布的PDF图形。

生成瑞利分布随机数的语法是:

raylrnd(B,[M,N,P,...])

13.wblrnd()

生成服从威布尔(Weibull)分布的随机数。其分布有2个参数:scale 参数A和shape 参数B。下图是A=3,B=2的Weibull分布的PDF图形。

生成Weibull分布随机数的语法是:

wblrnd(A,B,[M,N,P,...])

还有非中心卡方分布(ncx2rnd),非中心F分布(ncfrnd),非中心t分布(nctrnd),括号中是生成

服从这些分布的函数,具体用法用:

help 函数名

查找。

c.离散型分布随机数

离散分布的随机数可能的取值是离散的,一般是整数。

14.unidrnd()

此函数生成服从离散均匀分布的随机数。Unifrnd是在某个区间内均匀选取实数(可为小数或

整数),Unidrnd是均匀选取整数随机数。离散均匀分布随机数有1个参数:n, 表示从{1, 2,

3, ... N}这n个整数中以相同的概率抽样。基本语法:

unidrnd(n,[M,N,P,...])

这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可

以省略掉方括号。一些例子:

unidrnd(5,5,1) %生成5个随机数排列的列向量,一般用这种格式

unidrnd(5,5) %生成5行5列的随机数矩阵

unidrnd(5,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(10,0.3)的二项分布

生成的随机数大致的分布。

x=unidrnd(9,100000,1);

hist(x,9);

可见,每个整数的取值可能性基本相同。

15.binornd()

此函数生成服从二项分布的随机数。二项分布有2个参数:n,p。考虑一个打靶的例子,每枪命中率为p,共射击N枪,那么一共击中的次数就服从参数为(N,p)的二项分布。注意p要小于等于1且非负,N要为整数。基本语法:

binornd(n,p,[M,N,P,...])

生成的随机数服从参数为(N,p)的二项分布,这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

binornd(10,0.3,5,1) %生成5个随机数排列的列向量,一般用这种格式

binornd(10,0.3,5) %生成5行5列的随机数矩阵

binornd(10,0.3,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(10,0.3)的二项分布

生成的随机数大致的分布。

x=binornd(10,0.45,100000,1);

hist(x,11);

我们可以将此直方图解释为,假设每枪射击命中率为0.45,每论射击10次,共进行10万轮,这个图就表示这10万轮每轮命中成绩可能的一种情况。

16.geornd()

此函数生成服从几何分布的随机数。几何分布的参数只有一个:p。几何分布的现实意义可以解释为,打靶命中率为p,不断地打靶,直到第一次命中目标时没有击中次数之和。注意p是概率,所以要小于等于1且非负。基本语法:

geornd(p,[M,N,P,...])

这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

geornd(0.4,5,1) %生成5个随机数排列的列向量,一般用这种格式

geornd(0.4,5) %生成5行5列的随机数矩阵

geornd(0.4,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(0.4)的二项分布

生成的随机数大致的分布。

x=geornd(0.4,100000,1);

hist(x,50);

17.poissrnd()

此函数生成服从泊松(Poisson)分布的随机数。泊松分布的参数只有一个:lambda。此参数要大于零。基本语法:

geornd(p,[M,N,P,...])

这些随机数排列成M*N*P... 多维向量。如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。一些例子:

poissrnd(2,5,1) %生成5个随机数排列的列向量,一般用这种格式

poissrnd(2,5) %生成5行5列的随机数矩阵

poissrnd(2,[5,4]) %生成一个5行4列的随机数矩阵

%注:上述语句生成的随机数所服从的参数为(2)的泊松分布

生成的随机数大致的分布。

x=poissrnd(2,100000,1);

hist(x,50);

其他离散分布还有超几何分布(Hyper-geometric, 函数是hygernd)等,详细见Matlab帮助文档。Matlab中随机数生成器主要有:

betarnd 贝塔分布的随机数生成器

binornd 二项分布的随机数生成器

chi2rnd 卡方分布的随机数生成器

exprnd 指数分布的随机数生成器

frnd f分布的随机数生成器

gamrnd 伽玛分布的随机数生成器

geornd 几何分布的随机数生成器

hygernd 超几何分布的随机数生成器

lognrnd 对数正态分布的随机数生成器

nbinrnd 负二项分布的随机数生成器

ncfrnd 非中心f分布的随机数生成器

nctrnd 非中心t分布的随机数生成器

ncx2rnd 非中心卡方分布的随机数生成器

normrnd 正态(高斯)分布的随机数生成器,normrnd(a,b,c,d):产生均值为a、方差为b 大小为cXd的随机矩阵

poissrnd 泊松分布的随机数生成器

rand:产生均值为0.5、幅度在0~1之间的伪随机数,rand(n):生成0到1之间的n阶随机数方阵,rand(m,n):生成0到1之间的m×n的随机数矩阵

randn:产生均值为0、方差为1的高斯白噪声,使用方式同rand

注:rand是0-1的均匀分布,randn是均值为0方差为1的正态分布randperm(n):产生1到n的均匀分布随机序列

raylrnd 瑞利分布的随机数生成器

trnd 学生氏t分布的随机数生成器

unidrnd 离散均匀分布的随机数生成器

unifrnd 连续均匀分布的随机数生成器

weibrnd 威布尔分布的随机数生成器

-----------------------------------------------------------------

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

中心极限定理

中心极限定理 从总体中抽取容量为n的一个样本时,当样本容量足够大时,样本均值x的抽样分布近似服从于正态分布。 eg:用R从0-10的均匀分布中产生100个样本量为n=2的随机样本,对每个样本计算,并画出100个的频数分布,对于n=5,10,30,50,重复这一个过程。 a=matrix(rep(0,200),nrow=100,byrow=T) set.seed(200) for(i in 1:100) a[i,]=runif(2,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100 个样本量n=2的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,1000),nrow=100,byrow=T) set.seed(1000) for(i in 1:100) a[i,]=runif(10,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=10的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,3000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(30,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=30的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,5000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(50,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=50的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2)

数理统计作业二--用数学实验的方法验证大数定理和中心极限定理(精编文档).doc

【最新整理,下载后即可编辑】 验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式=RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N 个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k ,k=1,2,3······来验证中心极限定理。因为E k ,k=1,2,3······之间是独立同分布,所以)5.0,(~E n 1k k n B ∑=。由中心极限定理可知,当n 的取值足够大时,∑=n 1k k E 这一随机变量的分布与正太分布具有很好的近似,下面用MATLAB 软件分别画出n 取不同值时∑=n 1k k E 的分布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N (5,2.5)。 MATLAB 结果图: MATLAB 源程序:

②当n=20时,对应正态分布为N(10,5)。MATLAB结果图: MATLAB源程序:

③当n=30时,对应正态分布为N(15,7.5)。MATLAB结果图: MATLAB源程序:

④当n=40时,对应正态分布为N(20,10)。MATLAB结果图: MATLAB源程序:

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

中心极限定理及其意义

中心极限定理及其意义

————————————————————————————————作者:————————————————————————————————日期:

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现: clc clear n=200000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; sigma=1/12; population=0:0.001:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-0.5)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%% 两点分布的实现: clc clear n=10000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; p=0.5; sigma=p*(1-p); population=0:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-p)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

中心极限定理实验仿真

中心极限定理的仿真实验 目的:模拟投掷一枚骰子出现的点数的试验,重复进行104次,统计出现的点数和,并将数据标准化处理后,画出频率直方图,通过观察比较验证数据的正态性。 所用的软件:Microsoft EXCEL 步骤如下: 1 打开excel软件,在A2格子中输入=INT(6*RAND())+1,按回车就会产生一个1-6中的某一个随机整数,并且出现1-6中每一个整数的概率是相同的。 2鼠标点击A2格子,并移动到格子的右下角,出现”+”后往下拖动鼠标直到出现A501时停下来,这样就得到了500个随机数据,都是在1-6中随机取值的。(当然你越往下拖,产生的随机整数越多,试验效果越好) 3 在第二列重复第1步和第2步,第三列,第四列……直到CZ列都和第二列同样操作,这样产生了104列随机数据。 4 在DB列分别求出每行数据的和,用的函数是“SUM”,接着依次求出500行数据的和。 5 复制DB列到DC列,注意值复制数值。 6 对DC列数据进行排序, 7对DC列数据进行标准化处理,即每个数据减去平均值再除以标准差(均值函数为average,样本方差函数为var)

8处理后的数据放在DE列。根据最大值和最小值,把数据分到20个区间,这里数据范围从-2.7到2.7,故每个区间长度为0.27,这样得到(-2.7,-2.43],……,(2.43,2.7)共20个区间(也可以分15个区间,这时区间长度为0.36)。 9统计每个区间里的数据个数,用函数countif(区域,条件),详见EXCEL文件。 10 画出频率直方图,大家可以看到,投掷104次骰子后出现的点数和数据标准化后出现标准正态分布的特征。 请大家按照以上方法,产生200列数据,每列1000个数据,按照以上步骤做好中心极限定理的仿真实验。按个步骤写出实验过程,并将计算结果或图标截图后放在每个步骤后面,完整一份实验报告。

相关文档
最新文档