高二物理选修知识点复习

高二物理选修知识点复习
高二物理选修知识点复习

高二物理 选修3-2知识点复习

知识点一:电磁感应现象Ⅰ

只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。 知识点二:感应电流的产生条件Ⅱ

1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

三、法拉第电磁感应定律 楞次定律Ⅱ

①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。设产生的感应电流强度为I ,MN 间电动

势为ε,则MN 受向左的安培力F BIL =,要保持MN

以v 匀速向右运动,所施外力F F BIL '==,当行进位

移为S 时,外力功W BI L S BILv t ==···。t 为所

用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

∴ε=BIv ,M 点电势高,N 点电势低。

此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。 εφ=n t

·??,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。

如上图中分析所用电路图,在?t 回路中面积变化??S Lv t =·,而回路跌磁通变化量???φ==B S BLv t ··,又知ε=BLv 。

∴εφ=??t 如果回路是n 匝串联,则εφ=n t ??。 公式 εφ=n t ??/。注意: 1)该式普遍适用于求平均感应电动势。2)ε只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。公式二: εθ=Blv sin 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。公式三: ε=L I t ??/。注意: 1)该公式由法拉第电磁感应定律推出。适用于自感现象。2)ε与电流的变化率??I t /成正比。 公式εφ=n t

??中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时ε=n

B t S ??, 此式中的??B t 叫磁感应强度的变化率, 若??B t

是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。

严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率??φt

, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φt 表示磁通量变化的快慢, εφ=??t , φ大, ???φφ及t

不一定大; ??φt 大, φφ及?也不一定大, 它们的区别类似于力学中的v , ???v a v t 及=

的区别, 另外I 、???I I t 及也有类似的区别。

公式ε=Blv 一般用于导体各部分切割磁感线的速度相同, 对有

些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?

如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转

动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求

AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等,

v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成正比, 所以AC

切割的速度可用其平均切割速度, 即v v v v l A C C =

+==222ω, 故εω=122B l 。 εω=12

2BL ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为ε。

如图所示,AO 导线长L ,以O 端为轴,以ω角速度匀速转动一

周,所用时间?t =2πω

,描过面积?S L =π2,(认为面积变化由0增到πL 2)则磁通变化?φπ=B L ·2。

在AO 间产生的感应电动势εφππωω===??t B L BL 22212

/且用右手定则制定A 端电势高,O 端电势低。

εωm n B S =···——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势εm 。

如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度为v d =ω·2

(圆运动半径为宽边d 的一半)产生感应电动势 εωω===BL v BL d BS (212)

,a 端电势高于b 端电势。

cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势εω=12

BS 。c 端电势高于e 端电势。

bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为εωm BS =。

如果线圈n 匝,则εωm n B S =···,M 端电势高,N 端电势低。 参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值εm ,如从图示位置转过一个角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值εεθ=m .cos .即作最大值方向的投影,εωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。

总结:计算感应电动势公式:

εεε=BLv v v 如是即时速度,则为即时感应电动势。

如是平均速度,则为平均感应电动势。

εφε=→n t t t o ????是一段时间,为这段时间内的平均感应电动势。

,为即时感应电动势。 εω=12

2BL εωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

()()εωεωθθm n BS n B S ==?????··线圈平面与磁场平行时有感应电动势最大值····瞬时值公式,是线圈平面与磁场方向夹角cos 注意:公式中字母的含义,公式的适用条件及使用图景。

区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在?t 内迁移的电量(感应电量)为

R

n t t R n t R t I q φφε

?=???=?=?=, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。因此, 当用一磁棒先后两次从同一处用不同速度插至线圈中同一位置时, 线圈里聚积的感应电量相等, 但快插与慢插时产生的感应电动势、感应电流不同, 外力做功也不同。

②楞次定律:

1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化产生?→??感应电流建立?→??感应电流磁场阻碍?→??磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。 楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(φ原变),产生感应电流(I 感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(φ感),这就是电流的磁效应问题;而且I 感的方向就决定了φ感的方向(用安培右手螺旋定则判定);φ感阻碍φ原的变化——这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理

顺如下:

楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表述);

(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

(3)使线圈面积有扩大或缩小的趋势;

(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:

(1)查明原磁场的方向及磁通量的变化情况;

(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则

可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判

定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也

能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反

过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,

闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定

感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用左手,“因动而电”用右手,因果关系不可混淆。

知识点四:互感自感涡流Ⅰ

互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁

通量的变化在线圈B中激发了感应电动势。这种现象叫互感。

自感现象是指由于导体本身的电流发生变化而产生的电磁感应

现象。所产生的感应电动势叫做自感电动势。自感系数简称自感或电

感, 它是反映线圈特性的物理量。线圈越长, 单位长度上的匝数越多,

截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。自感现象分通电自感和断电自感两种, 其中断电自感中“小灯泡在熄灭之前是否要闪亮一

下”的问题, 如图2所示, 原来电路闭合处于稳定状态, L 与L A 并联, 其电流分别为I I L A 和, 方向都是从左到右。在断开S 的瞬间, 灯A 中原来的从左向右的电流I A 立即消失, 但是灯A 与线圈L 构成一闭合回路, 由于L 的自感作用, 其中的电流I L

不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个时间内灯A 中有从右向左的电流通过, 此时通过灯A 的电流是从I L 开始减弱的, 如果原来

I I L A >, 则在灯A 熄灭之前要闪亮一下; 如果原来I I L A ≤, 则灯

A 是逐断熄灭不再闪亮一下。原来I I L A 和哪一个大, 要由L 的直

流电阻R L 和A 的电阻R A 的大小来决定, 如果

R R I I L A L A ≥≤,则, 如果R R I I L A L A <>,。 2、由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。在自感现象中产生感应电动势叫自感电动势。

由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。

3、自感电动势的大小跟电流变化率成正比。

ε自=

L I t

?? L 是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L 越大。单位是亨利(H )。

如是线圈的电流每秒钟变化1A ,在线圈可以产生1V 的自感电动势,则线圈的自感系数为1H 。还有毫亨(mH ),微亨(μH )。

涡流及其应用

1.变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流

2.应用:

(1)新型炉灶——电磁炉。

(2)金属探测器:飞机场、火车站安全检查、扫雷、探矿。

知识点五:交变电流 描述交变电流的物理量和图象Ⅰ

一、交流电的产生及变化规律:

(1)产生:强度和方向都随时间作周期性变化的电流叫交流电。

矩形线圈在匀强磁场中,绕垂直于匀强磁场的线圈的对称轴作匀速转动时,如图5—1所示,产生正弦(或余弦)交流电动势。当外电路闭合时形成正弦(或余弦)交流电流。

图5—1

(2)变化规律:

(1)中性面:与磁力线垂直的平面叫中性面。

线圈平面位于中性面位置时,如图5—2(A )所示,穿过线圈的磁通量最大,但磁通量变化率为零。因此,感应电动势为零 。

图5—2

当线圈平面匀速转到垂直于中性面的位置时(即线圈平面与磁力线平行时)如图5—2

(C )所示,穿过线圈的磁通量虽然为零,但线圈平面内磁通量变化率最大。因此,感应电动势值最大。

εωm N B l v N B S ==2·······(伏) (N 为匝数)

(2)感应电动势瞬时值表达式: 若从中性面开始,感应电动势的瞬时值表达式:e t m =εω·sin (伏)如图5—2(B )所示。

感应电流瞬时值表达式:i I t m =·sin ω(安) 若从线圈平面与磁力线平行开始计时,则感应电动势瞬时值表达式为:e t m =εω·cos (伏)如图5—2(D )所示。

感应电流瞬时值表达式:i I t m =·cos ω(安)

二、表征交流电的物理量:

(1)瞬时值、最大值和有效值:

交流电在任一时刻的值叫瞬时值。

瞬时值中最大的值叫最大值又称峰值。

交流电的有效值是根据电流的热效应规定的:让交流电和恒定直流分别通过同样阻值的电阻,如果二者热效应相等(即在相同时间内产生相等的热量)则此等效的直流电压,电流值叫做该交流电的电压,电流有效值。

正弦(或余弦)交流电电动势的有效值ε和最大值εm 的关系为:εεε=

=m m 20707&.

交流电压有效值U U m &.=0707; 交流电流有效值I I m &.=0707。 注意:通常交流电表测出的值就是交流电的有效值。用电器上标明的额定值等都是指有效值。用电器上说明的耐压值是指最大值。

(2)周期、频率和角频率

交流电完成一次周期性变化所需的时间叫周期。以T 表示,单位是秒。

交流电在1秒内完成周期性变化的次数叫频率。以f 表示,单位是赫兹。 周期和频率互为倒数,即T f =1。 我国市电频率为50赫兹,周期为0.02秒。 角频率ω:ωππ=

=22T

f 单位:弧度/秒 交流电的图象:

e t m =εω·sin 图象如图5—3所示。 e t m =εω·cos 图象如图5—4所示。

知识点六:正弦交变电流的函数表达式Ⅰ

u=U m sinωt

i=I m sinωt

知识点七:电感和电容对交变电流的影响Ⅰ

①电感对交变电流有阻碍作用,阻碍作用大小用感抗表示。

低频扼流圈,线圈的自感系数L很大,作用是“通直流,阻交流”;

高频扼流圈,线圈的自感系数L很小,作用是“通低频,阻高频”.

②电容对交变电流有阻碍作用,阻碍作用大小用容抗表示

耦合电容,容量较大,隔直流、通交流

高频旁路电容,容量很小,隔直流、阻低频、通高频

知识点八:变压器Ⅰ

变压器是可以用来改变交流电压和电流的大小的设备。

理想变压器的效率为1,即输入功率等于输出功率。对于原、副线圈各一组的变压器来说(如图5—6),原、副线圈上的电压与它们的匝数成正。

即 U U n n 1212

= 因为有U I U I 1122··=,因而通过原、

副线圈的电流强度与它们的匝数成反比。

即 I I n n 1221

= 注意:1.理想变压器各物理量的决定因素

输入电压U 1决定输出电压U 2,输出电流I 2决定输入电流I 1,输入功率随输出功率的变化而变化直到达到变压器的最大功率(负载电阻减小,输入功率增大;负载电阻增大,输入功率减小)。

2.一个原线圈多个副线圈的理想变压器的电压、电流的关系

U 1:U 2:U 3:…=n 1:n 2:n 3:… I 1n 1=I 2n 2+I 3n 3+…

因为P P 入出=,即U I U I 1122··=,所以变压器中高压线圈电流小,绕制的导线较细,低电压的线圈电流大,绕制的导线较粗。

上述各公式中的I 、U 、P 均指有效值,不能用瞬时值。

(3)电压互感器和电流互感器

电压互感器是将高电压变为低电压,故其原线圈并联在待测高压电路中;电流互感器是将大电流变为小电流,故其原线圈串联在待测的高电流电路中。

(二)解决变压器问题的常用方法

思路1 电压思路。变压器原、副线圈的电压之比为U 1/U 2=n 1/n 2;当变压器有多个副绕组时U 1/n 1=U 2/n 2=U 3/n 3=……

思路2 功率思路。理想变压器的输入、输出功率为P 入=P 出,即P 1=P 2;当变压器有多个副绕组时P 1=P 2+P 3+……

思路3 电流思路。由I =P /U 知,对只有一个副绕组的变压器有I 1/I 2=n 2/n 1;当变压器有多个副绕组时n 1I 1=n 2I 2+n 3I 3+……

思路4 (变压器动态问题)制约思路。

(1)电压制约:当变压器原、副线圈的匝数比(n 1/n 2)一定时,输出电压U 2由输入电压决定,即U 2=n 2U 1/n 1,可简述为“原制约副”.

(2)电流制约:当变压器原、副线圈的匝数比(n 1/n 2)一定,且输入电压U 1确定时,原线圈中的电流I 1由副线圈中的输出电流I 2决定,即I 1=n 2I 2/n 1,可简述为“副制约原”.

(3)负载制约:①变压器副线圈中的功率P 2由用户负载决定,P 2=P

负1+P 负2+…;②变压器副线圈中的电流I 2由用户负载及电压U 2确定,I 2=P 2/U 2;③总功率P 总=P 线+P 2.

动态分析问题的思路程序可表示为:

U 122222121I R U I U n n U U 决定负载决定?????→?=????→?=决定决定????→?=????????→?==1112211211)(U I P I U I U I P P P 1 思路5 原理思路。变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt 相等;当遇到“

型变压器时有

ΔΦ1/Δt =ΔΦ2/Δt +ΔΦ3/Δt , 此式适用于交流电或电压(电流)变化的直流电,但不适用于稳压或恒定电流的情况.

知识点九:电能的输送Ⅰ

由于送电的导线有电阻,远距离送电时,线路上损失电能较多。

在输送的电功率和送电导线电阻一定的条件下,提高送电电压,减小送电电流强度可以达到减少线路上电能损失的目的。

线路中电流强度I 和损失电功率计算式如下:

I P U P I R ==输

出损线·2

注意:送电导线上损失的电功率,不能用P U R 损出线=2求,因为U 出不是全部降落在导线上。

知识点十:传感器的及其工作原理Ⅰ

有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。光照越强,光敏电阻阻值越小。

金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。

金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。

66.传感器的应用Ⅰ

1.光敏电阻

2.热敏电阻和金属热电阻

3.电容式位移传感器

4.力传感器————将力信号转化为电流信号的元件。

5.霍尔元件

霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。

外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的另一侧会出现多余的另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压d IB k U U H H =,. 1.传感器应用的一般模式 2.传感器应用: 力传感器的应用——电子秤 声传感器的应用——话筒

温度传感器的应用——电熨斗、电饭锅、测温仪

光传感器的应用——鼠标器、火灾报警器

传感器的应用实例:1.光控开关2.温度报警器

传感器 转换放大 执行机构

计算机系统 显示器

???? ??数字屏指针式电表

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

物理必修二 知识点归纳

2017—2018学年度下学期高一物理组 主备教师:夏春青 第五章曲线运动 一、教学目标 使学生在理解曲线运动的基础上,进一步学习曲线运动中的两种特殊运动,抛体运动以及圆周运动,进而学习向心加速度并在牛顿第二定律的基础上推导出向心力,结合生活中的实际问题对曲线运动进一步加深理解。 二、教学内容 1.曲线运动及速度的方向; 2.合运动、分运动的概念; 3.知道合运动和分运动是同时发生的,并且互不影响; 4.运动的合成和分解; 5.理解运动的合成和分解遵循平行四边形定则; 6.知道平抛运动的特点,理解平抛运动是匀变速运动,会用平抛运动的规律解答有关问题; 7.知道什么是匀速圆周运动; 8.理解什么是线速度、角速度和周期; 9.理解各参量之间的关系;10.能够用匀速圆周运动的有关公式分析和解决有关问题;11.知道匀速圆周运动是变速运动,存在加速度。12.理解匀速圆周运动的加速度指向圆心,所以叫做向心加速度;13.知道向心加速度和线速度、角速度的关系;14.能够运用向心加速度公式求解有关问题;15.理解向心力的概念,知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算;会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象; 16.培养学生的分析能力、综合能力和推理能力,明确解决实际问题的思路和方法。 三、知识要点

涉及的公式: §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动 与分运动的关系: 等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

上海市高中物理知识点总结完整版

直线运动 知识点拨: 1. 质点 用一个只有质量没有形状的几何点来代替物体。这个点叫质点。一个实际的物体能否看作质点处理的两个基本原则:(1)做平动的物体。(2)物体的几何尺寸相对研究的距离可以忽略不计。 2. 位置、路程和位移 (1) 位置:质点在空间所对应的点。 (2) 路程:质点运动轨迹的长度。它是标量。 (3) 位移:质点运动位置的变化,即运动质点从初位置指向末位置的有 向线段。它是矢量。 3. 时刻和时间 (1) 时刻:是时间轴上的一个确定的点。如“3秒末”和“4秒初”就 属于同一时刻。 (2) 时间:是时间轴上的一段间隔,即是时间轴上两个不同的时刻之差。 21t t t =- 4. 平均速度、速度和速率 (1) 平均速度(v ):质点在一段时间内的位移与时间的比值,即v = s t ?? 。它是矢量,它的方向与Δs 的方向相同。在S - t 图中是割线的斜率。 (2) 瞬时速度(v ):当平均速度中的Δt →0时,s t ??趋近一个确定的值。 它是矢量,它的方向就是运动方向。在S - t 图中是切线的斜率。 (3) 速率:速度的大小。它是标量。 5. 加速度 描写速度变化的快慢。它是速度的变化量与变化所用的时间之比值,即:

a =t v ??。 它是矢量,它的方向与Δv 的方向相同。当加速度方向与速度 方向一致时,质点作加速运动;当加速度方向与速度方向相反时,质点作减速运动。 6. 匀变速直线运动规律(特点:加速度是一个恒量) (1)基本公式: S = t + 12 a t2 = v0 + a t (2)导出公式: ① 2 - v02 = 2 ② S t - a t2 ③ v == 2 t v v + ④ 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: S Ⅱ-S Ⅰ=2 (a 一匀变速直线运动的加速度 T 可导出: - =(M -N) ⑤ A B 段中间时刻的即时速度⑥ 段位移中点的即时速度注:无论是匀加速还是匀减速直线运动均有: 2 < 2 ⑦ 初速为零的匀加速直线运动, 在第1s 内、第 2s 内、第3s 内……第内的位移之比为: S Ⅰ:S Ⅱ:S Ⅲ:……: = 1:3:5……:(21); 1、 2、3、…… ⑧ 初速为零的匀加速直线运动,在第1米内、第2米内、第3米内……第n 米内的时间之比为: t Ⅰ:t Ⅱ:t Ⅲ:…:=1:( )21-:()23-……(n n --1); 1、2、3、 7. 匀减速直线运动至停止:

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高二物理下学期知识点

高二物理下学期知识点 高二物理下学期知识点1 电场 1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=?m2/C2,Q1、 Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 2.两种电荷、电荷守恒定律、元电荷:(e=);带电体电荷量等于元电荷的整数倍 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 7.电势与电势差:UAB=B,UAB=WAB/q=-EAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的

增量等于电场力做功的负值) 10.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)} 11.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动 d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高二物理选修3-1知识点

第一章恒定电流 一、电源和电流 1、电流产生的条件: (1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子) (2)导体两端存在电势差(电压) (3)导体中存在持续电流的条件:是保持导体两端的电势差。 2电流的方向 电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。 说明:(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移 动方向相反。 (2)电流有方向但电流强度不是矢量。 (3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。 二、电动势 1.电源 (1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。(2)非静电力在电源中所起的作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。

【注意】在不同的电源中,是不同形式的能量转化为电能。 2.电动势 (1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。 (2)定义式:E=W/q (3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。 【注意】:①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。 ②电动势在数值上等于电源没有接入电路时,电源两极间的电压。 ③电动势在数值上等于非静电力把1C电量的正电荷在电源内 从负极移送到正极所做的功。 3.电源(池)的几个重要参数 ①电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。 ②内阻(r):电源内部的电阻。 ③容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h. 【注意】:对同一种电池来说,体积越大,容量越大,内阻越小。 三、欧姆定律 1、导体的电阻

2017高中物理会考知识点归纳

高中物理学业水平考试要点解读 第一章 运动的描述 第二章 匀变速直线运动的描述 要点解读 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律

高二物理知识点总结

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间 的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 e =?-1610 19 .C 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带 电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距 离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =122 , 其中比例常数K 叫静电力常量,K =?90109.N m C 22·。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时, 可以使用库仑定律,否则不能使用。例如半径均为r 的金属球如 图9—1所示放置,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的库仑力大小为F ,比较F 与K Q r 22 3() 的大小关系,显然,如果电荷 能全部集中在球心处,则两者相等。依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K Q r >22 3() 。同理, 若两球带同种电荷Q ,则F K Q r <22 3() 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力 F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是E F q = ,场强 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度E 的大小,方向是由电场本身决定的,是客观存在的,与放不放检

高二物理选修31知识点总结

高二物理选修3-1知识点总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电 场发生的。电荷的多少叫电量。基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =12 2 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =12 2 ,其中比例常数K 叫静电力常量,K =?90109.N m C 22 ·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场

高二物理知识点归纳总结五篇精选

高二物理知识点归纳总结五篇精选 高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。下面就是给大家带来的高二物理知识点总结,希望能帮助到大家! 高二物理知识点总结1 一、功:功等于力和物体沿力的方向的位移的乘积; 1、计算公式:w=Fs; 2、推论:w=Fscosθ,θ为力和位移间的夹角; 3、功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功; 二、功率:是表示物体做功快慢的物理量; 1、求平均功率:P=W/t; 2、求瞬时功率:p=Fv,当v是平均速度时,可求平均功率; 3、功、功率是标量;

三、功和能间的关系:功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化; 四、动能定理:合外力做的功等于物体动能的变化。 1、数学表达式:w合=mvt2/2-mv02/2 2、适用范围:既可求恒力的功亦可求变力的功; 3、应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程; 4、应用动能定理解题的步骤: (1)对物体进行正确的受力分析,求出合外力及其做的功; (2)确定物体的初态和末态,表示出初、末态的动能; (3)应用动能定理建立方程、求解 五、重力势能:物体的重力势能等于物体的重量和它的速度的乘积。 1、重力势能用EP来表示; 2、重力势能的数学表达式:EP=mgh; 3、重力势能是标量,其国际单位是焦耳; 4、重力势能具有相对性:其大小和所选参考系有关;

5、重力做功与重力势能间的关系 (1)物体被举高,重力做负功,重力势能增加; (2)物体下落,重力做正功,重力势能减小; (3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关 六、机械能守恒定律:在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。 1、机械能守恒定律的适用条件:只有重力或弹簧弹力做功; 2、机械能守恒定律的数学表达式: 3、在只有重力或弹簧弹力做功时,物体的机械能处处相等; 4、应用机械能守恒定律的解题思路 (1)确定研究对象,和研究过程; (2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律; (3)恰当选择参考平面,表示出初、末状态的机械能; (4)应用机械能守恒定律,立方程、求解;

高二物理选修31知识点

高二物理选修3.1知识点总结 第一章 电场基本知识点总结 (一)电荷间的相互作用 1.电荷间有相互作用力,同种电荷互相排斥,异种电荷相互吸引,两电荷间的相互作用力大小相等,方向相反,作用在同一直线上。2.库仑定律:在真空中两个点电荷间的作用力大小为F= kQ 1Q 2/r 2,静电力常量k=9.0×109N ·m 2/C 2。 (二)电场强度 1.定义式:E=F/q ,该式适用于任何电场,E 与F 、q 无关只取决于电场本身,E 的方向规定为正点电荷受到电场力的方向。(1)场强的合成:场强E 是矢量,求合场强时应遵守矢量合成的平行四边形法则。 (2)电场力:F=qE ,F 与q 、E 都有关。 2.决定式:(1)E=kQ/ r 2,仅适用于在真空中点电荷Q 形成的电场,E 的大小与Q 成正比,与r 2成反比。(2)E=U/d ,仅适用于匀强电场。 (三)电势能 1.电场力做功的特点:电场力对移动电荷做功与路径无关,只与始末位的电势差有关,W ab =qU ab 2.判断电势能变化的方法 (1)根据电场力做功的正负来判断,不管正负电荷,电场力对电荷做正功,该电荷的电势能一定减少;电场力对电荷做负功,该电荷的电势能一定增加。(2)根据电势的定义式U=E p /q 来确定。(3)利用W=q(U a -U b )来确定电势的高低。 (四)静电平衡:把金属导体放入电场中时,导体中的电荷重新分布,当感应电荷产生的附加电场E '与原场强E 0叠加后合场强E 为零时,即E= E 0 +E '=0,金属中的自由电子停止定向移动,导体处于静电平衡状态。 (五)电容 1.定义式:C=Q/U=Δ Q/ΔU ,适用于任何电容器。2.决定式;C=ES/4πkd ,仅适用于平行板电容器。 3.对平行板电容器有关的C 、Q 、U 、E 的讨论问题有两种情况。对平行板电容器的讨论: kd s c πε4= 、U q C = 、d U E = (Ⅰ)、电容器跟电源相连,U 不变,q 随C 而变。d ↑→C ↓→q ↓→E ↓ E 、S ↑→C ↑→q ↑→E 不变。 (Ⅱ)、充电后断开,q 不变,U 随C 而变。 d ↑→C ↓→U ↑→s kq sd kdq cd q d U E επεπ44==== 不变。 E 、S ↓→C ↓→U ↑→E ↑。 (六)、带有粒子的加速度 若带电粒子仅受电场力且电场力做正功,其电势能减少功能增加。 (1)初速度为零时221mv qU = (2)初速度不为零时mv mv qU 2 022 121-= 2.带电粒子的偏转:带电粒子仅受电场力作用为初速度v 0垂直进入匀强电场,做类平抛运动,此类问题一般都是分解为两个方向的分运动来处理。 沿初速度方向做匀速运动:v x =v 0,x=v 0t 沿电场方向做匀加速运动:v y =at ,y=at 2/2 两个分运动的联系桥梁:时间t 相等

高一物理下标准知识点

高一物理必修2知识点复习 一、 曲线运动 1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。 2、物体做直线或曲线运动的条件: (已知当物体受到合外力F 作用下,在F 方向上便产生加速度a ) (1)若F (或a )的方向与物体速度v 的方向相同,则物体做直线运动; (2)若F (或a )的方向与物体速度v 的方向不同,则物体做曲线运动。 3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。 4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。 两分运动说明: (1)在水平方向上由于不受力,将做匀速直线运动; (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。 5、以抛点为坐标原点,水平方向为x 轴(正方向和初速度的方向相同),竖直方向为y 轴,正方向向下,则物体在任意时刻t 的位置坐标为: 2021,gt y t v x == 6、①水平分速度:0v v x =②竖直分速度:gt v y = ③t 秒末的合速度::22y x v v v += ④任意时刻的运动方向可用该点速度方向与x 轴的正方向的夹角θ表示:x y v v =θtan 二、圆周运动 1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。 2、描述匀速圆周运动快慢的物理量 (1)线速度v :质点通过的弧长和通过该弧长所用时间的比值,即v =s/t ,单位m/s ;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上 **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。 (2)角速度ω:ω=φ/t(φ指转过的角度,转一圈φ为π2),单位 rad/s 或1/s ;对某一确定的匀速圆周运动而言,角速度是恒定的 (3)周期T ,频率f =1/T (4)线速度、角速度及周期之间的关系: r v T r v T ωππω=== ,2,2 3、向心力:r m F 2ω=,或者r v m F 2=,r T m F 2)2(π= 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。 5、向心加速度:2a r ω=,或2v a r =或r T a 2)2(π= 描述线速度变化快慢,方向与向心力的方向相同, 6,注意的结论: (1)由于a 向方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。 7、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 三、万有引力定律及其应用

高二物理选修知识点总结

高二物理选修3-1知识点总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用 力就是通过电场发生的。电荷的多少叫电量。基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =1 22 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =1 22,其中比例常数K 叫静电力常量,K =?90109.N m C 22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放

高中物理选修3-2知识点汇总

第一章 电磁感应 1. 磁通量 穿过某一面积的磁感线条数;标量,但有正负; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2 。 2. 电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3. 感生电场 变化的磁场在周围激发的电场。 4. 感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5. 楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6. 右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7. 法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的 磁通量的变化率成正比;E=n t ??Φ 。 8. 动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv ·sin θ。 9. 互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。 10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。 11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ??;日光灯的应用。 12.自感系数 上式中的比例系数L 叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。 13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章 直流电路 1. 电流 电荷的定向移动;单位是安,符号A ;规定正电荷定向移动的方向为正方向;宏观定义I= t q ; 微观解释I=neSv ,n 为单位体积的电荷数,e 是每个自由电荷的电量,S 为横截面积,v 是定向移动的速率。 2. 电阻 导体两端电压与电流的比值;R=I U 。 3. 电阻率 导体材料自身的性质。电阻率与温度有关,一般金属的电阻率随温度升高而增大,绝缘体和半导体随温度升高而减小,电阻率为零是称做超导。 4. 电阻定律 R=ρ S l ,S 为导体横截面积,l 为电阻丝长度, ρ 为电阻率。 5. 电阻的连接 串联和并联。 6. 电功 导体内静电力对自由电荷做的功;W=UIt ;单位是焦。 7. 电功率 单位时间内电流做的功;P=t W =UI ;单位是 瓦。 8. 电热 电流流过导体产生的热量;由焦耳定律计算,Q=I 2 Rt 。 9. 电功与电热的关系 在纯电阻电路中,W=Q ;在非纯电阻电路中,W>Q 。

相关文档
最新文档