离散数学(图论)课后总结

离散数学(图论)课后总结
离散数学(图论)课后总结

第八章图论

例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5)

解:a)不是, 因为有三个数字是奇数. b) c) d)是.

e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边.

例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么?

解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点.

强连通、单侧连通和弱连通

在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通.

在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图.

注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了

利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!!

令图G=, 集合Si V Si’=V-Si , 令|V|=n

Si={u|从u0到u的最短路已求出}

Si’={u’|从u0到u’的最短路未求出}

Dijkstra算法:(求从u0到各点u的最短路长)

第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0)

i=0 S0={u0} S0’=V-S0 ,

第二步.若i=n-1 则停. 否则转第三步

第三步. 对每个u’∈Si’

计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’

置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步.

例3、求最短路

解:例.求右图中从v1到v6的

最短路

1.置初值: u0=v1

d(u0,u0)=0

d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞

2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6}

d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3

d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞

d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5

d(u0,v5)=min{d(u0,v5),d(u0,u0)+c(u0,v5)}=min{∞,0+∞}=∞

d(u0,v6)=min{d(u0,v6),d(u0,u0)+c(u0,v6)}=min{∞,0+∞}=∞min{3,∞,5, ∞,∞}=3

ui+1 =u1=v2 , 实际已求出d(u0,v2)=3, 路是u0v2

i=1 S1={v1, v2}

S1’={v3,v4,v5,v6}

u1=v2

d(u0,u1)=3

d(u0,v3)=min{d(u0,v3),d(u0,u1)+c(u1,v3)}=min{∞,3+6}=9

d(u0,v4)=min{d(u0,v4), d(u0,u1)+c(u1,v4)}=min{5,3+1}=4

d(u0,v5)=min{d(u0,v5),d(u0,u1)+c(u1,v5)}=min{∞,3+∞}=∞

d(u0,v6)=min{d(u0,v6),d(u0,u1)+c(u1,v6)}=min{∞,3+∞}=∞

min{9,4,∞,∞}=4

ui+1 =u2=v4 , 实际已求出d(u0,v4)=4, 路是u0v2v4

i=2 S2={v1, v2 ,v4}

S2’={v3,v5,v6}

u2=v4

d(u0,u2)=4

d(u0,v3)=min{d(u0,v3), d(u0,u2)+c(u2,v3)}=min{9 ,4+3}=7

d(u0,v5)=min{d(u0,v5), d(u0,u2)+c(u2,v5)}=min{∞,4+1}=5

d(u0,v6)=min{d(u0,v6), d(u0,u2)+c(u2,v6)}=min{∞,4+∞}=∞

min{7,5,∞}=5

ui+1 =u3=v5 , 实际已求出d(u0,v5)=5, 路是u0v2v4 v5

i=3 S3={v1, v2 ,v4 ,v5}

S3’={v3,v6}

u3=v5

d(u0,u3)=5

d(u0,v3)=min{d(u0,v3),d(u0,u3)+c(u3,v3)}=min{7 ,5+3}=7

d(u0,v6)=min{d(u0,v6),d(u0,u3)+c(u3,v6)}=min{∞,5+6}=11 min{7,11}=7

ui+1 =u4=v3 , 实际已求出d(u0,v3)=7, 路是u0v2v4 v3

i=4 S3={v1, v2 ,v4 ,v5, v3} S3’={v6} u4=v3 d(u0,u4)=7 d(u0,v6)=min{d(u0,v6),d(u0,u4)+c(u4,v6)}=min{11,7+3}=10

min{10}=10

ui+1 =u5=v6 , 实际已求出d(u0,v6)=10, 路是u0v2v4 v3 v6

i=5 (n-1) 时算法停止.

例4、求关键路径。

例如, 求右图的关键路径

(1)求各个结点的最早完成时间:

计算时,从前向后

逐个结点计算。

TE(v1)=0

TE(v2)=max{0+1}=1 (v1 -v2的先驱结点)

TE(v3)=max{0+2 ,1+0}=2 (v1v2 -v3的先驱结点)

TE(v4)=max{0+3,2+2}=4 (v1v3 -v4的先驱结点)

TE(v5)=max{1+3,4+4}=8 (v2v4 -v5的先驱结点)

TE(v6)=max{2+4,8+1}=9 (v3v5 -v6的先驱结点)

TE(v7)=max{1+4,2+4}=6 (v2v3 -v7的先驱结点)

TE(v8)=max{9+1,6+6}=12 (v6v7 -v8的先驱结点)

(2)求各个结点的最晚完成时间:

计算时,从后向前

逐个结点计算。

TL(v8)=TE(v8)=12

TL(v7)=min{12-6}=6 (v8)

TL(v6)=min {12-1}=11 (v8)

TL(v5)=min {11-1}=10 (v6)

TL(v4)=min {10-4}=6 (v5)

TL(v3)=min {6-2, 11-4, 6-4}=2 (v4v6v7)

TL(v2)=min {2-0, 10-3, 6-4}=2 (v3v5v7)

TL(v1)=min {2-1, 2-2, 6-3}=0 (v2v3v4)

(3)求各个结点的缓冲时间

TS(vi)=TL(vi)-TE(vi)

vi v1 v2 V3 V4 V5 V6 V7 V8

TL(Vi) 0 2 2 6 10 11 6 12

TE(Vi) 0 1 2 4 8 9 6 12

TS(Vi) 0 1 0 2 2 2 0 0

关键路径为: v1v3v7v8

例5、设G是结点数n≥3的简单图,若边数m≥(1/2)(n-1)(n-2)+2,证明G中存在汉密尔顿回路。证明:假设G不存在汉密尔顿回路(不是H图),由H图充分条件判定定理可知,G中必存在结点u1、u2,使得deg(u1)+deg(u2)≤n-1,即关联这两个结点的边数最多为n-1。

在图G-{u1,u2}中:结点数为n-2, 边数≤(1/2)(n-2)(n-3)

G中边数m≤(1/2)(n-2)(n-3)+(n-1) <(1/2)(n-2)(n-3)+n=(1/2)(n2-5n+6)+n

=(1/2)(n2-5n+6+2n) =(1/2)(n2-3n+6)

=(1/2)[(n2-3n+2)+4]= (1/2)(n2-3n+2)+2

= (1/2)(n-1)(n-2)+2

与已知矛盾,所以G中存在汉密尔顿回路。

例6、平面图的欧拉公式是d=m-n+2 (r=e-v+2)?简单平面图G中至少有一个结点的度小于几?解:由欧拉公式v-e+r=2,所以r=e-v+2 (d=m-n+2 )成立。简单平面图G中至少存在一个结点的度数小于6。

因为如果图G的结点数v≤6时,所有结点的度均小于等于5。结论显然成立。

当v≥7时,若所有结点的度均≥ 6时,则由定理8-1.1得

2e=Σdeg(vi)≥6v ,所以推出e≥3v。

而由定理8-7.2(必要条件) 设G是有v 个结点、e条边的连通

简单平面图, 若v≥3, 则e≤3v-6.

所以不可能所有结点的度均大于等于6。即G中至少存在一个结点的度数小于6。

例7、证明在n≥4的极大平面图中,每个结点的度都大于等于3。

证明:因为结点数n≥3的简单平面图为极大平面图的充

分且必要条件是,每个面的次数均为3。所以G中任何回路的长度均大于或等于3。于是任结点u,与u相邻接的结点都在某个回路C上,且此回路的长度必大于等于3,所以deg(u)≥3。

图论这一章,还有点割集,边割集,点连通度,边连通度,完全关联矩阵等知识点,你可能还不熟,(应该不是考试的重点)注意及时复习啊!!!!想一下,还有一周左右的时间就要考试了。

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

《离散数学》复习提纲(2018)

《离散数学》期末复习大纲 一、数理逻辑 [复习知识点] 1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题 2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足), 公式的基本等值式 3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式 4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法) 5、命题逻辑的推理理论 6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出 现) 7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足) 8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量 词分配)和置换规则(置换规则、换名规则) 9、一阶逻辑前束范式(定义、求法) 本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、 公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与 解释、求前束范式。 [复习要求] 1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方 法。 2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简 其它公式,公式在解释下的真值。 3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取) 范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。 4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公 式等价方法。 5、掌握命题逻辑的推理理论。 6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑

联结词描述一个简单命题;掌握命题的符号化。 7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定 解释下真值的方法;了解谓词公式的类型。 8、掌握求一阶逻辑前束范式的方法。 二、集合 [复习知识点] 1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂 集 2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理) 3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根 律等)及应用 本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。 [复习要求] 1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。 2、掌握集合的表示法和集合的交、并、差、补、对称差等基本运算。 3、掌握集合运算基本规律,证明集合等式的方法。 三、二元关系 [复习知识点] 1、序偶、迪卡儿积,迪卡儿积的性质及运算。 2、二元关系(定义、空关系、全域关系、恒等关系)、关系表达式、关系矩阵与 关系图 3、关系的定义域、值域、限制、像、复合关系(右复合)与逆关系 4、关系的性质(自反性、反自反性、对称性、反对称性、传递性) 5、关系的闭包(自反闭包、对称闭包、传递闭包) 6、等价关系与等价类、商集、划分 7、偏序关系与哈斯图、极大/小元、最大/小元

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学图论复习

离散数学11春图论部分综合练习辅导 大家好!本学期的第二次教学辅导活动现在开始,本次活动主要是针对第二单元图论的重点学习内容进行辅导,方式同样是通过讲解一些典型的综合练习作业题目,帮助大家进一步理解和掌握图论的基本概念和方法. 图论作为离散数学的一部分,主要介绍图论的基本概念、理论与方法.教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路问题、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其应用等. 本次综合练习主要是复习这一单元的主要概念与计算方法,与集合论一样,也安排了五种类型,有单项选择题、填空题,判断说明题、计算题、证明题.这样的安排也是为了让同学们熟悉期末考试的题型,能够较好地完成这一部分主要内容的学习. 下面是本学期第4,5次形考作业中的部分题目. 一、单项选择题 单项选择题主要是第4次形考作业的部分题目. 第4次作业同样也是由10个单项选择题组成,每小题10分,满分100分.在每次作业在关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩.需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目. 1.设图G =,v ∈V ,则下列结论成立的是 ( ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v V v 2)deg(=∑∈ D . E v V v =∑∈)deg( 该题主要是检查大家对握手定理掌握的情况.复习握手定理: 定理3.1.1 设G 是一个图,其结点集合为V ,边集合为E ,则 ∑∈=V v E v ||2)deg( 也就是说,无向图G 的结点的度数之和等于边数的两倍. 正确答案:C 2.设无向图G 的邻接矩阵为 ????????????????010******* 000011100100110, 则G 的边数为( ). A .6 B .5 C .4 D .3 主要是检查对邻接矩阵的概念理解是否到位.大家要复习邻接矩阵的定义,

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

东北大学离散数学复习总结

方法、知识点总结(知识重点和考题重点) 前三章重点内容(知识重点): 1、蕴含(条件)“→”的真值 P→Q的真值为假,当且仅当P为真,Q为假。 2、重言(永真)蕴涵式证明方法 <1>假设前件为真,推出后件也为真。 <2>假设后件为假,推出前件也为假。 易错 3、等价公式和证明中运用 4、重要公式 重言蕴涵式:P∧Q => P or Q P or Q => p∨Q A->B =>(A∧or∨C)->(B∧or∨C) 其他是在此基础上演变

等价公式:幂等律 P∧P=P P∨P=P 吸收律 P∧(P∨Q)=P P∨(P∧Q)=P 同一律 P∨F=P P∧T=P P∨T=T P∧F=F P <-> Q = (P->Q)∧(Q->P) = (P∧Q)∨(﹁P∧﹁Q) 5、范式的写法(最方便就是真值表法) 6、派遣人员、课表安排类算法: 第一步:列出所有条件,写成符号公式 第二步:用合取∧连接 第三步:求上一步中的析取范式即可 7、逻辑推理的写法 直接推理论证:其中I公式是指重言蕴涵式那部分 其中E公式是指等价公式部分 条件论证: 形如 ~ , ~, ~ => R->S R P(附加条件) ... ... S T

R->S CP 8、谓词基本内容 注意:任意用—> 连接 存在用∧连接 量词的否定公式 量词的辖域扩充公式 量词分配公式 其他公式 9、带量词的公式在论域内的展开 10、量词辖域的扩充公式 11、前束范式的写法 给定一个带有量词的谓词公式, 1)消去公式中的联接词→和←→(为了便于量词辖域的扩充); 2)如果量词前有“﹁?”,则用量词否定公式﹁?”后移。再用摩根定律或求公式的否定公式,将“﹁?”后移到原子谓词公式之前; 3)用约束变元的改名规则或自由变元的代入规则对变元换名(为量词辖域扩充作准备);

离散数学知识点总结

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基 2种不同的关系; 数为mn,A到B上可以定义mn 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;

离散数学图论部分综合练习讲解.doc

离散数学图论部分综合练习 1.设图G= ,则下列结论成立的是( ). A.deg(V)=2∣E∣B.deg(V)=∣E∣ C.E v V v 2 ) deg(= ∑ ∈ D.E v V v = ∑ ∈ ) deg( 2.图G如图一所示,以下说法正确的是( ) . A.{(a, d)}是割边 B.{(a, d)}是边割集 C.{(d, e)}是边割集 D.{(a, d) ,(a, c)}是边割集 3.如图二所示,以下说法正确的是( ). A.e是割点B.{a,e}是点割集 C.{b, e}是点割集D.{d}是点割集 4.如图三所示,以下说法正确的是( ) . A.{(a, e)}是割边B.{(a, e)}是边割集 C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集 图三 5.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ). 图四 A.(a)是强连通的B.(b)是强连通的 C.(c)是强连通的D.(d)是强连通的 6.设完全图K n 有n个结点(n≥2) ,m条边,当()时,K n 中存在欧拉回路. A.m为奇数B.n为偶数C.n为奇数D.m为偶数7.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ). A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+2 ο ο ο ο ο c a b e d ο f 图一 图二

8.无向图G 存在欧拉通路 ,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 9.设G 是有n 个结点 ,m 条边的连通图 ,必须删去G 的( )条边 ,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 10.无向简单图G 是棵树 ,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点 ,2个2度结点 ,3个3度结点 ,4个4度结点 , 则G 的边数是 . 2.设给定图G (如图四所示) ,则图G 的点割 集是 . 3.若图G=中具有一条汉密尔顿回路 , 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 . 4.无向图G 存在欧拉回路 ,当且仅当G 连通 且 . 5.设有向图D 为欧拉图 ,则图D 中每个结点的入度 . 6.设完全图K n 有n 个结点(n ≥2) ,m 条边 ,当 时 ,K n 中存在欧拉回路. 7.设G 是连通平面图 ,v , e , r 分别表示G 的结点数 ,边数和面数 ,则v ,e 和r 满足的关系式 . 8.设连通平面图G 的结点数为5 ,边数为6 ,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树. 10.设图G 是有6个结点的连通图 ,结点的总度数为18 ,则可从G 中删去 条边后使之变成树. 11.已知一棵无向树T 中有8个结点 ,4度 ,3度 ,2度的分支点各一个 ,T 的树叶数为 . 12.设G =是有6个结点 ,8条边的连通图 ,则从G 中删去 条边 ,可以确定图G 的一棵生成树. 13.给定一个序列集合{000 ,001 ,01 ,10 ,0} ,若去掉其中的元 ο ο ο ο ο c a b e d ο f 图四

离散数学之图论

第四篇图论 自从1736年欧拉(L.Euler)利用图论的思想解决了哥尼斯堡(Konigsberg)七桥问题以来,图论经历了漫长的发展道路。在很长一段时期内,图论被当成是数学家的智力游戏,解决一些著名的难题。如迷宫问题、匿门博奕问题、棋盘上马的路线问题、四色问题和哈密顿环球旅行问题等,曾经吸引了众多的学者。图论中许多的概论和定理的建立都与解决这些问题有关。 1847年克希霍夫(Kirchhoff)第一次把图论用于电路网络的拓扑分析,开创了图论面向实际应用的成功先例。此后,随着实际的需要和科学技术的发展,在近半个世纪内,图论得到了迅猛的发展,已经成了数学领域中最繁茂的分支学科之一。尤其在电子计算机问世后,图论的应用范围更加广泛,在解决运筹学、信息论、控制论、网络理论、博奕论、化学、社会科学、经济学、建筑学、心理学、语言学和计算机科学中的问题时,扮演着越来越重要的角色,受到工程界和数学界的特别重视,成为解决许多实际问题的基本工具之一。 图论研究的课题和包含的内容十分广泛,专门著作很多,很难在一本教科书中概括它的全貌。作为离散数学的一个重要内容,本书主要围绕与计算机科学有关的图论知识介绍一些基本的图论概论、定理和研究内容,同时也介绍一些与实际应用有关的基本图类和算法,为应用、研究和进一步学习提供基础。

第4-1章无向图和有向图 学习要求:仔细领会和掌握图论的基本概论、术语和符号,对于图论研究的一些最基本的课题,如道路问题、连通性问题和着色的问题等,应掌握主要的定理内容和证明方法以及基本的构造方法,以便为下一章研究提供理论工具。学习本章要用到集合和线性代数矩阵运算的知识,特别是集合数和矩阵秩的概念。 §4-1-1 图的基本概念 图是用于描述现实世界中离散客体之间关系的有用工具。在集合论中采用过以图形来表示二元关系的办法,在那里,用点来代表客体,用一条由点a指向点b的有向线段来代表客体a和b之间的二元关系aRb,这样,集合上的二元关系就可以用点的集合V和有向线的集合E构成的二元组(V,E)来描述。同样的方法也可以用来描述其它的问题。当我们考察全球航运时,可以用点来代表城市,用线来表示两城市间有航线通达;当研究计算机网络时,可以用点来表示计算机及终端,用线表示它们之间的信息传输通道;当研究物质的化学结构时,可以用点来表示其中的化学元素,而用线来表示元素之间的化学键。在这种表示法中,点的位置及线的长短和形状都是无关紧要的,重要的是两点之间是否有线相连。从图形的这种表示方式中可以抽象出图的数学概念来。 一、图 定义4-1-1.1一个(无向)图G是一个二元组(V(G),E(G)),其中V (G)是一个有限的非空集合,其元素称为结点;E(G)是一个以不同结点的无序对为元素,并且不含重复元素的集合,其元素称为边。 我们称V(G)和E(G)分别是G的结点集和边集。在不致引起混淆的地方,常常把V(G)和E(G)分别简

离散数学复习提纲(图论)1

离散数学复习提纲(图论) 1. 判别图6-1的两幅图是否可以一笔画出? 解 在图6-1(a ) 中, deg(v 1)=deg(v 2)=deg(v 3)=3 有两个以上的结点的度为3. 故在(a )中不存在欧拉通路,不能一笔画出. 在图6-1(b ) 中,deg(A )=2, deg(B ) =deg(C )= deg(D )=4,deg(E ) =deg(F )=3 只有两个奇数度的结点,所以存在欧拉通路,可以一笔画出. 一条欧拉通路,如EDBEFCABCDF . 2. 画出具有下列条件的有5个结点的无向图. (1) 不是哈密顿图,也不是欧拉图; (2) 有哈密顿回路,没有欧拉回路; (3) 没有哈密顿回路,有欧拉回路; (4) 是哈密顿图,也是欧拉图. 解 作图如图6-3(不唯一). (1) (2) (3) (4) 在图(1)中,可以走遍5个点,但不是回路,无哈密顿回路,故不是哈密顿图。无论指定怎样的方向,可以走遍所有边,但不是回路,不能构成欧拉路。 在图(2)中,容易找出走遍5个点的回路,即有哈密顿回路,故是哈密顿图。但是构成 回路,要么出现重复边,要么漏掉边,即不存在欧拉回路,因此不是欧拉图。 在图(3)中,不重复地走遍5个点是不可能的,故不是哈密顿图。如指定右边垂直边方 向向上,就可以画出一个走遍所有的边,又不重复的回路,所以有欧拉回路,故是哈欧拉图。 v 4 v 5 E F A v 2 v 3 B C v 1 D (a ) (b ) 图6-1

第1个面,边界为a b e a ,次数为3;第2个面,边界为b d e b ,次数为3; 第3个面,边界为a b c a ,次数为3;第4个面,边界为a d e a ,次数为3; 第5个面,边界为a c b d a ,次数为4。 (b )图中共有两个面,第1个面,边界为 g f c d e f g ,次数为6; 第2个面,边界为 a b c d e f c b a ,次数为8。 4.在具有n 个结点的完全图K n 中,需要删去多少条边才能得到树? 解 n 个结点的完全图共有2 ) 1(2 -= n n C n 条边,而n 个结点的树共有n -1条边. 因此需要删去2 )2)(1()1(2 --=--n n n C n 条边后方可得到树. 5.设G 是图,无回路,但若外加任意一条边于G 后,就形成一回路. 试证明G 必为树. 证明 由树的定义可知,只需证G 连通即可. 任取不相邻两点u ,v , 由题设,加上边就形成一回路,于是去掉边,从u 到v 仍有路u ,…,v ,即u ,v 连通,由u ,v 的任意性可知,G 是连通的,故G 必是树. 6.如图6-5是有6个结点a ,b ,c ,d ,e ,f 的带权无向图,各边的权如图所示. 试求 其最小生成树. 解 构造连通无圈的图,即最小生成树, b ? 23 1 15 c ? 25 ? a 4 ? f 28 9 16 3 d ? 15 ? e 图6-5

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2?E ? B .deg(V )=?E ? C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ? ? ? ? ? c a b e d ? f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ? ? ? ? ? c a b e d ? f 图四

北邮离散数学期末复习资料题

北邮离散数学期末复习题 第一章集合论 一、判断题 (1)空集是任何集合的真子集. ( 错 ) (2){ }φ是空集. ( 错 ) (3){}{ }a a a },{∈ ( 对 ) (4)设集合{}{}{}{}A A 22,1,2,1,2,1?=则. ( 对 ) (5)如果 B A a ??,则A a ?或B a ?. ( 错 ) 解 B A a ??则B A B A a ?=?∈,即A a ∈且B a ∈,所以A a ?且B a ? (6)如果A ∪.,B A B B ?=则 ( 对 ) (7)设集合},,{321a a a A =,},,{321b b b B =,则 },,,,,{332211><><><=?b a b a b a B A ( 错 ) (8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A 2到A 的关系. ( 对 ) 解 A 2}},1{},0{,{A φ=, =?A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><>

离散数学图论与关系中有图题目

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8 个结点的三次正则图 (2) (1) (3) (2) (1)

离散数学复习提纲(完整版)

《离散数学》期末复习大纲(完整版)(含例题和考试说明) 一、命题逻辑 [复习知识点] 1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题 2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式 3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式 4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法) 5、命题逻辑的推理理论 本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理 [复习要求] 1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。 2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。 3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。 4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。 5、掌握命题逻辑的推理理论。 [疑难解析] 1、公式类型的判定 判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。具体方法有两种,一是真值表法,二是等值演算法。 2、范式 求范式,包括求析取范式、合取范式、主析取范式和主合取范式。关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。 3、逻辑推理 掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。 例1.试求下列公式的主析取范式:

离散数学(图论)课后总结

第八章图论 例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5) 解:a)不是, 因为有三个数字是奇数. b) c) d)是. e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边. 例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么? 解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点. 强连通、单侧连通和弱连通 在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通. 在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图. 注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了 利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!! 令图G=, 集合Si V Si’=V-Si , 令|V|=n Si={u|从u0到u的最短路已求出} Si’={u’|从u0到u’的最短路未求出} Dijkstra算法:(求从u0到各点u的最短路长) 第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0) i=0 S0={u0} S0’=V-S0 , 第二步.若i=n-1 则停. 否则转第三步 第三步. 对每个u’∈Si’ 计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’ 置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步. 例3、求最短路 解:例.求右图中从v1到v6的 最短路 1.置初值: u0=v1 d(u0,u0)=0 d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞ 2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6} d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3 d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞ d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5

离散数学期末复习指导(专科)

离散数学期末复习指导(专科) 中央电大理工部计算机教研室 离散数学是中央电大计算机应用专业信息管理方向开设的必修统设课。该课程使用新的教学大纲,在原有离散数学课程的基础上削减了教学内容(主要是群与环、格与布尔代数这两章及图论的后三节内容),使所学的知识达到必需、够用,更加适合大学专科层次的教育。目前该课程没有新教材,借用原教材。使用的教材为中央电大出版的《离散数学》(刘叙华等编)和《离散数学学习指导书》(虞恩蔚等编)。 离散数学主要研究离散量结构及相互关系,使学生得到良好的数学训练,提高学生抽象思维和逻辑推理能力,为从事计算机的应用提供必要的描述工具和理论基础。其先修课程为:高等数学、线性代数;后续课程为:数据结构、数据库、操作系统、计算机网络等。 课程的主要内容 本课程分为三部分:集合论、数理逻辑和图论。 1、集合论部分(集合的基本概念和运算、关系及其性质); 2、数理逻辑部分(命题逻辑、谓词逻辑); 3、图论部分(图的基本概念、树及其性质)。 学习建议 离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。 一、各章复习示例与解析 第一章集合 例1,将“大于3而小于或等于7的整数集合”用集合表示出来。 [解析] 集合的表示方法一般有两种,一种称为列举法,一种称为描述法。 列举法将集合的元素按任意顺序逐一列在花括号内,并用逗号分开。“大于3而小于或等于7的整数”有4、5、6、7,用列举法表示为{4、5、6、7};

描述法是利用集合中的元素满足某种条件或性质用文字或符号在花括号内竖线后面表示出来。上例用描述法表示为{x| x Z并且3x7},其中Z为整数集合。 答:{4、5、6、7}或{x| x Z并且3x7}。 例2,判定下列各题的正确与错误: (1)a{{a}}; (2){a}{ a,b,c }; (3){ a,b,c }; (4){ a,b,c }; (5){a,b}{a,b,c,{ a,b,c }}; (6){{a},1,3,4}{{a},3,4,1}; (7){a,b}{a,b,{ a,b }}; (8)如果A B=B,则A=E。 [解析] 此题涉及到集合中子集的概念,集合的包含关系,空集与集合的关系。解题时要注意区分两个集合之间的关系以及集合中元素与集合之间的关系的不同。 集合之间的关系分为包含关系(子集、真子集)、相等关系、幂集等,判断时要准确理解这些概念,才能正确地运用这些知识。 集合与它的元素之间的关系有两种:一个元素a属于一个集合A,记为a A;一个元素A不属于一个集合A,记为a A。要注意符号的记法()与集合包含符号记法(,)的不同。 答:正确的是(2)、(4)、(5)、(7);其余的都是错误的。 例3,设A,B是两个集合,A={1,2,3},B={1,2},请计算(A)–(B)。 [解析] 集合的概念一般在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,由集合A的所有子集组成的集合,称为A的幂集,记作(A)