薄膜技术

薄膜技术
薄膜技术

光学薄膜的制备技术及发展前景

摘要:光学薄膜技术作为一门独立的学科,近年来获得较大幅度的进展,应用

范围日益广泛。它的发展与不少尖端科学息息相关。随着科学技术的进步,光学薄膜及相关技术不论是从广度还是深度都得到了显著发展,并逐渐渗透到现代技术及高端技术领域。本文综述了什么是光学薄膜、光学薄膜的制备以及发展前景。

关键词:制备方法、光学薄膜、发展趋势

光学薄膜技术是一门交叉性很强的学科,它涉及到光电技术、真空技术、材料科学、精密机械制造、计算机技术、自动控制技术等领域。光学薄膜是一类重要的光学元件,它广泛地应用于现代光学光电子学、光学工程以及其他相关的科学技术领域。它不仅能改善系统性能(如减反、滤波),而且是满足设计目标的必要手段。光学薄膜可分光透射,分光反射,分光吸收以及改变光的偏振状态或相位,用作各种反射膜,增透膜和干涉滤光片,它们赋予光学元件各种使用性能,对光学仪器的质量起着重要或决定性的作用。

科学家曾经预言21世纪是光子世纪。21世纪初光电子技术迅速发展,光学薄膜器件的应用向着性能要求和技术难度更高、应用范围和知识领域更广、器件种类和需求数量更多的方向迅猛发展。光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。

一、光学薄膜的制造技术

光学薄膜可以采用物理气相沉积(PVD)、化学气相沉积(CVD)和化学液相沉积(CLD)三种技术来制备。

1、物理气相沉积(PVD)

PVD需要使用真空镀膜机,制造成本高,但膜层厚度可以精确控制,膜层强度好,目前已被广泛采用。在PVD法中,根据膜料气化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术制造,溅射及离子镀技术用于光学薄膜制造的工艺是近几年才开始的。

1.1热蒸发

光学薄膜器件主要采用真空环境下的热蒸发方法制造,此方法简单、经济、操作方便。尽管光学薄膜制备技术得到长足发展,但是真空热蒸发依然是最主要的沉积手段,当然热蒸发技术本身也随着科学技术的发展与时俱进。

在真空室中,加热蒸发容器中待形成膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。

热蒸发的三种基本过程:由凝聚相转变为气相的相变过程;气化原子或分子在蒸发源与基片之间的运输,即这些粒子在环境气氛中的飞行过程;蒸发原子或分子在基片表面的沉积过程。

1.2溅射

溅射指用高速正离子轰击膜料表面,通过动量传递,使其分子或原子获得足

够的动能而从靶表面逸出(溅射),在被镀件表面凝聚成膜。

与蒸发镀膜相比,其优点是:膜层在基片上的附着力强,膜层纯度高,可同时溅射不同成分的合金膜或化合物;缺点是:需制备专用膜料靶,靶利用率低。

溅射的方式有三种:二级溅射、三级/四级溅射、射频溅射。

1.3离子镀

离子镀兼有热蒸发的高成膜速率和溅射高能离子轰击获得致密膜层的双优效果,离子镀膜层附着力强、致密。离子镀常见类型:蒸发源和离化方式。

特点:a、膜附着力强。这是由注入和溅射所致。

b、绕镀性好。原理上,电力线所到之处皆可镀上膜层,有利于面形复杂零件膜层的镀制。

c、膜层致密。溅射破坏了膜层柱状结构的形成。

d、成膜速率高。与热蒸发的成膜速率相当。

e、可在任何材料的工作上镀膜。绝缘体可施加高频电场。

1.4粒子辅助镀

在热蒸发镀膜技术中增设离子发生器—离子源,产生离子束,在热蒸发进行的同时,用离子束轰击正在生长的膜层,形成致密均匀结构(聚集密度接近于1),使膜层的稳定性提高,达到改善膜层光学和机械性能。

离子辅助镀技术与离子镀技术相比,薄膜的光学性能更佳,膜层的吸收减少,波长漂移极小,牢固度好,该技术适合室温基底和二氧化锆、二氧化钛等高熔点氧化物薄膜的镀制,也适合变密度薄膜、优质分光镜和高性能滤光片的镀制。2、化学气相沉积(CVD)

化学气相沉积就是利用气态先驱反应物,通过原子、分子间化学反应的途径来生成固态薄膜的技术。

CVD一般需要较高的沉积温度,而且在薄膜制备前需要特定的先驱反应物,在薄膜制备过程中也会产生可燃、有毒等一些副产物。但CVD技术制备薄膜的沉积速率一般较高。

3、化学液相沉积(CLD)

CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,还存在废水废气造成的污染问题,已很少使用。

二、光学薄膜的种类

用光学功能薄膜制成的种类繁多的光学薄膜器件,已成为光学系统、光学仪器中不可缺少的重要部件。其应用已从传统的光学仪器发展到天文物理、航天、激光、电工、通信、材料、建筑、生物医学、红外物理、农业等诸多技术领域。

分为:基本光学薄膜、控光薄膜、光学薄膜材料

1、基本光学薄膜

基本光学薄膜是指能够实现分光透射、分光反射、分光吸收和改变光的偏振状态或相位,可用于各种反射膜、增透膜和干涉滤波片的薄膜,它赋予光学元件各种使用性能,对保证光学仪器的质量起到决定性的作。

1.1减反膜(增透膜)

减反膜是用来减少光学元件表面反射损失的一种功能薄膜。它可以有单层和多层膜系构成。单层膜能使某一波长的反射率为零,多层膜在某一波段具有实际为零的反射率。在应用中,由于条件和应用对象不同,其所用的减反膜的类型与诸多因素有关,例如基片材料、波长领域、所需特征及成本等。

a单层减反膜

为减少光的反射消耗,增大光线的透射率,常在玻璃的表面上沉积一层减反膜。其原理是光的干涉现象。只要膜的折射率小于玻璃基片的折射率,就能都实现光的减反射作用。

b多层减反膜

多层减反膜主要是为了改进单层减反膜的不足,进一步提高减反膜的效果,因而采用增加膜层层数的措施。

1.2反射膜

反射膜的作用与减反膜相反,它是要求把大部分或几乎是全部入射光反射回去。如光学仪器、激光器、波导管、汽车、灯具的反射镜,都需要沉积镀制反射薄膜。反射膜有金属膜和介质膜两种

A金属反射膜

金属反射膜具有很高的反射率和一定的吸收能力。金属高反射膜仅用于对膜的吸收损耗没有特殊要求的场合。

B介质反射膜

金属高反射膜的吸收损失较大,在某些应用中,如多光束干涉仪、高质量激光器的反射膜,就要求沉积低吸收、高反射的全介质高反射膜。

2、控光薄膜

控光薄膜分为阳光控制膜、低辐射率膜、光学性能可变换膜、三种

2.1阳光控制膜

在玻璃上镀上一层光学薄膜,使玻璃对太阳光中的可见光部分有较高的透射率,而对太阳光中的红外部分有较高的反射率,并对太阳光中的紫外线部分有很高的吸收率。将它制成阳光镀膜幕墙玻璃,就能保证白天建筑物内有足够的亮度等等

2.2低辐射率膜

在玻璃的表面镀制一层低辐射系数的薄膜,称为低辐射率膜,俗称隔热膜,它对红外线有较高的反射率。

2.3光学性能可变换膜

光学性能可变换膜是指物质在外界环境影响下产生一种对光反应的改变,在一定外界条件(热、光、电)下,使它改变颜色并能复原,这种变色膜是一类有广阔应用前景的光学功能材料。

3、光学薄膜材料

3.1金属和合金

金属和合金是较为广泛的薄膜,具有反射率高、截止带宽、中性好、偏振效应小以及吸收可以改变等特点,在一些特殊用途的膜系中,它们有特别重要的作用。

3.2化合物(电介质)

化合物是有重要用途并广泛应用的光学薄膜,主要有:卤化物、氧化物、硫化物和硒化物。

3.3半导体

半导体材料在近红外和远红外区透明,是一类重要的光学薄膜材料。在光学薄膜中使用最普遍的半导体材料是硅和锗。

三、光学薄膜研究的趋势

综合国内外光学及光学薄膜的研究现状,光学薄膜的研究呈现以下几个发展趋势:

1、继续重视对传统光学仪器中光学薄膜应用的研究和开发,提高薄膜的光学质量,研究大面积镀膜技术及其应用;

2、开发与新型精密光学仪器及光电子器件要求相适应的光学薄膜及其材料的制备方法,以满足现代光学、空间技术、军事技术和全光网络技术日益迫切的需要;

3、开发极端光谱条件下的光学薄膜,如超窄带密集型波分复用滤波片,软X射线膜,高功率激光膜等的制备技术;

4、开发与环境保护息息相关的“绿色光学薄膜”,实现光能与人类健康需要的相互协调;

5、研究光学薄膜的材料物理、成膜过程的原位观察,实现镀膜过程的自动控制和超快速低温镀膜。

时至今日,光学薄膜已获得很大的发展,光学薄膜的生产已逐步走向系列化、程序化和专业化,但是,在光学薄膜的研究中还有不少问题有待进一步解决,光学薄膜现有的水平还需要进一步提高。20世纪90年代科学家曾预言21世纪是光子世纪,而光学薄膜作为传输光子并实现其各种功能的重要载体,必然会在光学、光电子学及光子学获得突破性发展的同时,得到进一步的繁荣和发展。

参考文献:

【1】功能薄膜及其沉积制备技术/戴达煌等编著。-北京:冶金工业出版社,2013,1

【2】光学薄膜技术/卢进军,刘卫国,潘永强编著。-2版。-北京:电子工业出版社,2011.7 【3】光学薄膜及其应用方面的研究/董小燕、龚斌、李雅丽。南通大学理学院,2012.4 【4】光学薄膜的研究新进展及应用/沈远香、黄晓霞、王永惠。中国兵器工业第五九研究所,2012.8

【5】光学薄膜及其发展现状/李金丽、刘全校、许文才。北京印刷学院印刷包装材料与技术重点实验室,2012.2

Tio2薄膜的制备(DOC)

新能源综合报告 实验题目:Tio2薄膜的制备和微细加工 学院:物理与能源学院 专业:新能源科学与工程 学号:1350320 汇报人: 指导老师:王哲哲

一、预习部分(课前完成) 〔目的〕: 1、用溶胶-凝胶法制备Tio2光学薄膜。 2、学习紫外掩膜辐照光刻法制备Tio2微细图形。 3、微细图形结构及形貌分析。 〔内容〕 1、了解溶胶凝胶制备薄膜的原理。 2、了解常见的微细加工的方法。 3、充分调研文献资料,确定实验方案。 4、实验制备和数据分析。 ①、制备出感光性的Tio2薄膜凝胶,掌握制备工艺。 ②、对Tio2凝胶薄膜进行紫外掩膜辐照。 ③、制备出Tio2微细图形并进行热处理。 ④、测试Tio2微细图形的结构和形貌特征,处理并分析数据。〔仪器〕:(名称、规格或型号) 紫外点光源、马沸炉、提拉机、光学显微镜、磁力搅拌器、紫外可见光分光光度计、提供制备Tio2材料的前驱物,溶剂等。 二、实验原理 1、Tio2的基本性质 Tio2俗称太白粉,它主要有两种结晶形态:锐钛型和金红石型,其中锐钛型二氧化碳活性比金红石型二氧化钛高。

特点:它是一种n型半导体材料,晶粒尺寸介于1~100 nm,TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质。 应用:在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景,TiO2半导体光催化剂因光催化效率高、无毒、稳定性好和适用范围广等优点而成为人们研究的热点。 纳米TiO2的制备方法: 物理制备方法:主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等; 物理化学综合法:又可大致分为气相法和液相法。目前的工业化应用中,最常用的方法还是物理化学综合法。 2、溶胶-凝胶法的基本概念 溶胶:是指微小的固体颗粒悬浮分散在液相中,并且不停地进行布朗运动的体系。由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。 溶胶分类:根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。 凝胶:是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能量可使之在动力学上稳定。

薄膜材料的应用与发展

薄膜材料的应用与发展 薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。 更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1] 3 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。 薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。 3.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

薄膜材料与薄膜技术复习资料完整版本

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空105~102Pa 粘滞流,分子间碰撞为主低真空102~10-1 Pa 过渡流高真空102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空10-8 Pa以下·什么是真空蒸发镀膜法?其基本过程有哪些?

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法

2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。 2.1.1 浸没沉淀制膜工艺 目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。 浸入沉淀法至少涉及聚合物/溶剂/非溶剂3个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板

材料表面工程与薄膜技术及其发展

材料表面工程与薄膜技术及其发展 摘要:众所周知,大部分物体都难以避免与环境接触,而真正与环境相接触的是物体的表面,对于仪表仪器和机械器件,各机件表面的损伤或失效会导致整个机器的破坏或失效,由此可见研究材料表面技术对于机械产品的表面保护和表面强化具有重要作用。 关键词:材料表面工程技术;农用薄膜;PET薄膜 1材料表面工程技术的意义 物体表面与周围环境相接触是难以避免的,而环境对物体表面的伤害程度之大足以导致仪器无法正常使用。如各种机械设备和仪器仪表,它们在使用过程中会因为受到气、水及某些化学介质的作用而被腐蚀;因为相互间产生相对运动而被磨损;所在环境温度较高而被氧化;接触到高温度的熔体而被侵蚀等。所有这些因素都会首先使机件表面发生损伤或失效,进而导致整个机件的破坏,因此,表面的防护是避免仪器设备失效的首要防线。据相关资料统计,在各种机电产品的早期损伤中,约有70%是由于产品表面受到腐蚀或磨损造成的。 现代工业高速发展,对机械工业产品的要求也越来越高。要求产品能高度自动化运行,并且能在高速度、高温度、高压力、以及较恶劣的环境条件下长期稳定运行。考虑到这些要求,必然要对机件表面做出改善,提高机件表面耐磨损、耐腐蚀、耐高温等性能以满足现代工业发展的需求。而材料表面工程技术可以在不添加太多材料且不加大生产成本的同时,使仪器设备表面得到很好的保护以防止因材料表面受损而导致设备损害,从而大大延长产品的使用寿命,并提高产品的可靠性,使产品各方面的性能及产品质量得到显著改善,增强产品的竞争力。所以,研究和发展机械产品的表面工程技术,对推动高新技术的发展、节约材料、节约能源等都具有重要意义。 2材料表面工程技术的发展 表面工程概念的提出始于20世纪80年代。英国T.Bel教授于1983年,最先提出了表面工程的概念。1983年英国伯明翰大学沃福森表面工程研究所的建立和1985年国际刊物《表面工程》的发行是表面工程学科发展的重要标志。1986年10月,国际热处理联合会决定接受表面工程的概念,并把自己的会名改为国际热处理及表面工程联合会。表面工程技术的应用对节约材料、降低生产生本、提高产品性能具有重要意义,是21世纪工业发展的关键技术之一。表面工程技术本身的属性是其迅速发展的基础、现代工业的需求是表面工程迅速发展的动力、环境保护的紧迫性是促进表面工程迅速发展的时代要求、现代科技成果是表面工程的技术支撑。这些是表面工程技术迅猛发展的原因。 3薄膜技术的部分应用

薄膜技术发展历程

薄膜技术发展历程(一):镀膜发展史 化学镀膜最早用于在光学元件表面制备保护膜。随后,1817年,Fraunhofe在德国用浓硫酸或硝酸侵蚀玻璃,偶然第一次获得减反射膜,1835年以前有人用化学湿选法淀积了银镜膜它们是最先在世界上制备的光学薄膜。后来,人们在化学溶液和蒸气中镀制各种光学薄膜。50年代,除大快窗玻璃增透膜的一些应用外,化学溶液镀膜法逐步被真空 镀膜取代。 真空蒸发和溅射这两种真空物理镀膜工艺,是迄今在工业撒谎能够制备光学薄膜的两种最主要的工艺。它们大规模地应用,实际上是在1930年出现了油扩散泵---机械泵抽气系统之后。 1935年,有人研制出真空蒸发淀积的单层减反射膜。但它的最先应用是1945年以后镀制在眼镜片上。1938年,美国和欧洲研制出双层减反射膜,但到1949年才制造出优质的产品。1965年,研制出宽带三层减反射系统。在反射膜方面,美国通用电气公司1937年制造出第一盏镀铝灯。德国同年制成第一面医学上用的抗磨蚀硬铑膜。在滤光片方面,德国1939年试验淀积出金属—介质薄膜Fabry---Perot型干涉滤光片。 在溅射镀膜领域,大约于1858年,英国和德国的研究者先后于实验室中发现了溅射现象。该技术经历了缓慢的发展过程。1955年,Wehner 提出高频溅射技术后,溅射镀膜发展迅速,成为了一种重要的光学薄膜工艺。现有两极溅射、三极溅射、反应溅射、磁控溅射和双离子溅射等 淀积工艺。 自50年代以来,光学薄膜主要在镀膜工艺和计算机辅助设计两个

方面发展迅速。在镀膜方面,研究和应用了一系列离子基新技术。1953年,德国的Auwarter申请了用反应蒸发镀光学薄膜的专利,并提出用离子化的气体增加化学反应性的建议。1964年,Mattox在前人研究工作的基础上推出离子镀系统。那时的离子系统在10Pa压力和2KV的放电电压下工作,用于在金属上镀耐磨和装饰等用途的镀层,不适合镀光学薄膜。后来,研究采用了高频离子镀在玻璃等绝缘材料上淀积光学薄膜。70年代以来,研究和应用了离子辅助淀积、反应离子镀和等离子化学气相等一系列新技术。它们由于使用了带能离子,而提供了充分的活化能,增加了表面的反应速度。提高了吸附原子的迁移性,避免形成柱状显微结构,从而不同程度地改善了光学薄膜的性能,是光学薄膜制造 工艺的研究和发展方向。 实际上,真空镀膜的发展历程要远远复杂的多。我们来看一个这个 有两百年历史的科技历程: 19世纪 真空镀膜已有200年的历史。在19世纪可以说一直是处于探索和预研阶段。探索者的艰辛在此期间得到充分体现。1805年, 开始研究接触角与表面能的关系(Young)。1817年, 透镜上形成减反射膜(Fraunhofer)。1839年, 开始研究电弧蒸发(Hare)。1852年, 开始研究真空溅射镀膜(Grove;Pulker)。1857年, 在氮气中蒸发金属丝形成薄膜(Faraday;Conn)。 1874年, 报道制成等离子体聚合物(Dewilde;Thenard)。1877年,薄膜的真空溅射沉积研究成功(Wright)。1880年, 碳氢化合物气相热解(Sawyer;Mann)。1887年, 薄膜的真空蒸

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

光学薄膜技术第三章--薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

中国膜技术发展历程

膜生物反应器(Membrane Bioreactor, 简称MBR)是当今世界公认的先进的污水处理和污水资源化技术,它是将膜分离技术中的超滤、微滤或纳滤膜组件与污水生物处理中的生物反应器相互结合而形成的新型处理系统。这种集成式组合新工艺把生物反应器的生物降解作用和膜的高效分离技术溶于一体。由于膜的高效分离作用使MBR具有多传统生物处理工艺所不具备的许多突出优点:出水水质优良稳定,可直接回用;容积负荷高,占地面积小,整个系统流程紧凑;剩余污泥产量少;运行管理方便等。同时,膜的一次性高成本投入、膜污染、膜的较短使用寿命等依然是制约膜技术运用的瓶颈。MBR技术的最佳适用范围为:出水水质要求高的项目(出水水质优于《城镇污水处理厂污染物排放标准(GB18918-2002)》中一级A类限制);处理出水有回用要求的项目(污水资源化项目);工程用地比较紧张的项目;高浓度有机废水项目。该技术的出现是对我国传统污水治理理念和污水处理技术的一次颠覆和带来的一场伟大变革,将对中国的水处理行业和环境保护产业带来深层次的巨大影响;同时,它也使水处理行业从工程化向设备化和产业化成为可能。 膜技术在90年代后期发展迅速,特别是进入21世纪后,随着膜材料生产的规模化、膜组件及其处理产品的设备化和集成化,膜设备生产技术的普及化和价格大众化,膜技术的发展已经从实验室潜在技术迅速发展成为工程实用技术。已经在许多大型工程应用中应用,出水水质稳定,运行可靠为膜处理技术的运用和发展积累了宝贵的经验。 1.膜生物反应器MBR技术在中国的发展进程 我国MBR技术的发展历史几乎与国外接近,除了早期与国外有差距外,但是最近几年在技术应用方面与国外几乎同步,并且在部分领域在世界上有领先优势,因为中国对于MBR技术的需求远比国外迫切且市场潜力巨大。主要发展阶段如下: ?1990~2000:实验室阶段,小试、中试、示范工程; ?2000~2003:每天百吨级的规模,主要用于小区楼宇、工业等领域;

薄膜材料制备原理、技术及应用知识点2013by张为政

薄膜材料制备原理、技术及应用知识点1 一、名词解释 1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过 的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。 2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真 空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应 物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。 4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。 5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。 6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气 体离子对其产生自发的轰击和溅射。 7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成 的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。 8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击 效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。 9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的 离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40% 10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促 进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶 层,犹如原来的晶体向外延伸了一段,故称外延生长。 12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬 合力作用下的结合强度。 二、填空: 1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生 净沉积。 2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段 三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形 1 微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

薄膜材料的制备

对薄膜制备的综述 一.前言 随着薄膜科学技术与薄膜物理学的发展,薄膜在微电子、光学、窗器、表面改性等方面的应用日益广泛;而薄膜产业的日趋壮大又刺激了薄膜技术和薄膜材料的蓬勃发展。面对新技术革命提出的挑战,无机薄膜材料的制备方法也日新月异,与以往的制膜方法相比有了新的特点,方法也向着多元化的方向发展。这篇综述主要介绍了:薄膜材料的制备、举例发光薄膜的制备以及薄膜材料的发展前景。 二.薄膜材料的制备 主要内容:1.薄膜材料基础;2.薄膜的形成机理;3.物理气相沉积;4.化学气相沉积;5.化学溶液镀膜法;6.液相外延制膜法。 §1 薄膜材料基础 1. 薄膜材料的概念 采用一定方法,使处于某种状态的一种或几种物质(原材料)的基团以物理或化学方式附着于衬底材料表面,在衬底材料表面形成一层新的物质,这层新物质就是薄膜。简而言之,薄膜是由离子、原子或分子的沉积过程形成的二维材料。 2. 薄膜分类 (1)物态:气态、液态、固态(thin-solid-film)。 (2)结晶态:A非晶态:原子排列短程有序,长程无序。B晶态:a单晶:外延生长,在单晶基底上同质和异质外延;b多晶:在一衬底上生长,由许多取向相异单晶集合体组成。 (3)化学角度:有机和无机薄膜。 (4)组成:金属和非金属薄膜。 (5)物性:硬质、声学、热学、金属导电、半导体、超导、介电、磁阻、光学薄膜。 薄膜的一个重要参数:a厚度,决定薄膜性能、质量;b通常,膜厚小于数十微米,一般在1微米以下。

3. 薄膜应用 薄膜材料及相关薄膜器件兴起于20世纪60年代。是新理论、高技术高度结晶的产物。 (1)主要的薄膜产品: 光学薄膜、集成电路、太阳能电池、液晶显示膜、光盘、磁盘、刀具硬化膜、建筑镀膜制品、塑料金属化制品。 (2)薄膜是现代信息技术的核心要素之一: 薄膜材料与器件结合,成为电子、信息、传感器、光学、太阳能等技术的核心基础。 4.薄膜的制备方法 (1)代表性的制备方法按物理、化学角度来分,有: a物理成膜PVD、b化学成膜CVD (2)具体制备方法如下表流程图: §2 薄膜的形成机理 1.薄膜材料在现代科学技术中应用十分广泛,制膜技术的发展也十分迅速。制膜方法—分为物理和化学方法两大类;具体方式上—分为干式、湿式和喷涂三种,而每种方式又可分成多种方法。 2.薄膜的生长过程分为以下三种类型: (1) 核生长型(V olmer Veber型):这种生长的特点是到达衬底上的沉积原子首先凝聚成核,后续的沉积原子不断聚集在核附近,使核在三维方向上不断长大而最终形成薄膜。核生长型薄膜生长的四个阶段: a. 成核:在此期间形成许多小的晶核,按同济规律分布在基片表面上; b. 晶核长大并形成较大的岛:这些岛常具有小晶体的形状; c. 岛与岛之间聚接形成含有空沟道的网络; d. 沟道被填充:在薄膜的生长过程中,当晶核一旦形成并达到一定尺寸之后,另外再撞击的离子不会形成新的晶核,而是依附在已有的晶核上或已经形成的岛上。分离的晶核或岛逐渐长大彼此结合便形成薄膜。 这种类型的生长一般在衬底晶格和沉积膜晶格不相匹配时出现。大部分的

薄膜技术

光学薄膜的制备技术及发展前景 摘要:光学薄膜技术作为一门独立的学科,近年来获得较大幅度的进展,应用 范围日益广泛。它的发展与不少尖端科学息息相关。随着科学技术的进步,光学薄膜及相关技术不论是从广度还是深度都得到了显著发展,并逐渐渗透到现代技术及高端技术领域。本文综述了什么是光学薄膜、光学薄膜的制备以及发展前景。 关键词:制备方法、光学薄膜、发展趋势 光学薄膜技术是一门交叉性很强的学科,它涉及到光电技术、真空技术、材料科学、精密机械制造、计算机技术、自动控制技术等领域。光学薄膜是一类重要的光学元件,它广泛地应用于现代光学光电子学、光学工程以及其他相关的科学技术领域。它不仅能改善系统性能(如减反、滤波),而且是满足设计目标的必要手段。光学薄膜可分光透射,分光反射,分光吸收以及改变光的偏振状态或相位,用作各种反射膜,增透膜和干涉滤光片,它们赋予光学元件各种使用性能,对光学仪器的质量起着重要或决定性的作用。 科学家曾经预言21世纪是光子世纪。21世纪初光电子技术迅速发展,光学薄膜器件的应用向着性能要求和技术难度更高、应用范围和知识领域更广、器件种类和需求数量更多的方向迅猛发展。光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。 一、光学薄膜的制造技术 光学薄膜可以采用物理气相沉积(PVD)、化学气相沉积(CVD)和化学液相沉积(CLD)三种技术来制备。 1、物理气相沉积(PVD) PVD需要使用真空镀膜机,制造成本高,但膜层厚度可以精确控制,膜层强度好,目前已被广泛采用。在PVD法中,根据膜料气化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术制造,溅射及离子镀技术用于光学薄膜制造的工艺是近几年才开始的。 1.1热蒸发 光学薄膜器件主要采用真空环境下的热蒸发方法制造,此方法简单、经济、操作方便。尽管光学薄膜制备技术得到长足发展,但是真空热蒸发依然是最主要的沉积手段,当然热蒸发技术本身也随着科学技术的发展与时俱进。 在真空室中,加热蒸发容器中待形成膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。 热蒸发的三种基本过程:由凝聚相转变为气相的相变过程;气化原子或分子在蒸发源与基片之间的运输,即这些粒子在环境气氛中的飞行过程;蒸发原子或分子在基片表面的沉积过程。 1.2溅射 溅射指用高速正离子轰击膜料表面,通过动量传递,使其分子或原子获得足

薄膜技术复习题

1.简述薄膜的形成过程。 薄膜:在被称为衬底或基片的固体支持物表面上,通过物理过程、化学过程或电化学过程使单个原子、分子或离子逐个凝聚而成的固体物质。主要包括三个过程:(1)产生适当的原子、分子或离子的粒子;(2)通过煤质输运到衬底上;(3)粒子直接或通过化学或电化学反应而凝聚在衬底上面形成固体沉淀物,此过程又可以分为四个阶段:(1)核化和小岛阶段;(2)合并阶段;(3)沟道阶段;(4)连续薄膜 2.图2为溅射镀膜的原理示意图,试结合图叙述溅射镀膜的基本过程,并介绍常用的溅射镀膜的方法和特点。 图 2 溅射镀膜的原理示意图 过程:该装置是由一对阴极和阳极组成的冷阴极辉光放电结构。被溅射靶(阴极)和成膜的基片及其固定架(阳极)构成溅射装置的两个极,阳极上接上1-3KV的直流负高压,阳极通常接地。工作时通常用机械泵和扩散泵组将真空室抽到*10-3Pa,通入氩气,使真空室压力维持在()*10-1Pa,而后逐渐关闭主阀,使真空室内达到溅射电压,即10-1-10Pa,接通电源,阳极耙上的负高压在两极间产生辉光放电并建立起一个等离子区,其中带正电的氩离子在阴极附近的阳极电位降的作用下,加速轰击阴极靶,使靶物质由表面被溅射出,并以分子或原子状态沉积在基体表面,形成靶材料的薄膜。 将欲沉积的材料制成板材——靶,固定在阴极上。基片置于正对靶面的阳极上,距靶几厘米。系统抽至高真空后充入 10~1帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏范围。溅射原子在基片表面沉积成膜 直流阴极溅射镀膜法:特点是设备简单,在大面积的基片或材料上可以制取均匀的薄膜,放电电流随气压和电压的变化而变化,可溅射高熔点金属。但是,它的溅射电压高、沉积速率低、基片温升较高,加之真空度不良,致使膜中混入的杂质气体也多,从而影响膜的质量。 高频溅射镀膜法:利用高频电磁辐射来维持低气压的辉光放电。阴极安置在紧贴介质靶材的后面,把高频电压加在靶子上,这样,在一个周期内正离子和电子可以交替地轰击靶子,从而实现溅射介质材料的目的。这种方法可以采用任何材料的靶,在任何基板上沉积任何薄膜。若采用磁控源,还可以实现高速溅射沉积。 磁控溅射镀膜法:磁控溅射的特点是电场和磁场的方向互相垂直,它有效的克服了阴极溅射速率低和电子使基片温度升高的致命弱点,具有高速、低温、低损伤等优点,易于连续制作大面积膜层,便于实现自动化和大批量生产,高速指沉积速率快;低温和低损伤是指基片的温升低,对膜层的损伤小。此外还具有一般溅射的优点,如沉积的膜层均匀致密,针孔少,纯度高,附着力强,应用的靶材广,可进行反应溅射,可制取成分稳定的合金膜等。工作压力范围广,操作电压低也是其显著

塑料薄膜双向拉伸技术与发展方向

塑料薄膜双向拉伸技术与发展方向 塑料薄膜的成型加工方法有多种,例如有压延法、流延法、吹塑法、拉伸法等,近年来双向拉伸膜成为人们关注的焦点。今后,双向拉伸技术将更多地向着特种功能膜,如厚膜拉伸、薄型膜拉伸、多层共挤拉伸等方向发展。 近年来,适应包装行业对包装物要求的不断提高,各种功能膜市场发展迅速。经过双向拉伸生产的塑料薄膜可有效改善材料的拉伸性能(拉伸强度是未拉伸薄膜的3-5倍)、阻隔性能、光学性能、耐热耐寒性、尺寸稳定性、厚度均匀性等多种性能,并具有生产速度快、产能大、效率高等特点,市场迅速发展。 双向拉伸原理 塑料薄膜双向拉伸的原理:是将高聚物树脂通过挤出机加热熔融挤出厚片后,在玻璃化温度以上、熔点以下的适当温度范围内(高弹态下),通过纵拉机与横拉机时,在外力作用下,先后沿纵向和横向进行一定倍数的拉伸,从而使高聚物的分子链或结晶面在平行于薄膜平面的方向上进行取向而有序排列;然后在拉紧状态下进行热定型使取向的大分子结构固定下来;最后经冷却及后续处理便可制得理想的塑料薄膜。 双向拉伸薄膜生产设备与工艺 双向拉伸薄膜的生产设备与工艺,以聚酯(PET)为例简述如下: 配料与混合 普通聚酯薄膜所使用的原料主要是有光PET切片和母料切片。母料切片是指含有添加剂的PET切片,添加剂有二氧化硅、碳酸钙、硫酸钡、高岭土等,应根据薄膜的不同用途选用相应的母料切片。聚酯薄膜一般采用一定含量的含硅母料切片与有光切片配用,其作用是通过二氧化硅微粒在薄膜中的分布,增加薄膜表面微观上的粗糙度,使收卷时薄膜之间可容纳少量的空气,以防止薄膜粘连。

有光切片与一定比例的母料切片通过计量混合机混合后进入下一工序。 结晶和干燥 对有吸湿倾向的高聚物,例如PET、PA、PC等,在进行双向拉伸之前,须先进行予结晶和干燥处理。一是提高聚合物的软化点,避免其在干燥和熔融挤出过程中树脂粒子互相粘连、结块;二是去除树脂中水分,防止含有酯基的聚合物在熔融挤出过程中发生水解降解和产生气泡。 PET的予结晶和干燥设备一般采用带有结晶床的填充塔,同时配有干空气制备装置,包括空压机、分子筛去湿器、加热器等。 予结晶和干燥温度在150-170℃左右,干燥时间约3.5-4小时。干燥后的PET切片湿含量要求控制在50ppm以下。 熔融挤出 熔融挤出包括挤出机、熔体计量泵、熔体过滤器和静态混合器。 1 熔融挤出机 经过结晶和干燥处理的PET切片进入单螺杆挤出机进行加热熔融塑化。为了保证PET 切片塑化良好、挤出熔体压力稳定,螺杆的结构非常重要。除对长径比、压缩比、各功能段均有一定要求外,还特别要求是屏障型螺杆,因为这种结构的螺杆具有以下几个特点:1)有利于挤出物料的良好塑化。 2)有利于挤出机出口物料温度均匀一致。 3)挤出机出料稳定。 4)排气性能好。

薄膜技术的论文

薄膜技术在光电子器件中的应用 【摘要】本文简要的分析了薄膜技术的进展原因,同时介绍其在光电子器件制造中常用的几种薄膜技术的原理和各自的特点。 【Pick to 】This article analyzes the progress of film technology briefly , and introduces its reasons in optoelectronic devices ,which is used in manufacturing of several film technology principle and their respective characteristics. 【关键词】薄膜原理应用光电子器件表面科学 一、前言 在高科技的今天,由于固体表面、表面效应和表面科学的研究取得了重大的成绩,这与表面分析方法和仪器的迅速发展及广泛应用时分不开的,使得表面分析方法迅速发展,同时加上真空技术的飞快发展共同推动了薄膜技术的应用。 近年来,国内外正掀起“光电子学”和“光电子产业”的热潮,光电子技术已经在信息、能源、材料、航空航天、生命科学、环境科学和军事国防等诸多领域发挥着重要作用。光电子学是从上世纪七十年代,在光学、电子学及相关学科的基础上发展起来的一门科学,光电子器件的小型化、多样化和性能的不断提高是光电子技术发展的重要标志,在这个发展过程中,薄膜技术功不可没。 当固体或液体的一维线性尺度远远小于它的其它二维尺度时,我们将这样的固体或液体称为膜。一般将厚度大于1μm的膜称为厚膜,厚度小于1μm的膜称为薄膜,当然,这种划分具有一定的任意性。薄膜的研究和制备由来已久,但在早期,技术落后使得薄膜的重复性较差,其应用受到限制,仅用于抗腐蚀和制作镜面。自从制备薄膜的真空系统和各种表面分析技术有了长足的进步,以及其他先进工艺(如等离子体技术)的发展,薄膜的应用开始了迅速的拓展。目前,在光电子器件中,薄膜的使用非常普遍,它们中大部分是化合物半导体材料,厚度低至纳米级。 二、简要薄膜技术发展 所谓表面科学通常是指固体最外层约1至10个原子层。厚度大约是几埃至几十埃。我们把研究表面现象的科学如表面科学、表面化学、表面物理化学等称为表面科学。它在各种热处理效应等功能上取得的进展推动了薄膜技术,在表面分析方法的迅速发展下。超真空技术的发展为表面科学的发展提供了重要的条件。为了排除气体分子对表面分析的干扰和影响,使得表面分析数据准确可靠,目前几乎所有新型的表面分析仪器都要求在超真空条件下进行工作。 近代超高真空系统的主要特点是【1】:几乎全部系统都是由不锈钢制成,取代了过去的玻璃系统。主要原因是玻璃不能承受高温。油扩散泵虽然仍在用,但已经逐渐被离子泵,升华泵等所取代。在超高真空测量方面,虽然用电离计,但由于种种原因已经被质谱真空计所代替,超高真空系统的残余气体分析愈来愈重要。所以现在在好多表面分析仪器的真空系统中都配置了残余气体分析装置——四极滤质器。这些共同推动了薄膜技术飞快发展,加快其在光电子中的应用。 三、薄膜制备技术 薄膜制备方法多种多样,总的说来可以分为两种——物理的和化学的。物理方法指在薄膜的制备过程中,原材料只发生物理的变化,而化学方法中,则要利

相关文档
最新文档