12简谐振动

12简谐振动
12简谐振动

大学物理练习题十二

一、选择题

1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t=21T (T 为周期)时,质点的速度为 [ B ] (A) φωsin A - (B) φωsin A (C) φωcos A - (D) φωcos A

解: 当2/T t =,即π=π=ω=ω2/22/T t 时,()()=+-=+-==φπωφωωsin sin A t A dt

dx v φωsin A

2. 一物体作简谐振动,振动方程为)4/cos(πω+=t A x 。在t=T/4(T 为周期)时刻,物体的加速度为 [ B ] (A) 2

2

1

2ωA - (B) 2

2

1

2ωA (C) 2

213ωA -

(D) 2

2

1

3ωA

解: 当4/T t =,即2/4/24/ππωω===T t 时, )4/cos(2

22

πωω+-==

t A dt

x d a =

+-=)4/2/cos(2ππωA 2

2

2ωA

3. 劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 [ C ] (A) 2

1212)(2k k k k m T +π

= (B) )

(221k k m T +π

=

(C) 2

121)(2k k k k m T +π

= (D) 2

122k k m

T +π

=

解: 由kx x k x k ==2211,21x x x +=可得

2

1212

11

1

21

2

111/1/1k k k k k k k x x k x x x k k +=

+=

+=

+=

,m

k T /22ππ

=

=

ω

4. 一质点沿x 轴作简谐振动,振动方程为()ππ3

12

2cos 10

4+?=-t x (SI)。从t=0时刻起,到质点位置在x= -2cm 处,且向X 轴正方向运动的最短时间间隔 [ C ] (A) 1/8s (B) 1/4s (C) 1/2s (D) 1/3s (E) 1/6s

解: 由题意作知量图如右,πω=?t ,)(2

12s

t =

=

=

π

ω

π 5.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 2

1,且向x 轴的正方向运动,代表此简谐振动的旋

转矢量图为 [ B ]

1

m

k 2

二、填空题

1. 如图所示,一质量为m 的滑块,两边分别与倔强系数为k 1和k 2的轻弹簧连接,两弹簧的另外两端分别固定在墙上。滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。将滑块m 向右移动到x 0,自静止释放,并从释放时开始计时。取坐标如图所示,则其振动方程为 。

解: 由()kx x k k x k x k f f f =+=+=+=212121知,等效弹簧21k k k +=,m

k k 2

1+=

ω;

由0=t 时,00=v 知0x A =,0=φ,振动方程为 ??

?

??

?+=t m

k k x x 210cos

2.一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相图表? =___________。 解: 设)cos(φω+=t A x ,由t=0时

0sin ,cos 2/00>-==-=φωφA v A A x ,得3

2πφ-

=或3

4πφ=

再由t=2时0)2cos()cos(2=+=+=φωφωA t A x ,0)2sin(2<+-=φωωA v 可得2

φω=

+,127)]32(2[21)2(21π

ππφπω=

--=-=

, 7

242==ωπT (s ) 3. 一质点作简谐振动,其运动速度与时间的曲线如图所示。若质点的振动规律用余弦描述,则其初相位为___________。

解:A v t A v m ωφωω=+-=,)sin( 由图知,0=t 时

0sin 2

1>-=φωA v m ,

6

π

φ-=或6

7πφ=,

根据不到四分之一周期的时间后,速度m v v =可知,取6

7πφ=

4.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为

=+=21x x x (SI)

解: 2=T (s ),ππω==

T

2

t x πsin 08.01=, t x πsin 04.02-=

)2/cos(04.0sin 04.021πππ-==+=t t x x x

5.一弹簧振子,弹簧的劲度系数m N k /250=,当物体以J 2.0初动能振动时,振幅为0.04米;当动能和势能相等时,位移为 ±0.028 米。 解: 04.0250

2.02k

E 2A 0=?=

=

,由02

2

12

1E kx E E p

k =

=

=知,028.050

20±=±

=±=k

E x

6. 一物体悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的 。(设

x (m )

t (s)

O x 1

x 2

1

20.08

-0.04

x(m ) t (s)

O 4 -2

2

v (m/s)

t (s)

O

v m

m v 21

平衡位置处势能为零)当这物块在平衡位置时,弹簧的长度比原长长l ?,这一振动系统的周期为 。

解: 4/2212

E A k E p =??

?

??=,=

-=p

k E

E E E 4

3,=?==l

mg m k

m T /22π

π

g

l 2?π

三、计算题

1. 在一轻弹簧下端悬挂m 0=100g 砝码时,弹簧伸长8cm 。现在这根弹簧下端悬挂m=250g 的物体,构成弹簧振子。将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(这时t=0)。选X 轴向下,求振动方程的数值式。 解:(1) ?=k g m 0,25.124

4908

.08.91.00==?=

?=

g m k N/m ,)/(725

.04/49s rad m

k ==

=

ω

(2)设振动方程为)cos(φω+=t A x 由题意知,t=0时 ??

?-=-===s

cm A v cm A x /21sin 4cos 00φωφ

)

21()41(象限或在象限或在φφ

联系解得 cm A 5=,5

4arccos

=φ )1(象限在第φ, )5

4arccos

7cos(05.0+=t x

注:初相位也可以记作)(64.0rad 、5

3arcsin 、4

3arctan

2. 如图,有一水平弹簧振子,弹簧的倔强系数k=24N/m ,重物的质量m=6kg ,重物静止在平衡位置上。设以一水平恒力F=10N 向左作用于物体(不计摩檫),使之由平衡位置向左运动了0.05m ,此时撤去力F 。当重物运动到左方最远位置时开始计时,求物体的运动方程。

解: )/(26

24s rad m k ==

=

ω

振动系统的初始能量等于外力F 做的功J FS E 5.005.0100=?==,)(204.024

5.0220m k

E A =?==

重物运动到左方最远位置时开始计时,即π?=,振动方程为 )2cos(204.0π+=t x

3. 一轻弹簧在60N 的拉力下伸长30cm 。现把质量为4kg 的物体悬挂在该弹簧的下端并使之静止,再把物体向下拉10cm ,然后由静止释放并开始计时。选X 轴向下,求 (1) 物体的振动方程;

(2) 物体在平衡位置上方5cm 时弹簧对物体的拉力。

(3) 物体从第一次越过平衡位置时刻起到它运动到上方5cm 处所需要的最短时间。 解: )/(2003.0/60/m N f k ==?= )/(07.7504/200/s rad m k ≈=

=

=

ω

(1) 0,1.0==φm A ??

?<-====0sin 0cos 1.000φωφA v A x

解得0,1.0==φm A ,所以t x 07.7cos 1.0=

(2)力与位移的正方向均向下,在平衡位置上方5cm 处,x=-0.05(m ),kx mg F F -=+=拉合,

=-?-?-=--=)05.0(2008.94kx mg F 拉2.29-(N ),方向向上。 (3)由题意作旋转矢量图,6

π

ω=

?t ,==

=

?60

26πω

π

t 074.0(S )

注:(2-3)有多种解法!计算题1、3中的重力加速度不能取2/10s m 。

*4. 一质量为m 、长为L 的均匀细杆,上端挂在无摩檫的水平轴上,杆下端用一轻弹簧连在墙上,如图所示。弹簧的劲度系数为k 。当杆竖直静止时弹簧处于水平原长状态。求杆作微小振动的周期。

(杆绕其一端轴的转动惯量为31mL 2) 解: 重力与弹簧力对杆的力矩分别为

θsin 2

L mg

M

G

=,θθcos sin)(cos L L k L kx fd M

k

?=?==

考虑到微振动1cos ,sin ≈≈θθθ,并且两力矩的作用效果均与角位移的正向(逆时针)相反,应取负值。 合力矩θθcos sin)(sin 2

L L k L mg

M

M

M

k

G ?--=+=合θ)2

(2

kL L mg

+-=

由定轴转动定理2

2

dt

d J

M θ=有

0)2

()31

(2

22

2

=++θθ

kL L mg

dt d mL ,

0)2(

322

=+

+θθm

k L

g dt

d

)2(

32

m

k L

g +

,)

2(3222kL mg mL T +==

π

ω

π

[补充题] 一长度为l 、倔强系数为k 的均匀轻弹簧分割成长度分别为l 1和l 2的两部分,且l 1=n l 2,n 为整数,则相应的倔强系数k 1和k 2为 [ B ] (A) ).1(,1

21+=+=n k k n kn k (B) .1,)

1(21+=+=n k k n n k k

(C) ).1(,)

1(21+=+=

n k k n

n k k (D) .1

,1

21+=

+=

n k k n kn k

解: 由21nl l =知21x n x ?=?, 221)1(x n x x x ?+=?+?= 由kx x k x k f =?=?=2211 有 22211)1(x n k x k x n k ?+=?=? 故

n

k

n k k n k )1( , )1(12+=

+=

机械振动第1节简谐运动讲义-人教版高中物理选修3-4讲义练习

第1节简谐运动 1.平衡位置是振子原来静止的位置,振子在其附近 所做的往复运动,是一种机械振动,简称振动。 2.如果质点的位移与时间的关系遵从正弦函数的规 律,即它的振动图像(x-t图像)是一条正弦曲线, 这样的振动叫做简谐运动,它是一种最简单、最基 本的振动,是一种周期性运动。 3.简谐运动的位移一时间图像表示质点离开平衡位 置的位移随时间变化的关系,而非质点的运动轨 迹。由该图像可以确定质点在任意时刻偏离平衡位 置的位移和运动情况。 一、弹簧振子 1.弹簧振子 如图所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。 2.平衡位置 振子原来静止时的位置。 3.机械振动 振子在平衡位置附近所做的往复运动,简称振动。 二、弹簧振子的位移—时间图像 1.振动位移 从平衡位置指向振子某时刻所在位置的有向线段。 2.建立坐标系的方法 以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。 3.图像绘制 用频闪照相的方法来显示振子在不同时刻的位置。

三、简谐运动及其图像 1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。弹簧振子的运动就是简谐运动。 3.简谐运动的图像 (1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。 (2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。 1.自主思考——判一判 (1)平衡位置即速度为零时的位置。(×) (2)平衡位置为振子能保持静止的位置。(√) (3)振子的位移-5 cm小于1 cm。(×) (4)简谐运动的轨迹是一条正弦(或余弦)曲线。(×) (5)简谐运动是一种匀变速直线运动。(×) 2.合作探究——议一议 (1)简谐运动与我们熟悉的匀速运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速运动的区别在于其速度大小、方向都不断变化,只要质点的位移随时间按正弦规律变化,则这个质点的运动就是简谐运动。 (2)如图所示为振子的位移—时间图像,振子的位移—时间图像就是振子的运动轨迹吗? 提示:图像描述的是振动物体的位移随时间的变化规律,并不是物体的运动轨迹。

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动 目的要求: (1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。 (2)观测简谐振动的运动学特征。 (3)测量简谐振动的机械能。 仪器用具: 气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。 实验原理: (一)弹簧振子的简谐运动过程: 质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别 为k1和 k2,如下图所示: 当 m1偏离平衡位置 x时,所受到的弹簧力合力为 令 k=,并用牛顿第二定律写出方程 解得 X=Asin() 即其作简谐运动,其中 在上式中,是振动系统的固有角频率,是由系统本身决定的。m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。系统的振动周期为

通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k 和 (二)简谐振动的运动学特征: 将()对 t 求微分 ) 可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得 v2=v02(v2?v2) x=A时,v=0,x=0 时,v 的数值最大,即 实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。 从上述关系可得 (三)简谐振动的机械能: 振动动能为 系统的弹性势能为 则系统的机械能 式中:k 和 A均不随时间变化。上式说明机械能守恒,本实验通过测定不同 位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。 (四)实验装置: 1.气轨设备及速度测量 实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另 一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的表面经过精加工与

第一节 简谐运动选择题1

填空题 1、简谐运动的物体由极端位置向平衡位置所做的运动是[ ] A 匀加速运动 B 加速度不断增大的加速运动 C 加速度不断减小的加速运动 D 加速度不断增大的减速运动 2、弹簧振子作简谐运动时,以下说法正确的是[] A 振子通过平衡位置时,回复力一定为零 B 振子若做减速运动,加速度一定在增加 C 振子向平衡位置运动时,加速度一定与速度方向一致 D 在平衡位置两侧,振子速率相同的两个位置是相对平衡位置对称的 3、做简谐运动的物体,当它们每次经过同一位置时,有可能不同的物理量是[] A 位移 B 回复力 C 加速度 D 速度 4、一弹簧振子周期为2.4s,当它从平衡位置向右运动了1.5s 时,其运动情况是[] A 向右减速 B 向左减速 C 向右加速 D 向左加速 5、如图所示弹簧振子,振子质量为2.0×102g,作简谐运动,当它到达平衡位置左侧2.0cm 时受到的回复力是0.40N,当它运动到平衡位置右侧4.0cm处时,加速度为:[] A 2ms-2向右 B 2ms-2向左 C 4ms-2向右 D 4ms-2向左 6、上题中,若弹簧振子的振幅为8cm,此弹簧振子振动的周期为:[ ] A 0.63s B 2s C 8s D 条件不足,无法判断 7、对于作简谐运动的物体,其回复力和位移的关系可用下述哪个图像表示:[]

8、弹簧振子在BC间作简谐运动,O为平衡位置,BC间距离为10cm,由B→C运动时间为1s,则[ ] A 从B开始经过0.25s,振子通过的路程是2.5cm B 经过两次全振动,振子通过的路程为40cm C 振动周期为1s,振幅为10cm D 从B→O→C振子做了一次全振动 9、下列关于简谐运动周期、频率、振幅说法那些正确:[] A 振幅是矢量,方向是由平衡位置指向极端位置 B 周期和频率的乘积为一常数 C 振幅增大,周期随它增大,频率减小 D 做简谐运动系统一定,其振动频率便一定,与振幅无关 10、如图所示,把一个有槽的物体B与弹簧相连,使B在光滑水平面上做简谐运动,振幅为A1.当B恰好经过平衡位置,把另一个物体C轻轻的放在(C速度可以认为是零)B的槽内,BC共同作践谐振动的振幅为A2.比较A1和A2的大小:[ ] A、A1=A2 B、A1>A2 C、A1

简谐振动特性研究实验

实验一、简谐振动特性研究与弹簧劲度系数测量【实验目的】 1. 胡克定律的验证与弹簧劲度系数的测量; 2. 测量弹簧的简谐振动周期,求得弹簧的劲度系数; 3. 测量两个不同弹簧的劲度系数,加深对弹簧的劲度系数与它的线径、外径关系的了解。 4. 了解并掌握集成霍耳开关传感器的基本工作原理和应用方法。 【实验原理】 1. 弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力和它的变形量成正比,即: (1) (1)式中,为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量和的对应关系,就可由(1)式推算出弹簧的劲度系数。 2. 将质量为的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: (2) 式中是待定系数,它的值近似为,可由实验测得,是弹簧本身的质量,而被称为弹簧的有效质量。通过测量弹簧振子的振动周期,就可由(2)式计算出弹簧的劲度系数。 3. 磁开关(磁场控制开关): 如图1所示,集成霍耳传感器是一种磁敏开关。在“1脚”和“2 脚”间加直流电压,“1脚”接电源正极、“2脚”接电源负极。当垂直于该传感器的磁感应强度大于某值时,该传感器处于“导通”状 态,这时处于“”脚和“”脚之间输出电压极小,近似为零,当磁感

强度小于某值时,输出电压等于“1脚”、“2脚”端所加的电源电压,利用集成霍耳开关这个特性,可以将传感器输出信号输入周期测定仪,测量物体转动的周期或物体移动所经时间。 【实验仪器】 FB737新型焦利氏秤实验仪1台,FB213A型数显计时计数毫秒仪 【实验步骤】 1. 用拉伸法测定弹簧劲度系数:(不使用毫秒仪) (1)按图2,调节底板的三个水平调节螺丝,使重锤尖端对准重锤基准的尖端。 (2)在主尺顶部安装弹簧,再依次挂入带配重的指针吊钩、砝码托盘,松开顶端挂钩锁紧螺钉,旋转顶端弹簧挂钩,使小指针正好轻轻靠在平面镜上(注意:力度要适当,若靠得太紧,可能会因摩擦太大带来附加的系统误差),以便准确读数。这时因初始砝码等已使弹簧被拉伸了一段距离。(可参考说明书中的装置图)

2019-2020学年高中物理 第十一章 机械振动 第1节 简谐运动教案 新人教版选修3-4.doc

2019-2020学年高中物理第十一章机械振动第1节简谐运动教案 新人教版选修3-4 教学设计说明 本节课是一节物理知识和方法相结合,理论探究和实验探究相结合的探究课。知识层面主要从振动的定义、振动图像的得到、猜想和验证等方面展开探究,这其中涉及了理想化模型的思想、图像法、猜想和验证等物理探究中常用的思想方法,因此本节课知识体系的展开和物理探究方法的展开完全是糅合在一起的。理论探究侧重学生思维能力,对于高中学生而言,比实验探究更具难度,因此本节课的理论探究是教师引导下的学生的探究,主要采用了①与已有知识的对比和迁移②层层递进的问题分解这两种方法来加以引导。学生分组活动的两个实验,一是用特殊值法验证猜想,一是沙漏直接记录法得到x-t图,这两种方法都不是最精确的方法,而课堂中却把最精确的频闪照片方法和位移传感器的记录和验证方法作为演示实验,这样做是为了给学生这样一种观点:科学探究不是遥不可及,不一定要借助很先进的工具和仪器,最简单易行的方法也是好方法。整节课以方法为线索将学生的认知过程与探究过程加以链接,学生在学习物理知识的同时又学习了物理方法,体验提出问题——探索方法(思考设计、类比迁移)——应用方法(知识与方法的领会)——解决问题(知识与方法的获得)的科学探究的一般过程。 教学目标: (一)知识与技能 1、知道什么是弹簧振子,理解振动的平衡位置和位移。 2、知道弹簧振子的位移-时间图象,知道简谐运动及其图象。 (二)过程与方法 通过对简谐运动图象的绘制,认识简谐运动的特点。 (三)情感、态度与价值观 1、通过对简谐运动图象的绘制,培养认真、严谨、实事求是的科学态度。 2、从图象中了解简谐运动的规律,培养分析问题的能力及审美能力(逐步认识客观存在的简洁美、对称美等)。 教学重点: 理解简谐运动的位移-时间图象。 教学难点:

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

第43讲机械振动简谐运动的基本概念

第43讲:机械振动 简谐运动的基本概念 内容:§ 14- 1,§ 14-2 1 .简谐运动 要求: 1 ?掌握描述简谐运动的特征量 一一振幅、周期、频率、相位的物理意义, 并能熟 练地确定振动系统的特征量,从而建立简谐运动方程; 2. 掌握描述简谐运动的旋转矢量方法与图示法的特点, 并会应用于简谐 运动规律的讨论与分析。 重点与难点: 1 ?简谐运动的动力学方程和运动学方程; 2 .振幅与初相位的确定; 作业: (50分 钟) 2 ?描述简谐运动的物理量

问题习题预习P35: 1, 2, P37: 2, 5, § 14-3,§ ,7, 8 ,8, 11 § 14-4, § 14-5

第十四章机械振动 引言: 1什么是振动(Vibration) 振动是自然界和工程技术领域常见的一种运动,广泛存在于机械运动、电磁运动、热运动、原子运动等运动形式之中。从狭义上说,通常把具有时间周期性的运动称为振动。如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动。广义地说,任何一个物理量在某一数值附近作周期性的变化,都称为振动。变化的物理量称为振动量,它可以是力学量,电学量或其它物理量。例如:交流电压、电流的变化、无线电波电磁场的变化等等。 2. 什么是机械振动(Mecha nical Vibrati on) 机械振动是最直观的振动,它是物体在一定位置附近的来回往复的运动,如活塞的运动,钟摆的摆动等都是机械振动。 3. 研究机械振动的意义 不同类型的振动虽然有本质的区别,但是仅就振动过程而言,振动量随时间的 变化关系,往往遵循相同的数学规律,从而使得不同本质的振动具有相同的描 述方法。 振动是自然界及人类生产实践中经常发生的一种普遍运动形式,研究机械振动 的规律也是学习和研究其它形式的振动以及波动、无线电技术、波动光学的基 础。 4. 机械振动的特点 (1)有平衡点。 (2)且具有重复性,即具有周期性。 5. 机械振动的分类 (1)按振动规律分:简谐、非简谐、随机振动。 (2)按产生振动原因分:自由、受迫、自激、参变振动。 (3)按自由度分:单自由度系统、多自由度系统振动。 (4 )按振动位移分:角振动、线振动。 (5)按系统参数特征分:线性、非线性振动。 简谐振动是最基本的振动,存在于许多物理现象中。本章主要研究简谐振动的规律,也简单介绍阻尼振动、受迫振动、共振等。 本早内容有: § 14- 1简谐运动 § 14-2简谐运动的振幅、周期(频率)与相位 § 14-3旋转矢量 § 14-4单摆与复摆 § 14-5简谐运动的能量 § 14—6简谐运动的合成 § 14—7阻尼振动、受迫振动、共振

高中物理第十一章机械振动第1节简谐运动案新人教版选修

第1节 简谐运动 1.了解什么是机械振动,认识自然界和生产、生活中的振动现象。 2.认识弹簧振子这一物理模型,理解振子的平衡位置和位移随时间变化的图象。 3.理解简谐运动的概念和特点,知道简谐运动的图象是一条正弦曲线。 4.能够利用简谐运动的图象判断位移和速度等信息。 一、弹簧振子 1.平衡位置:振子原来□01静止时的位置。 2.机械振动:振子在□ 02平衡位置附近的往复运动,简称振动。 3.弹簧振子:如图所示,小球套在光滑杆上,如果弹簧的质量与小球相比□03可以忽略,小球□04运动时空气阻力也可以忽略,把小球拉向右方,然后放开,它就在□05平衡位置附近运动起来。这种由□ 06小球和□07弹簧组成的系统称为弹簧振子,有时也简称为振子,弹簧振子是一种理想化模型。 二、弹簧振子的位移—时间图象 1.振动位移:可用从平衡位置指向振子所在位置的□ 01有向线段表示。 2.位移—时间图象:以小球的平衡位置为坐标原点,用横坐标表示振子□ 02振动的时间,纵坐标表示振子□ 03相对平衡位置的位移,建立坐标系,得到位移随时间变化的情况——振动图象。 3.物理意义:反映了振子的□ 04位移随□05时间的变化规律。 4.特点:弹簧振子的位移—时间图象是一条□ 06正(余)弦曲线。 三、简谐运动 1.定义:如果质点的位移与时间的关系遵从□ 01正弦函数的规律,即它的振动图象(x -t 图象)是一条□ 02正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于□ 03平衡位置对称,是一种□04往复运动。弹簧振子的运动就是□ 05简谐运动。

3.简谐运动的图象 (1)简谐运动的图象是振动物体的□06位移随时间的变化规律。 07正弦曲线。 (2)简谐运动的图象是□ 判一判 (1)竖直放于水面上的圆柱形玻璃瓶的上下运动是机械振动。( ) (2)物体的往复运动都是机械振动。( ) (3)弹簧振子的位移是从平衡位置指向振子所在位置的有向线段。( ) (4)简谐运动的图象表示质点振动的轨迹是正弦或余弦曲线。( ) (5)只要质点的位移随时间按正弦函数的规律变化,这个质点的运动就是简谐运动。( ) (6)简谐运动的平衡位置是速度为零时的位置。( ) 提示:(1)√(2)×(3)√(4)×(5)√(6)× 想一想 (1)弹簧振子是一种理想化模型,以前我们还学过哪些理想化模型? 提示:点电荷、质点。 (2)简谐运动与我们熟悉的匀速直线运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速直线运动的区别在于其速度大小、方向都在不断变化。只要物体的位移随时间按正弦函数的规律变化,则这个物体的运动就是简谐运动。 课堂任务弹簧振子 1.机械振动的理解 (1)机械振动的特点 ①振动的轨迹:可能是直线,也可能是曲线(摆钟的摆动)。 ②平衡位置:质点原来静止时的位置。从受力角度看,应该是振动方向上合力为零的位置。 ③振动的特征:振动具有往复性。 (2)机械振动的条件

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

2020春高中人教版物理选修3-4学案:第十一章 第1节 简谐运动 Word版含解析

第十一章机械振动 第1节简谐运动 1.了解什么是机械振动,认识自然界和生产、生活中的振动现象。 2.认识弹簧振子这一物理模型,理解振子的平衡位置和位移随时间变化的图象。 3.理解简谐运动的概念和特点,知道简谐运动的图象是一条正弦曲线。 4.能够利用简谐运动的图象判断位移和速度等信息。 一、弹簧振子 1.平衡位置:振子原来□01静止时的位置。 2.机械振动:振子在□02平衡位置附近的往复运动,简称振动。 3.弹簧振子:如图所示,小球套在光滑杆上,如果弹簧的质量与小球相比□03可以忽略,小球□04运动时空气阻力也可以忽略,把小球拉向右方,然后放开,它就在□05平衡位置附近运动起来。这种由□06小球和□07弹簧组成的系统称为弹簧振子,有时也简称为振子,弹簧振子是一种理想化模型。 二、弹簧振子的位移—时间图象 1.振动位移:可用从平衡位置指向振子所在位置的□01有向线段表示。 2.位移—时间图象:以小球的平衡位置为坐标原点,用横坐标表示振子□02振动的时间,纵坐标表示振子□03相对平衡位置的位移,建立坐标系,得到位移随时

间变化的情况——振动图象。 3.物理意义:反映了振子的□04位移随□05时间的变化规律。 4.特点:弹簧振子的位移—时间图象是一条□06正(余)弦曲线。 三、简谐运动 1.定义:如果质点的位移与时间的关系遵从□01正弦函数的规律,即它的振动图象(x-t图象)是一条□02正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于□03平衡位置对称,是一种□04往复运动。弹簧振子的运动就是□05简谐运动。 3.简谐运动的图象 (1)简谐运动的图象是振动物体的□06位移随时间的变化规律。 (2)简谐运动的图象是□07正弦曲线。 判一判 (1)竖直放于水面上的圆柱形玻璃瓶的上下运动是机械振动。() (2)物体的往复运动都是机械振动。() (3)弹簧振子的位移是从平衡位置指向振子所在位置的有向线段。() (4)简谐运动的图象表示质点振动的轨迹是正弦或余弦曲线。() (5)只要质点的位移随时间按正弦函数的规律变化,这个质点的运动就是简谐运动。() (6)简谐运动的平衡位置是速度为零时的位置。() 提示:(1)√(2)×(3)√(4)×(5)√(6)× 想一想 (1)弹簧振子是一种理想化模型,以前我们还学过哪些理想化模型?

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.360docs.net/doc/7812318693.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

简谐运动的描述物理教案

简谐运动的描述物理教案 教学目标: 1.知识与技能 (1)知道简谐运动的振幅、周期和频率的含义。理解周期和频率的关系。 (2)知道振动物体的固有周期和固有频率,并正确理解与振幅无关。 (3)理解振动图像的物理意义,能利用图像求振动物体的振幅、周期及任意时刻的位移;会将振动图像与振动物体在某时刻位移与位置对应,并学会在图象上分析与位移x有关的物理量。 (4)知道简谐运动的公式表示X=Asinwt,知道什么是简谐运动的圆频率,知道简谐运动的圆频率和周期的关系。 2.过程与方法:观察砂摆演示实验中拉动木板匀速运动,让学生学会这是将质点运动的位移按时间扫描的基本实验方法。 3.渗透物理方法的教育:提高学生观察、分析、实验能力和动手能力,从而让学生知道实验是研究物理科学的重要基础。 教学重点:振幅、周期和频率的物理意义;简谐运动图象的物理意义 教学难点:理解振动物体的固有周期和固有频率与振幅无关;振动图象与振动轨迹的区别;圆频率与周期的关系 教学器材:弹簧振子,音叉,课件;砂摆实验演示:砂摆、砂子、玻璃板(或长木板) 教法与学法:实验观察、讲授、讨论,计算机辅助教学 教学过程设计: 第一课时 1.新课引入 上节课讲了简谐运动的现象和受力情况。我们知道振子在回复力作用下,总以某一位置为中心做往复运动。现在我们观察弹簧振子的运动。将振子拉到平衡位置O的右侧,放手后,振子在O点的两侧做往复运动。振子的运动是否具有周期性? 在圆周运动中,物体的运动由于具有周期性,为了研究其运动规律,我们引入了角速度、周期、转速等物理量。为了描述简谐运动,也需要引入新的物理量,即振幅、周期和频率。

板书二振幅、周期和频率(或投影) 2.新课讲授 实验演示:观察弹簧振子的运动,可知振子总在一定范围内运动。说明振子离开平衡 位置的距离在一定的数值范围内,这就是我们要学的第一个概念――振幅。 板书1、振动的振幅 在弹簧振子的振动中,以平衡位置为原点,物体离开平衡位置的距离有一个最大值。 如图所示(用投影仪投影),振子总在AA’间往复运动,振子离开平衡位置的最大距离为 OA或OA’,我们把OA或OA’的大小称为振子的振幅。 板书(1)、振幅A:振动物体离开平衡位置的最大距离。 我们要注意,振幅是振动物体离开平衡位置的最大距离,而不是最大位移。这就意味着,振幅是一个数值,指的是最大位移的绝对值。 板书振幅是标量,表示振动的强弱。 实验演示:轻敲一下音叉,声音不太响,音叉振动的振幅较小,振动较弱。重敲一下 音叉,声音较响,音叉振动的振幅较大,振动较强。振幅的单位和长度单位一样,在国际 单位制中,用米表示。 板书(2)、单位:m 由于简谐运动具有周期性,振子由某一点开始运动,经过一定时间,将回到该点,我 们称振子完成了一次全振动。振子完成一次全振动,其位移和速度的大小、方向如何变化? 学生讨论后得出结论:振子完成一次全振动,其位移和速度的大小、方向与从该点开 始运动时的位移和速度的大小、方向完全相同。 在匀速圆周运动中,物体运动一个圆周,所需时间是一定的。观察振子的运动,并用 秒表或脉搏测定振子完成一次全振动的时间,我们通常测出振子完成20~30次全振动的 时间,从而求出平均一次全振动的时间。可以发现,振子完成一次全振动的时间是相同的。 板书2、振动的周期和频率 (1)、振动的周期T:做简谐运动的物体完成一次全振动的时间。 振动的频率f:单位时间内完成全振动的次数 (2)、周期的单位为秒(s)、频率的单位为赫兹(Hz)。 板书(3)、周期和频率都是表示振动快慢的物理量。两者的关系为T=1/f或f=1/T

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

简谐振动模型

第二讲 简谐振动模型 【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型→单摆的周期 【知识点一】弹簧振子 1、定义:物体和弹簧所组成的系统. 条件(理想化) : ①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O ,在AB 两点间做简谐振动, 振幅为OA=0B 右图:弹簧弹力和重力的合力提供回复力 3、周期:2m T K π= , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。 ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是( ) A A→O 位移为负值,速度为正值 B O→B 时,位移为正值,加速度为负值 C B→O 时,位移为负值,速度为负值 D O→A 时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图2所示,在t1至t2这段时间内( ) A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和2cm,松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____,振动周期之比T1:T2=______. ★回复力 【例】如图所示,物体A 放在物体B 上,B 与弹簧相连,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时(t = 0),取向右为正方向,A 所受静摩擦力f 随时间t 变化的图象正确的是( )

1 第1节 简谐运动

第1节简谐运动 1.了解什么是机械振动. 2.理解平衡位置、回复力、位移、简谐运动的概念.(重点) 3.掌握简谐运动、回复力的特征以及回复力、加速度、速度随位移变化的规律.(重点+难点) 一、什么是机械振动 1.定义:物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动,简称振动.2.平衡位置:振动物体所受回复力为零的位置. 3.回复力 (1)方向:总是指向平衡位置. (2)作用效果:总是要把振动物体拉回到平衡位置. (3)来源:回复力是根据力的效果命名的力.可能是几个力的合力,也可能是由某一个力或某一个力的分力来提供. 1.(1)小鸟飞走后树枝的往复运动不是机械振动.() (2)平衡位置即速度为零时的位置.() 提示:(1)×(2)× 二、弹簧振子的振动 1.弹簧振子是一种理想模型,其主要组成部分是一个质量可以忽略不计的弹簧和一个质量为m的物体. 2.如图所示,弹簧振子运动过程中,各物理量变化情况:

振子运动A→O O→A′A′→ O O→A 位移x方向、 大小变化 向右、 减小 向左、 增大 向左、 减小 向右、 增大 弹力F方向、 大小变化 向左、 减小 向右、 增大 向右、 减小 向左、 增大加速度a方 向、大小变化 向左、 减小 向右、 增大 向右、 减小 向左、 增大速度v方向、 大小变化 向左、 增大 向左、 减小 向右、 增大 向右、 减小 三、简谐运动 1.定义:物体所受回复力的大小跟位移大小成正比,并且总是指向平衡位置,则物体的运动叫做简谐运动. 2.特征 (1)受力特征:回复力满足F=-kx,其中k为比例系数,负号表示力与位移的方向相反,x 为物体偏离平衡位置的位移. (2)运动特征:加速度满足a=- k m x,即做简谐运动的物体加速度的大小与位移的大小成正比,方向与位移方向相反. 2.(1)所有的振动都可以看做简谐运动.() (2)简谐运动是匀速运动.() (3)简谐运动的轨迹是一条正弦曲线.() 提示:(1)×(2)×(3)× 对简谐运动中x、v、a的理解 1.简谐运动的位移、速度、加速度 (1)位移 振动中的位移都是从平衡位置指向振子所在的位置.位移的表示方法是:以平衡位置为坐标

简谐振动的研究·实验报告

简谐振动的研究·实验报告 【实验目的】 研究简谐振动的基本特征 【实验仪器】 气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤 朱力氏秤 朱力氏秤的示意图如右图所示。一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。添加砝码时,小镜子随弹簧伸长而下移。欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。 【实验原理】 简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。简谐振动的方程为 x x 2ω-= 其位移方程为 )sin(αω+=t A x 速度方程为 )sin(αωω+=t A v 其运动的周期为 ω π 2= T T 或ω由振动系统本身的特性决定,与初始运动无关。而A ,α是由初始条件决定的。 实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有 x m x x k x x k =--+-)00()( 即 x m kx =-2 令k k 20=,有 x m k x x m x k 0 0-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。与简谐振动方程比较可得 m k 0 2= ω 即该简谐振动的角频率 m k 0 = ω 1、)sin(αω+=t A x 的验证 将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。依次改变光电门G 的位置i x ,每次都从A x 释放滑行器,测出对应i x 的时间i t ,最后移开光电门G 。从滑行器通过0x 时开始计时,当它从最大位移返回到0x 时,终止计时,测出时间值为2 T t =,可求出达到最大位置的时间2 t t B = 。 从上面的操作中可以看出2 π α= =,A x A 。将测量的i x ,i t 值代入(4)式,看其是 否成立。ω可由(4)式求出,其中B t T 4=。 2、)cos(αωω+=t A v 的验证 使滑行器处于平衡位置,并使挡光板正对坐标原点,然后依次改变光电门的位置(x 取值与1中相同),每次仍均在A x 处释放滑行器,这样可由计时器给出的时间i t ?及滑行距离 s ?(挡光板两相应边距离)可求出i v ,将i v 及1测出的i t 对应代入(3)式时,看是否成

简谐振动及其周期推导与证明

简谐振动及其周期公式的推导与证明 简谐振动:如果做机械振动的物体,其位移与时间的关系遵从正弦(或余弦)函数规律, 这样的振动叫做简谐振动。 位移:用x 表示,指振动物体相对于平衡位置的位置变化,由简谐振动定义可以得出x 的 一 般式:)cos(?ω+=t A x (下文会逐步解释各个物理符号的定义); 振幅:用A 表示,指物体相对平衡位置的最大位移; 全振动:从任一时刻起,物体的运动状态(位置、速度、加速度),再次恢复到与该时刻完 全相同所经历的过程; 频率:在单位时间内物体完成全振动的次数叫频率,用f 表示; 周期:物体完成一次全振动所用的时间,用T 表示; 角频率:用ω表示,频率的2π倍叫角频率,角频率也是描述物体振动快慢的物理量。角频 率、周期、频率三者的关系为:ω=2π/T =2πf ; 相位:?ωφ+=t 表示相位,相位是以角度的形式出现便于讨论振动细节,相位的变化率 就是角频率,即dt d φω=; 初相:位移一般式中?表示初相,即t =0时的相位,描述简谐振动的初始状态; 回复力:使物体返回平衡位置并总指向平衡位置的力。(因此回复力同向心力是一种效果力) 如果用F 表示物体受到的回复力,用x 表示小球对于平衡位置的位移,对x 求二阶导即得: )cos(2?ωω+-=t A a 又因为F=ma ,最后可以得出F 与x 关系式: kx x m F -=-=2ω 由此可见,回复力大小与物体相对平衡位置的位移大小成正比。 式中的k 是振动系统的回复力系数(只是在弹簧振子系统中k 恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。 简谐振动周期公式:k m T π 2=,该公式为简谐振动普适公式,式中k 是振动系统的回复力 系数,切记与弹簧劲度系数无关。 单摆周期公式:首先必须明确只有在偏角不太大的情况(一般认为小于10°)下,单摆的运 动可以近似地视为简谐振动。 我们设偏角为θ,单摆位移为x ,摆长为L ,当θ很小时,有关系式: L x ≈≈≈θθθtan sin , 而单摆运动的回复力为 F=mgsin θ,

相关文档
最新文档