初中数学中考数学压轴题复习题附解析

初中数学中考数学压轴题复习题附解析
初中数学中考数学压轴题复习题附解析

一、中考数学压轴题

1.已知:菱形 ABCD ,点 E 在线段 BC 上,连接 DE ,点 F 在线段 AB 上,连接 CF 、DF , CF 与 DE 交于点 G ,将菱形 ABCD 沿 DF 翻折,点 A 恰好落在点 G 上. (1)求证:CD=CF ;

(2)设∠CED = x ,∠DCF = y ,求 y 与 x 的函数关系式;(不要求写出自变量的取值范围) (3)在(2)的条件下,当 x =45°时,以 CD 为底边作等腰△CDK ,顶角顶点 K 在菱形 ABCD 的内部,连接 GK ,若 GK ∥CD ,CD =4 时,求线段 KG 的长.

2.如图1,在平面直角坐标系中,抛物线239

3344

y x x =

--x 轴交于A

B 、两点(点A 在点B 的左侧),与y 轴交于点

C .

(1)过点C 的直线5

334

y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动

点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴

于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:

(2)如图2, 将ABC ?绕点B 顺时针旋转至A BC ''?的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连

接AE C E '、, 将AC E ?'沿直线C E '翻折为A C E ?'', 是否存在点E , 使得BAA ?'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.

3.已知:如图,AB 为

O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接

DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;

(2)如图2,连接HC ,若HC HF =,求证:HC HA =;

(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求

KG

AK

的值.

4.如图1,抛物线2

(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式;

(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.

(3)如图3,点M 的坐标为(

3

2

,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

5.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1

y (米/分钟)与时间x (分钟)前2分钟满足二次函数2

1y ax ,后3分钟满足反比例函数

关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟. (1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式; (2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;

(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;

(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.

6.如图,90EOF ∠=?,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,

3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,

矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示); (2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;

(3)设点P 到BD 的距离为h ,当1

5

h OD =

时,求t 的值; (4)若在点P 出发的同时,点Q 从点B 以每秒4

3

个单位长度的速度向终点A 运动,当点

Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当

PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.

7.(1)阅读理解:

如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180?得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______; (2)问题解决:

如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,

DF 交AC 于点F ,连接EF ,求证:BE CF EF +>; (3)问题拓展:

如图③,在四边形ABCD 中,180B D ∠+∠=?,CB CD =,100BCD ∠=?,以C 为顶点作一个50?的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段

BE ,DF ,EF 之间的数量关系,并说明理由.

8.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 的图象与x 轴交于A (﹣3,0)、B (2,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式;

(2)点E (m ,2)是直线AC 上方的抛物线上一点,连接EA 、EB 、EC ,EB 与y 轴交于D .

①点F 是x 轴上一动点,连接EF ,当以A 、E 、F 为顶点的三角形与△BOD 相似时,求出线段EF 的长;

②点G 为y 轴左侧抛物线上一点,过点G 作直线CE 的垂线,垂足为H ,若∠GCH =∠EBA ,请直接写出点H 的坐标.

9.如图1,抛物线2

3y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶

点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .

(1)求顶点D 的坐标;

(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N . ①若直线CM 将BCD ?分成的两部分面积之比为2:1,求点M 的坐标; ②若NCB DBC ∠=∠,求点N 的坐标.

10.如图,在ABC 中,90ABC ∠=?,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G . (1)若28DCE ∠=?,求AOB ∠的度数; (2)求证:AG GE =; (3)设DC 交GE 于点M .

①若3AB =,4BC =,求::AG GM ME 的值;

②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)

11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线2

2(0)y ax ax a =->交x

轴正半轴于点C ,连结AO ,AB . (1)求点C 的坐标; (2)求直线AB 的表达式;

(3)设抛物线2

2(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .

①若2AE AO =,求抛物线表达式;

②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)

12.如图1,在

O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO ,

AD AB =.

(1)求证:2CAO CDB ∠=∠

(2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE +=

(3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长.

13.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得

PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐

角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点

O 是坐标原点.

(1)已知点(2,0)A ,在点123(0,2),(1,3),(1,3)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.

(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.

(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段

HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.

14.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.

(1)如图1,求证:CD=DE ;

(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;

(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.

15.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.

(1)求证:DE=BO;

(2)如图2,当点D恰好落在BC上时.

①求点E的坐标;

②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;

③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.

16.(1)如图1,A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A.(2)如图2,Rt△ABC中,∠C=90°,AC=8,BC=6,以点C为圆心的⊙C的半径是3.6,Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一

动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=1

3

,试探究四边形

ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.

17.如图,在平面直角坐标系中,Rt ABC

△的斜边在AB在x轴上,点C在y轴上90

ACB

∠=?,OC、OB的长分别是一元二次方程2680

x x

-+=的两个根,且

OC OB

<.

(1)求点A的坐标;

(2)D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;

(3)在(2)的条件下,当1

2

d =

时,请你直接写出点P 的坐标.

18.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .

(1)求A ,B ,C 三点坐标;

(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;

(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可). 19.ABC 内接于

O ,AB BC =,连接BO ;

(1)如图1,连接CO 并延长交

O 于点M ,连接AM ,求证://AM BO ;

(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF

AB BF

=,求证:BAF HAF ∠=∠;

(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为

O 上一点,连接ED 、

OE ,若CBD 3ABH 90∠+∠=?,若OF 3=,FH 4=,1362

EBD S ?=

OE ,求线段OE 的长.

20.如图,已知ABF 为等腰直角三角形,90BAF ∠=?,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接

CH .

(1)若30BAE ∠=?,1BE =,求DE 的长;

(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;

(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由. 21.如图,在⊙O 中,直径AB =10,tanA =3. (1)求弦AC 的长;

(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以3

2

cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <10

3

),连结PQ .当t 为何值时,△BPQ 为Rt △?

22.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在

x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛

物线2

12y ax bx =++过D ,C ,E 三点.

(1)当//DE AB 时, ①求抛物线的解析式;

②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,

H ,F 为顶点的三角形与GHE △相似,求点m 的值.

(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在

x 轴上满足条件的G 点有且只有一个时,请直接写出....

点E 的坐标. 23.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P 、M 、N 、Q ,

(1)如图①所示.当∠CNG =42°,求∠HMC 的度数.(写出证明过程)

(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C ,交 AB 于点 P ,直尺另一侧与三角形交于 N 、Q 两点。请直接写出∠PQF 、∠A 、∠ACE 之间的关系.

24.如图,在ABC 中,3

5,7,tan 4

AB BC B ===,动点P 从点A 出发,沿AB 以每秒

5

3

个单位长度的速度向终点B 运动,过P 作PQ BC ,交AC 于点Q ,以PQ PB 、为

邻边作平行四边形PQDB ,同时以PQ 为边向下作正方形PQEF ,设点P 的运动时间为t 秒()0t >.

(1)点A 到直线EF 的距离______________;(用含t 的代数式表示) (2)当点D 落在落在PF 上时,求t 的值;

(3)设平行四边形PQDB 与正方形PQEF 重叠部分的面积为()0S S >,求S 与t 之间的函数关系式,并求出S 的最大值. (4)设:PDE APE S S m =△△,当

1

12

m 时,直接写出t 的取值范围.

25.附加题:在平面直角坐标系中,抛物线2

1y ax a

=-与y

轴交于点A ,点A 关于x 轴的对称点为点B , (1)求抛物线的对称轴;

(2)求点B 坐标(用含a 的式子表示); (3)已知点11,

P a ??

???

,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,

求a 的取值范围.

【参考答案】***试卷处理标记,请不要删除

一、中考数学压轴题 1.D

解析:(1)见解析;(2)y=1

603

x +;(2)2 【解析】 【分析】

(1)根据翻折的性质得△DFG ≌△DFA ,从而推导得出∠FDC=∠DFG ,进而得到CF=DC ; (2)在等腰△DGC 和等腰△CFD 中,可用y 表示出∠GDC 、∠FDC 的值,从而求出∠ADF ,根据∠ADE=∠DEC ,得出y 与x 的关系式;

(3)先证△KCD 是等腰直角三角形,根据CD 的长得到KC 的值,然后再△KGC 中求得KG 的值. 【详解】

(1)∵将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上 ∴△DFG ≌△DFA ,∠AFD=∠FDC ∴∠AFD=∠DFG ∴∠FDC=∠DFG ∴CF=DC ;

(2)∵AD=DG=DC=FC ,∠DCF=y ∴在△DGC 中,∠DGC=y ,∠GDC=180-2y 在△CFD 中,∠CFD=∠CDF=902

y - ∴∠FDG=∠FDC -∠GDC=3902

y

- ∴∠ADF=∠FDG=3902

y

-,∴∠ADE=3y -180 ∵AD ∥BC

∴∠ADE=∠DEC ,即3y -180=x 化简得:y=

1

603

x +; (3)如下图,过点K 作CD 的垂线,交CD 于点I ,延长KG 交BC 于点L ,过点C 作GL 的垂线,交GL 于点Q ,过点C 作GD 的垂线,交GD 于点N ,

∵x=45°,

∴y=75°,∠ADE=x=45°

∴∠DGC=∠DCG=75°,

∴∠NDC=30°,

∴∠ADC=45°+30°=75°,

∵四边形ABCD是菱形,

∴∠B=75°,

∵KG∥DC,

∴KG∥AB,∠KGD=∠NDC=30°,

∴∠GLC=∠B=75°,∠KGC=30°+75°=105°,

∴∠LGC=75°,

∴∠CGL=∠CGN,

∴GC是∠LGN的角平分线,

∴CQ=CN,

∵CD=4,∠CDE=30°,

∴在Rt△CND中,CN=2,

∴CQ=2,

∵KG∥CD,

∴∠QKI=∠KIC=90°

∵CQ⊥KL

∴四边形CQKI是矩形,

∵CK=KD,KI⊥CD,

∴CI=ID=2,

∴CI=CQ=2,

∴矩形CQKI是正方形

∴IK=CQ=2,

∴在Rt△KIC中,CK=22,

如下图,过点G作CK的垂线,交CK于点M,

∴△KGM 是等腰直角三角形,△GMC 是直角三角形,且∠C=30°, 设GM=x ,

则在Rt △GKM 中,KM=GM=x , 在Rt △GMC 中,CG=2x ,3x , ∴322 解得:62 ∴2=232x . 【点睛】

本题考查菱形的性质和翻折的性质,需要注意,翻折后的图形和翻折前的图形时完全相等的,这个条件不可忽略.

2.A

解析:(1)min 119

342

t R H '==;(2)(0,30,6)或(0,3(0,12). 【解析】 【分析】

(1)根据题意设239

(33)

4

P m m --,5(,33)4Q m m -,以及作R 关于y 轴对称3(3,33)2R '-,并过R '点作直线3:4x

l y =的垂线交于H 点R H '即为所求,从而进行分析求解即可; (2)根据题意分四种情形即①当AA''=A''B 时;②当AA''=AB 时;③当AA''=A''B 时;④当A''B=AB 时分别画出图形并进行分析求解. 【详解】 解:(1)设239

(33)4

P m m --,5(,33)4Q m m -,

2393

2()2(3)22

PQMN C QP NP m ∴=+=+-矩形, 3

0-

<,开口向下,

∴当33m =时,(33,33)P -,

最少时间1

2

t RK RK TB =++

, 3(

3,33)2R -,作R 关于y 轴对称3(3,33)2

R '--,

过R '点作直线3:4x

l y =-的垂线交于H 点R H '即为所求, 令y=0,解得5

312

x =

, 12()5

30H ∴,,

t R K K T TH =+''+'', ∴过R ''作R H l ''⊥,

22min 3119(

33)(330)3242

125t R H ∴==++'--=+. (2)①当AA''=A''B 时,如图2中,

此时,A''在对称轴上 对称性可知∠AC′E=∠A''C′E 又∠HEC′=∠A''C′E ∴∠AC′E=∠HEC′

∴333 ∴3, ∴E(0,3,

②当AA''=AB 时,如图3中,设A″C′交y 轴于J .

此时AA''=AB=BC'=A''C',

∴四边形A''ABC'为菱形,

由对称性可知,

∠AC'E=∠A''C'E=30°,

∴JE= 3JC′=3

2

∴OE=OJ-JE=6

∴E(0,6)

③当AA''=A''B时,如图4中,设AC′交y轴于M.

此时,A''在对称轴上∠MC'E=75°

又∠AMO=∠EMC'=30°

∴∠MEC'=75°

∴ME=MC'

∴MC'=3 3,

∴OE=3+3 3,

∴E(0,3+3).

④当A''B=AB时,如图5中,

此时AC'=A''C'=A''B=AB

∴四边形AC'A''B为菱形

由对称性可知,C'',E,B共线

由抛物线239

3344

y x x =

--与x 轴交于A

B 、两点(点A 在点B 的左侧)可知, 令x=0,解得y=?

3 3;令x=0,解得:x 1=? 3,x 2=

4 3; ∴A (?3,0),B(43,0),OB=43, ∴OE= 3OB =12, ∴E (0,12).

综上满足条件的点E 坐标为(0,3-3)或(0,6)或(0,3+3)或(0,12). 【点睛】

本题考查二次函数综合题,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.

3.A

解析:(1)详见解析;(2)详见解析;(3)1

5

KG AK = 【解析】 【分析】

(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=?,进而得到

90AGH ∠=?,即可证明AG HD ⊥;

(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得

HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明

AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=?,再通过解ACE △得

1

tan 3CAB ∠=

,解△CDH 得1tan 2

CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=?,易求1

tan 2

KHG ∠=,1tan 3

HAG ∠=,最后求得

KG

AK

的值. 【详解】

(1)证明:如图,设HAG ∠为α,

∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,

∴90BDC DBE ∠+∠=? ∴90DBE α∠=?-,

∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=?-, ∴90AHG HAG ∠+∠=?,

∴18090AGH AHG HAG ∠=?-∠-∠=? ∴AG HD ⊥

(2)如图,连接AC 、AD 、CF ,

∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,

∴ACD ADC ∠=∠,FCD FDC ∠=∠,

∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=?, ∴90HDB β∠=?-,

∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=?-, ∵AB CD ⊥,

∴9090BFD αβ∠=?-=?-, ∵9090HFA BFD αβ∠=∠=?-=?-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;

(3)如图,在DH 上截取DT HC =,

∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,

∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,

∴5HF HG GF k =+=,FD =CF =3k ,

在HCF 中,由勾股定理逆定理得90HCF ∠=?, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =

12

5k , ∴22

9

=5

MF CF CM k -=

, ∴1

tan 2

CM CM CDF MD MF FD ∠=

==+, 解ACE △得1tan 3

CAB ∠=, 易求OF ,OH ,

由勾股定理逆定理得90HOF ∠=?, 易求1tan 2KHG ∠=,1tan 3

HAG ∠=, ∴

1

5

KG AK =. 【点睛】

本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.

4.E

解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为

【解析】 【分析】

(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为

2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式;

(2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为

()2

,23x x

x -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到

22(1)33x AN AM +=

=,从而推出点F 的坐标21210(,)3333x x --+,由23

FN EM =,列出关于x 的方程求解即可;

(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=

4

5

GH.设点P (m ,-m2+2m+3),则T (m ,-2m+3),则PT=m2-4m ,GH=1-m , 可得m2-4m=4

5

(1-m ),解方程即可. 【详解】

(1)∵抛物线的顶点为C (1,4), ∴设抛物线的解析式为2

(1)4y a x =-+, ∵抛物线过点B,(3,0), ∴2

0(31)4a =-+, 解得a=-1,

∴设抛物线的解析式为2

(1)4y x =--+, 即2y x 2x 3=-++;

(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学压轴题解题指导及案例分析

2019中考数学压轴题解题指导及案例分析2019年中考数学压轴题专题 中考日渐临近,在数学总复习的最后阶段,如何有效应对“容易题”和“综合题”,提高复习的质量和效率呢?针对当前中考复习中普遍存在的倾向性问题,再提出一些看法和建议,供初三毕业班师生参考。 基础题要重理解 在数学考卷中,“容易题”占80%,一般分布在第一、二大题(除第18题)和第三大题第19~23题。在中考复习最后阶段,适当进行“容易题”的操练,对提高中考成绩是有益的。但绝不要陷入“多多益善,盲目傻练”的误区,而要精选一些针对自己薄弱环节的题目进行有目的地练习。 据笔者了解,不少学校在复习中存在忽视过程的倾向,解客观题,即使解其中较难的题时也都只要求写出结果,不要求写出过程,一些同学甚至错了也不去反思错在哪里,这样做,是非常有害的。笔者认为,即使是题解简单的填空题也应当注重理解,反思解题方法,掌握解题过程。解选择题也一样,不要只看选对还是选错,要反问自己选择的依据和理由是什么。 当然,我们要求注重理解,并不意味着不要记忆,记忆水平的考查在历年中考命题中均占有一定的比重。所以必要的记忆是必须的,如代数中重要的法则、公式、特殊角的三角比

的值以及几何中常见图形的定义、性质和常用的重要定理等都是应当记住的。 在复习的最后阶段,笔者建议同学们适当多做一些考查基础的“容易题”,这样做,虽然花的时间不多,但能及时发现知识缺陷,有利于查漏补缺,亡羊补牢。如果你能真正把这些“容易题”做对、做好,使得分率达到0.9甚至达到0.95以上,那么在中考中取得高分并非难事。 压轴题要重分析 中考要取得高分,攻克最后两道综合题是关键。很多年来,中考都是以函数和几何图形的综合作为压轴题的主要形式,用到三角形、四边形、和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程式与图形的综合也是常见的综合方式。这类问题在外省市近年的中考试卷中也不乏其例。 动态几何问题又是一种新题型,在图形的变换过程中,探究图形中某些不变的因素,把操作、观察、探求、计算和证明融合在一起。在这类问题中,往往把锐角三角比作为几何计算的一种工具。它的重要作用有可能在压轴题中初露头角。总之,应对压轴题,决不能靠猜题、押题。 解压轴题,要注意分析它的逻辑结构,搞清楚它的各个小题之间的关系是“并列”的还是“递进”的,这一点非常重要。一般说来,如果综合题(1)、(2)、(3)小题是并列关系,它们分

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

中考数学压轴题解析二十

中考数学压轴题解析二十 103.(2017黑龙江省龙东地区,第25题,8分)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示. (1)甲、乙两地相距千米. (2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式. (3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等? 【答案】(1)480;(2)y2=40x﹣120;(3)1.2或4.8或7.5小时. 【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离; (2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式; (3)分三种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等;货车与客车相遇后,邮政车与客车和货车的距离相等. . 106.(2017山东省莱芜市,第22题,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲 种口罩的数量大于乙种口罩的4 5,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的 进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元? 【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可; (2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大

安徽中考数学压轴题分析

近几年安徽省中考数学压轴题分类探析 合肥45中金效奇 数学压轴题是指在一套数学试卷中涉及到的数学知识点较多,结构复杂,题型新颖,解法没有固定模式,难度较大,对同学们的解题技能、技巧有较高的要求且分值较高排在试卷最后面的题。 一般试卷中的压轴题常以综合题的形式出现,常常循序渐进地设计成几道小题目.要顺利解答压轴题,除了基础知识要扎实之外,审题也很关键.搞清题目的类型,理清题目中的知识点,分清条件和结论,注意关键语句找出关键条件,特别要挖掘隐含条件,并尽量根据题意列出相关的数式或画出示意图形,然后分析条件和结论之间的联系,从而找到正确合理的解题途径.将复杂问题分解或转化成较为简单或者熟悉的问题则是解此类题目的一条重要原则。 近几年来,随着中考改革的进行,许多应用型的中考压轴题在不断的涌现,压轴题的类型也在不断的变化,本文力求从中考知识点和数学思想的角度对近几年来安徽省中考数学压轴题进行分类,找出其中的共性,发现其规律,为2010年及以后的中考探明方向。 1、二次函数题仍是“热点” 二次函数作为初中数学的一个难点也是历年来中考的热点,是初中数学与高中数学衔接最紧密的地方。但是近年来由于对二次函数题类型与深度的挖掘,二次函数题的“新”与“深”受到了限制,不过安徽省中考题还有非常美好的一面。 例1、(2004年)某企业投资100万元引进一条农产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费为2万元,第2年的为4万元. (1)求y的解析式; (2)投产后,这个企业在第几年就能收回投资? 解:(1)由题意,x=1时,y=2;x=2时,y=6.分别代入y=ax2+bx,解得:a=1 、b=1.y=x2+x (2),设g=33x-100-x2-x,则g=-x2+32x-100=-(x-16)2+156 由于当1≤x≤l 6时,g随x的增大而增大.且当x=1,2,3时,g的值均小于O,当x=4时,g=-122+156>0,可知投产后该企业在第4年就能收回投资。 此题作为压轴题,关键考查学生对应用题的审题能力,当年,这个题的错误率相当高,因为大家对“费用累计”这个概念不清楚,把x=2时,y=4代入,从而导致结果错误。 例2、(2007年)按右下图所示的流程,输入一个数据x,根据y与x的关系式就 输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。 (1)、若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k (a>0)将数据进行变换,请写出一个满

中考数学压轴题精选含详细答案

目 录 2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题 例2 2012年连云港市中考第26题 例3 2010年上海市中考第25题 例1 2012年上海市徐汇区中考模拟第25题 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域. 图1 图2 图3 动感体验 请打开几何画板文件名“12徐汇25”,拖动点O 在AB 上运动,观察△OMP 的三个顶点与对边的垂直平分线的位置关系,可以体验到,点O 和点P 可以落在对边的垂直平分线上,点M 不能. 请打开超级画板文件名“12徐汇25”, 分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y 关于x 的函数关系. 思路点拨 1.∠B 的三角比反复用到,注意对应关系,防止错乱. 2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单. 3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形. 满分解答

(1) 在Rt △ABC 中,AC =6,53sin =B , 所以AB =10,BC =8. 过点M 作MD ⊥AB ,垂足为D . 在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65 MD =. 因此MD >MP ,⊙M 与直线AB 相离. 图4 (2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况. ②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形. 在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425 OA =. ③如图6,当OM =OP 时,设底边MP 对应的高为OE . 在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658 OA =. 图5 图6 (3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y . 在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45 BF y =. 在Rt △ONF 中,4105 OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55 x y x y y +=--+. 整理,得2505040 x y x -=+.定义域为0<x <5. 图7 图8 考点伸展 第(2)题也可以这样思考: 如图8,在Rt △BMF 中,BM =2,65MF =,85 BF =.

数学中考数学压轴题(讲义及答案)附解析

一、中考数学压轴题 1.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s . (1)a =______cm ,b =______cm ; (2)t 为何值时,EP 把四边形BCDE 的周长平分? (3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2. 2.在平面直角坐标系中,抛物线2 4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且 :3:4??=ABC BCE S S . (1)求点A ,点B 的坐标; (2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式. 3.如图1,抛物线2 (0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式; (2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标. (3)如图3,点M 的坐标为( 3 2 ,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

中考数学压轴题典型题型解析

中考数学压轴题精选精析 37.(09年黑龙江牡丹江)28.(本小题满分8分) 如图, 在平面直角坐标系中,若、的长是关于的一元二 次方程的两个根,且 (1)求的值. (2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似? (3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理 由. (09年黑龙江牡丹江28题解析)解:(1)解得 ·············································································· 1分 在中,由勾股定理有 ········································································ 1分 (2)∵点在轴上, ········································································ 1分 ABCD 6AD =,OA OB x 2 7120x x -+=OA OB >.sin ABC ∠E x 16 3 AOE S = △,D E AOE △DAO △M AB F ,A C F M F 2 7120x x -+=1243x x ==,OA OB >43OA OB ∴==,Rt AOB △225AB OA OB =+=4 sin 5 OA ABC AB ∴∠= =E x 163 AOE S = △11623AO OE ∴?=8 3 OE ∴= 880033E E ????∴- ? ????? ,或,x y A D B O C 28题图

中考数学压轴题分析及解题策略

中考数学压轴题分析及解题策略 山西吕梁市离石区英杰中学孙尔敏 一形式往往由三到四个小题组成,第一小题为基础题、比较简单,第二小题中上,第三小题更难,第四小题最难。 二特征在初中主干知识的交汇处命题,涉及的知识点多,覆盖面广;条件隐蔽,关系复杂,思路难觅,方法灵活,渗透了重要的思想方法, 体现了较高的思维能力。学生最主要的原因是学生在解题过程中出 现了思维困惑后,不能抓住问题的本质特征去寻找合理的突破口, 压轴题对思维能力的考查要求很高。 三背景所有的压轴题都是存在于运动背景,具体可分为 (1)点的运动:涉及到一个点或两个点同时运动 (2)平移:直线平移,抛物线的平移,图形的平移 (3)旋转、轴对称(翻折) (4)图形的折叠(全等) 四主要数学思想 (1)函数与方程思想 (2)分类讨论思想 五解题策略 (1)遇到一个无从下手的数学问题,在不选择放弃的情况下,怎么办? A 反复阅读问题,从所给已知条件中寻找可以尝试下去的“蛛丝马迹”。 B 回忆有没有做过类似的题目,或考虑比它简单、特殊的情况。 C 试试能否用上一些典型的方法;凭感觉写写关系式、画画图像、列出图

表,说不定会有好运气。 (2)探究问题时遇到“拦路虎”,或走进了“死胡同”,怎么办? A 重新阅读原题,看看有没有漏用或用错的条件。 B 解题路子或使用的方法可能“误入歧途”尝试换一种思路进行下去。 C 这可能是本题的难点,正常的思路一般难以奏效,要“往外想”、“反 着想”,这叫“正难则反”。 (3)探究过程中出现错误,或三番五次尝试,总是找不出正确的解答,心情往往会很急躁,甚至感到很沮丧,如何调整你的心态? A 特别是在考试中,越想使自己冷静下来往往心情越是烦躁,索性“跳 出来”,先不管它,回头重新来一遍。 B 重新细细读题,检查涉及到的公式、定理以及解题方法是否用得对,在 这个过程中心情也就慢慢平静下来了,然后接着原思路或者换个角度往下摸索。 ※※※关键结论:无论是对问题无从下手,还是遇到挫折、出现错误时,一定选择重复仔细阅读 ......问题,这是一种典型、很有价值、而又简单易行的自我监控方式。要注意实战运用。 ※※解题策略提示: 1、已知条件能推出什么? 2、有什么特点? 3、属于什么题型? 4、要证(求)……只要证(求)……? 5、解决此类问题的一般方法有哪些?

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

中考数学二轮复习中考数学压轴题知识点及练习题附解析(1)

一、中考数学压轴题 1.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF = 1 3 ,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图1,在平面直角坐标系中,抛物线239 334 y x x = --x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点 C . (1)过点C 的直线5 334 y x = -x 轴于点H ,若点P 是第四象限内抛物线上的一个动

点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值: (2)如图2, 将ABC ?绕点B 顺时针旋转至A BC ''?的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连 接AE C E '、, 将AC E ?'沿直线C E '翻折为A C E ?'', 是否存在点E , 使得BAA ?'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由. 4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ; (3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由. 5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:

中考数学压轴题解题技巧超详细

2012年中考数学压轴题解题技巧解说 数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧。 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段 CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB 交AC于点E. ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值. 解:(1)点A的坐标为(4,8)…………………1分 将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx 8=16a+4b 得 0=64a+8b 解得a=-1 2 ,b=4 ∴抛物线的解析式为:y=-1 2 x2+4x …………………3分 (2)①在Rt△APE和Rt△ABC中,tan∠PAE=PE AP = BC AB ,即 PE AP = 4 8 ∴PE=1 2 AP= 1 2 t.PB=8-t. ∴点E的坐标为(4+1 2 t,8-t). ∴点G的纵坐标为:-1 2 (4+ 1 2 t)2+4(4+ 1 2 t)=- 1 8 t2+8. …………………5分 ∴EG=-1 8 t2+8-(8-t) =- 1 8 t2+t. ∵-1 8 <0,∴当t=4时,线段EG最长为2. …………………7分 ②共有三个时刻. …………………8分 t=16 , t= 40 ,t= 85 .…………………11分

中考数学压轴题的解题攻略

中考数学压轴题的解题攻略 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。3、利用条件或结论的多变性,运用分类讨论的思想 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新

的热点。 4、综合多个知识点,运用等价转换思想 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。 5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。 其实,任何一门学科都离不开死记硬背,关键是记忆有技 巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基

相关文档
最新文档