第二章 风力发电机组并网方式分析

第二章 风力发电机组并网方式分析
第二章 风力发电机组并网方式分析

2风力发电机组并网运行方式分析

2.1风力发电系统的基本结构和工作原理

风力发电系统从形式上有离网型、并网型。离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。

2.1.1恒速恒频风力发电系统

恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1

发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。

图2.1采用SCIG的恒速恒频风力发电系统

恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。

2.1.2变速恒频风力发电系统

为了克服恒速恒频风力发电系统的缺点,20世纪90年代中期,基于变桨距技术的各种变速恒频风力发电系统开始进入市场,其主要特点为:低于额定风速时,调节发电机转矩使转速跟随风速变化,使风轮的叶尖速比保持在最佳值,维持风电机组在最大风能利用率下运行;高于额定风速时,调节桨距以限制风力机吸收的功率不超过最大值;恒频电能的获得是通过发电机与电力电子变换装置相结合实现的。目前,变速恒频风电机组主要采用绕线转子双馈异步发电机,低速同步发电机直驱型风力发电系统亦受到广泛重视。

(1)基于绕线转子双馈异步发电机的变速恒频风力发电系统

绕线转子双馈异步发电机(DFIG)的转子侧通过集电环和电刷加入交流励磁,既可输入电能也可输出电能。图2.2为基于绕线转子双馈异步发电机的变速恒频风力发电系统结构示意图,其中,DFIG的转子绕组通过可逆变换器与电网相连,通过控制转子励磁

电流的频率实现宽范围变速恒频发电运行,其工作原理为:转子通入三相低频励磁电流形成低速旋转磁场,该磁场的旋转速度r n 与转子机械转速r n 相叠加,等于定子的同步转速0n ,即

r n 2n =0n

从而在DFIG 定子绕组中感应出相应于同步转速0n 的工频电压。当发电机转速r n 随风速变化而变化时(一般的变化范围为0n 的30%,可双向调节),调节转子励磁电流的频率即可调节0n 以补偿r n 的变化,保持输出电能频率恒定。

图2.2所示变速恒频方案由于是在转子电路中实现的而流过转子电路的功率是由DFIG 转速运行范围所决定的转差功率,一般只为额定功率的1/4—1/3,故显著降低了变换器的容量、成本。此外,调节转子励磁电流的有功、无功分量,可独立调节发电机的有功、无功功率,以调节电网的功率因数、补偿电网的无功需求。事实上,由于DFIG 转子采用了可调节频率、幅值、相位的交流励磁,发电机和电力系统构成了“柔性连接”。德国Dewind 公司生产的D6型机组(其额定功率为1 250 kW ,起动、额定、切出风速分别为2.5 m /s ,13 m /s ,28 m /s)是采用这种变速恒频方案的典型产品。

图2.2基于DFIG 的变速恒频风力发电系统

(2)基于低速同步发电机的直驱型风力发电系统

直驱型风力发电系统中,风轮与永磁式(或电励磁式)同步发电机直接连接,省去了常用的升速齿轮箱。图2.3为永磁直驱型变速恒频风力发电系统结构示意图,风能通过风机和永磁同步发电机(PMSG)转换为PMSG定子绕组中频率、幅值变化的交流电,输入到全功率变换器中(其通常采用可控PWM整流或不控整流后接DC/AC变换),先经整流为直流,然后经三相逆变器变换为三相工频交流电输出。该系统通过定子侧的全功率变换器对系统的有功、无功功率进行控制,并控制发电机的电磁转矩以调节风轮转速,实现最大功率跟踪。与基于DFIG的风力发电系统相比,该系统可在较宽的转速范围内并网,但其全功率变换器的容量较大。与带齿轮箱的风力发电系统相比,该系统提高了效率与可靠性、降低了运行噪声,但发电机转速低,为获得一定的功率,发电机应具备较大的电磁转矩,故其体积大、成本高。

器图2.3永磁直驱型变速恒频风力发电系统

2.2现行风能并网方法综述

自从上世纪以来,学术界已经提出了有很多种风能并网方案并且应用在实际的风电场并网建设中。总得来说,目前风力发电的并网方式大致可以分为异步发电机、同步发电机和双馈发电机三种方式。

2.2.1异步发电机组的并网

因为风力机为低速运转的动力机械,在风力机与异步发电机转子之间经增速齿轮传动来提高转速以达到适合异步发电机运转的转速。一般与电网并联运行的异步发电机多选用4极或6极电机,因此异步电机转速必须超过1500r/rain或1000r/min才能运行在发电状态向电网送电。根据电机理论,异步发电机并入电网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系。因此对机组的调速要求,不像同步发电机那么严格精确,不需要同步设备和整步操作,只要转速接近同步转速时就可并网。但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使低压保护动作,从而导致异步发电机根本不能并网。当前在风力发电系统中采用的异步发电机并网方法有以下几种:

(1)直接并网

这种并网方法要求在并网时发电机的相序与电网的相序相同,当风力驱动的异步发电机转速接近同步转速时即可自动并入电网;自动并网的信号由铡速装置给出,而后通过自动空气开关合闸完成并网过程。但如上所述,直接并网时会出现较大的冲击电流及电网电压的下降,因此这种并网方法只适合用于异步发电机容量在百千瓦级以下而电网容量较大的情况下。我国最早引进的55KW风力发电机组和自行研制的50Kw风力发电机组都是采用这种方法并网的。

(2)降压并网

这种并网方法是在异步电机与电网之间串接电阻或电抗器或者接入自耦变压器,以达到降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。因为电阻、电抗器等元件要消耗功率,在发电机并入电网以后,进入稳定运行状态时,必须将其迅速切除。这种并网方法适用于百千瓦级以上、容量较大的机组,显而易见这种并网方法的经济性较差。我国引进的200KW异步发电机组,就是采用这种并网方式,并网发电机每相绕组与电网之间皆串接有大功率电阻。

(3)通过晶闸管软并网

这种并网方法是在异步发电机定子与电网之间通过每相串入一只双向晶闸管连接起来,三相均有晶闸管控制,双向晶闸管的两端与并网自动开关的动合触头并联。接入双向晶闸管的目的是将发电机并网瞬间冲击电流控制在允许的限度内。其并网的过程如下:当风力发电机组接收到由控制系统内微处理器发出的启动命令后,先检查发电机的相序与电网的相序是否一致,若相序正确,则发出松闸命令,风力发电机组开始启动。当发电机转速接近同步转速时(约为99%~100%同步转速),双向晶闸管的控制脚同

时由180度到0度逐渐同步打开;与此同时,双向晶闸管的导通角则同时由0度到180 度逐渐增大,此时并网自动开关未动作,动合触头未闭合,异步发电机即通过晶闸管平稳的并入电网;随着发电机转速继续升高,电机的滑差率渐趋于零。当滑差率为零时,并网自动开关动作,动合触头闭合,双向晶闸管被短接,异步发电机的输出电流将不再经双向晶闸管,而是通过已闭合的自动开关触头流入电网。在发电机并网后,应立即在发电机端并入补偿电容,将发电机的功率因数提高到0.95以上。

该种软并网方法的特点是通过控制晶闸管的导通角,将发电机并网瞬间的冲击电流值限制在规定的范围内(一般为1.5倍额定电流以下),从而得到一个平滑的并网瞬态过程。在所示的软并网线路中,在双向晶闸管两端并接有旁路并网自动开关,并在零转差率时实现自动切换,在并网瞬态过程完毕后,即将双向晶闸管短接。与此种软并网连接方式相对应的另一种软并网连接方式是在异步发电机与电网之间通过双向晶闸管直接连接,在晶闸管两端没有并接旁路并网自动开关,双向晶闸管既在并网过程中起到控制冲击电流的作用,同时又作为无触头自动开关,在并网后继续存在于主回路中,这种软并网方连接方式可以省去一个并网自动开关,因而控制回路较为简单,而且避免了有触头自动开关触头弹跳、沾着及磨损等现象,可以保证较高的开关频率。但这种连接方式需选用电流允许值大的高反压双向晶闸管,这是因为双向晶闸管中通过的电流需满足能通过异步发电机的额定电流值,而具有旁路并网自动开关的软并网连接方式中的高反压双向晶闸管只要能通过较发电机空载电流略高的电流就可以满足要求。这种软并网连接方式的并网过程与上述具有并网自动开关的软并网连接方式的并网过程类似,在双向晶闸管开始导通阶段,异步电机作为电动机运行,但随着异步发电机转速的升高,滑差率渐渐接近与零,当滑差率为零时,双向晶闸管已全部导通,并网过程结束。

异步发电机晶闸管电网

图2.4 异步电机晶闸管软并网电路

晶闸管软并网技术对晶闸管器件及与之相关的晶闸管触发电路提出了严格的要求,即晶闸管器件的特性要求一致、稳定以及触发电路可靠,只有发电机主回路中的每相的双向晶闸管特性一致,控制极触发电压,触发电流一致,全开通压降相同,才能保证可控硅导通角在0度~1踟度范围内同步逐渐增大,才能保证发电机三相电流平衡。目前在晶闸管软并网方法中,根据晶闸管的通断状况,触发电路有移相触发和过零触发两种方式。移相触发会造成电机每相电流为正负半波对称的非正弦波(缺角正弦波)含有较多的奇次谐波分量,这些谐波会对电网造成污染公害,必须加以限制和消除。过零触发是在设定的周期内,逐步改变晶闸管的导通周波数。最后达到全部导通,使发电机平稳并入电网,因而不产生谐波干扰。

通过晶闸管软并网法将风力驱动的异步发电机并入电网是目前国内外中型及大型号风力发电机组中普遍采用的。中国引进和自行开发研制的250、300、600KW的并网型异步风力发电机组,都是采用这种并网技术。

2.2.2同步发电机组并网

同步发电机在运行的时,由于它既能输出有功功率,又能提供无功功率,周波稳定,电能质量高,已被电力系统广泛应用。然而,把它移植到风力发电机组上使用却不甚理想,这是由于风速时大时小,随机变化,作用在转子上的转矩极不稳定,并网时其调速性能很难达到同步发电机所要求的精度,并网后若不进行有效地控制,常会发生无功振

荡与失步等问题,在重载下尤为严重,这就是相当长的时间内,国内外风力发电机组很少采用同步发电机的原因。但近年来随着电力电子技术的发展,通常在同步发电机与电网之间采用变频装置,从技术上解决了这些问题,采用同步发电机的方案又引起了人们的重视。

同步发电机常用的并网方式有:

(1)准同期并网方式

准同期就是准确周期。用准同期法进行并列操作,发电机组电压必须相同,频率相同以及相位一致,这可通过装在同期盘上的两块电压表、两块频率表以及同期表和非同期指示灯来监视。

(2)自同期并网方式

自同期并列操作是将一台未加励磁电流的发电机组升速到接近于电网频率,滑差角频率不超过允许值且机组的加速度小于某一给定值的条件下,首先合上断路器开关接着合上励磁开关,给转子上加励磁电流,在发电机电动势逐渐增长的过程中由系统将发电机拉入同步运行。

风力发电系统中常见的几种同步发电机的并网:

(1)同步发电机的并网

同步发电机的并网由风力机驱动同步发电机经变频装置与电网并联.这种系统并联运行的特点如下:

1)由于采用频率变换装置进行输出控制,因此并网时没有电流冲击,对系统几乎没有影响。

2)为采用交一直一交转换方式,同步发电机组工作频率与电网频率是彼此独立的.风轮及其发电机的转速可以变化,不必担心发生同步发电机直接井网运行可能出现的失步问题。

3)由于频率变换装置采用静态自励式逆变,虽然可以调节无功功率,但是有高频电流流向器电网。

4)在风电系统中使用阻抗匹配和功率跟踪反馈来调节输出负荷,可使风力发电机组按最佳效率运行,向电网输送更多的电能。

(2)直驱交流永磁同步发电机组的并网

由风力机直接驱动低速交流发电机,通过工作速度快.驱动功率小、导通压降低的IGBT逆变器井网。这种系统并联运行的特点如下:

1)由于不采用齿轮箱,机组水平轴向的长度大夫减小,电能生产的机械传动路径缩短,避免了因齿轮箱旋转而产生的损耗,噪音等。

2)由于发电机具有大的表面,散热条件更有利,使发电机运行时的温升减低.减小发电机温升的起伏。

图2.5为采用交流同步发电机的典型电能装置转换电路。整个并网发电系统主要由同步发电机、并网装置组成。

同步发电机并网装置电网

图2.5交流同步发电机并网电路

三相同步发电机输出的交流电流采用不可控整流器整流为直流以后,经过直流滤波环节,送入到DA/Ac逆变器的输入端,逆变为电压、频率、相角、功率因数和谐波都符合电网要求的电能,再经过交流滤波环节后并入电网。

2.2.3双馈发电机组并网

图2.6为交流双馈发电机的典型电能转换电路。整个并网发电系统主要由双馈发电机、双脉冲整流器组成。

图2.6交流双馈发电机并网电路

这种并网方案的特点是在发电机侧和电网侧分别加入脉冲整流器,在低风速的情况下,发电机输出的交流电压经过电机侧脉冲整流器升压后,可以满足电网侧脉冲整流器的正常工作。

2.3当前风能并网方案存在的问题

从上述分析中可以知道目前并网风力发电系统常用的风力发电机有异步发电机、同步发电机和双馈发电机等。异步发电机通常采用的并网方式主要有直接并网、串接电阻、电抗器或者接入自耦变压器降压并网、晶闸管软并网等措施,但这些并网方法存在着一些问题,要么在并网时会出现较大的冲击电流及电网电压的下降,要么采用消耗功率的元件,要么由于在低风速时发电机输出的交流电压,不足以在系统的直流侧获得足够的直流电压,以满足电压型逆变器的正常工作,因而使得系统在低风速时不能将电能有效地送上电网,系统勉强工作则必然会使得电网获得的电能含有大量的谐波。因此不能利用低风速时候的风能,经济性能比较差,导致风力发电的成本较高,不利于风力发电的推广应用。同步发电机通常在风力发电机输出端和电网之间增加一个由不可控整流器+DCIAC逆变器的电力电子装置,这种并网措施同样存在不能利用低风速风能、经济性能差的问题。交流双馈发电机采用双脉冲整流器作为其并网接口,虽然能很好的解决上述问题,但存在着系统复杂、设备成本高等缺点。电流型脉冲整流器的并网方法具有控

制简单、成本较低的优点,该方案在直流侧串联一个大电感目的是提供较稳定的直流电流输入,但大电感会导致系统的动态响应较差,电感损耗也会较大。总的来说目前的可再生能源领域的并网研究也是更多的集中在太阳能上面,对于风能的并网利用研究还是相对较少,导致技术研究上相对滞后。

2.4风力发电机的并网方式的选择

并网运行是目前风力发电的主要形式.各种并网方案有其自身的优缺点。随着风力发电机组容量的增大.存并网时对电网的冲击也越来越大。这种冲击严重时不仅引起电力系统电压的大幅度下降.而且可能对发电机和机械部件(塔架、桨叶及增速器等)造成损坏。如果并网冲击时间过长,还可能使系统瓦解或威胁其他挂网机组的正常运行。因此根据本设计所给资料和以上情况分析可得选择直驱交流永磁低速同步发电机比较合理,由风力机直接驱动低速交流发电机通过工作速度快,驱动功率小,导通压降的IGBT 逆变器并网。通过交-直-交转换方式后,使随风速变化的交流电变为满足并网要求的交流电,采用准同期的并网方式降风力发电机并入电网。

BUCK

图2.7直驱并网结构图

针对上述风能并网问题,采用目前应用较多的直驱式永磁交流同步发电机,设计并网逆变器作为发电机与电网之间的电能转换接口。

图2.8风力发电并网系统框图

如图2.8所示,风力发电并网系统由直驱式风力发电机、卸荷器、并网逆变器等设

备组成。当风机达到切入风速的时候,风力发电机发出的交流电能经过整流、调压、逆变后馈入电网。当风速太大的时候,使得风机超载运行时,卸荷部分接入,保证恒功率运行.并网逆变器主电路采用PFC校正部分+DC/AC逆变器的拓扑结构。PFC校正部分由三相不可控整流和DC/DC直流升压斩波环节两部分组成.它与前面所述的方案的最大不同之处就是加入了直流斩波环节。如图2.9所示为并网逆变器主电路框图:

图2.9并网逆变器主电路结构

系统中采用直驱式永磁同步发电机将风能转化为电能,经三相不可控整流桥整流为

直流后,送入到直流变换电路中。直流变换电路的主要作用是调节直流输出电压,满足逆变电路的工作要求和完成功率因数校正,提高并网逆变器的功率因数并抑制谐波。调节后的直流输出电能逆变为符合并网要求的交流电能后通过滤波器滤波再并入到公用电网。采用这样的主电路结构就能很好的解决低风速时的风力发电机的并网问题。当风速较低的时候。风机转动较慢,由于风机与发电机是直接耦合的,中间没有采用增速齿轮箱,因此发电机输出的电压比较低,在中间加入直流升压环节后,整流后得到的低的直流电压通过直流升压就可以在系统的直流侧获得较高的直流电压,满足逆变电路的正常工作,使得系统可以在风速较低时也能将电能送入电网。同时直流斩波电路还可以完成功率因数校正功能,提高并网逆变装置的功率因数并抑制高次谐波。

2.5本章小结

本章讨论了风力发电系统的基本结构和工作原理以及采用异步发电机、同步发电机和双馈发电机等各种现行风能并网方案的优缺点,提出了本次风能发电系统的并网方案。采用直驱式永磁同步发电机,设计三相不可控整流+Buck直流变换+DC/AC主电路结构的并网逆变器作为与电网的接口,解决了风力发电系统并网以及提高风能利用效率的问题。

风力发电中的电能质量问题分析 朱国朋

风力发电中的电能质量问题分析朱国朋 摘要:风能是一种清洁的、有可靠成本效益的发电资源,具有很高的环境效益和 社会效益。全球市场对于风力发电这样的具有很高环保效益和社会效益的技术有 着巨大且持续增长的需求。随着风电技术发展,我国风电装机容量不断上升,风力 发电将逐步成为电力系统重要的电力来源。但受自然、技术等因素影响,风力发电 引起的电压波动、闪变和谐波等电能质量问题阻碍了其发展。因此,如何控制好风 力发电中的电能质量就显得十分重要。 关键词:风力发电;电能质量;问题;措施 风力发电规模迅速扩大, 风电场并网是电力系统发展趋势。但风力发电过程中产生的电力谐波、电压波动及闪变等问题, 严重影响着风力发电的效率。只有这 些问题得到有效解决, 才能发挥风力发电效能, 使整个发电系统稳定运行。 1风力发电并网技术 企业要开展风力发电,必须选择适合企业相关情况的风力发电技术,这直接 影响到企业后的电能质量。合适的电网技术系统会影响风力发电机组的发电相位、发电机的电压频率和发电机输出峰值等相关数据。发电机组容量的提高对风力发 电技术的最直接影响是并网过程中产生的冲击。并网过程中产生的冲击会降低发 电机组的峰值发电量,损坏发电机组的物理部件,会对发电机的电机造成摩擦损坏,容易损坏支撑塔。由于发电机组的发电系统与各发电机组的电网相连,并网 的影响也会影响同一电网下的相关机组,破坏系统的稳定性,使发电机分离。因此,适合企业的并网技术对企业有着重要的影响。 同步风力机具有效率高、体积小、结构紧凑、成本低、可靠性高、维护量小 等特点。同步发电机的无功功率和有功功率同时输出。发电机转速稳定,负荷特 性强,周期波稳定,发电机电能质量高。同步风力发电机广泛应用于风力发电, 几乎所有的企业。均采用同步风电机组并网技术。但同步风力发电机组并不是所 有的优点。在实际发电过程中,同步风力机对风力的控制较弱,不能形成稳定的 电机运行。转子转矩的波动不能控制在一定的参数范围内。当每个发电机连接到 电网时,发电机需要。发电机的频率应与系统频率和发电机出口功率相同。电压 与系统电压相同,最大误差应小于5%,发电机相序与系统相序相同,但同步发 电机往往达不到上述精度标准,会出现一些系统误差。并网时,要求运行人员调 整发电机组,实现控制发电机组与系统的连接。然而,如果在这个过程中出现错误,由于负载突然变化时转子的惯性,旋转角度不能立即稳定在新的值上,并且 在新的稳定值周围有几个摆动。这是同步风力发电机组容易出现的问题,但这些 问题可以通过技术来解决。 与同步风机相比,与同步风机具有相同标准的异步风机在风机调速精度要求 上明显优于同步风机,在发电机运行时,设备运行不同步或不连续。关于设备和 速度要求。异步风力机控制力小,运行不复杂。由异步风力机组成的风力机只需 调整一个重要参数即可实现发电控制。经简单控制,异步风力发电机组并网后运 行平稳,无失步和振荡现象。异步风机的优点是运行稳定,稳定性好,几乎没有 问题。然而,异步风力发电机组仍有不足之处。当工作人员进行机组并网运行时,如果操作不当,会对电网产生较大的电流冲击,降低电网电压,降低系统运行的 不平衡度,降低稳定性。与可以产生无功功率的同步风力机不同,异步风力机需 要手动补偿。当系统频率增大到峰值时,机组的同步速度也会加快。电动机旋转 状态的变化将影响电能的产生,系统频率的降低和电网负荷的增加将影响电网的

风力发电的并网技术标准分析

风力发电的并网技术标准分析 摘要:主要比较了国内外常用风力发电的并网技术标准,分别从并网方式,电 能质量的电压偏差、频率、谐波等指标,保护与控制以及风电场低电压穿越等方 面进行了详细的分析。指出了国内现有标准存在的不足,在并网技术标准的制定 过程中,应综合考虑并网容量以及接入电网的电压等级等因素。 关键词:智能电网;风电;并网技术;标准 1、前言 风力发电、光伏以及燃料电池发电等分布式可再生能源由于其本身的不稳定性,给传统配电网的电压、电能质量、继电保护等方面带来了诸多不利影响。新 能源发电并网标准是推进新能源与智能电网发展的技术基础和先决条件。本文对 现有风力发电并网技术标准分别进行了比较,指出了风力发电并网标准中应该重 点考虑的问题。 2、风力发电概述 风的动能转变成机械动能,再把机械能转化为电能,这就是风力发电。风力 发电的原理,是利用风力带动风车叶片旋转,再通过发电机将旋转的动能,来促 使发电机发电。依据目前的风电技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需 要使用燃料,也不会产生辐射或空气污染。 3、风力发电并网技术标准探析 许多国家和地区都针对自己的实际情况制定了风力发电系统并网技术标准, 如美国的IEEE,NEC,UL标准等,我国风力标准委员会及国家电网公司也制定了 风力发电系统并网标准。国际电工委员会在1994年率先制定了风力发电机系统IEC61400系列标准,并被日本和欧洲众多国家和地区接纳和采用,该系列标准主 要涉及风轮发电机系统的设计、安装、系统安全保护、动力性能试验以及电能质 量测试评定等方面的内容。此外,IEEE也提出了一些风能转换系统与公用电网互 联规范。中国国家标准是参考IEC61400系列标准和德国、丹麦等国家的风力发电并网标准而制定的。 4风力发电并网方式 目前,国内外的风力发电大多是以风电场形式大规模集中接入电网。考虑到 不同的风力发电机组工作原理不同,因此其并网方式也有区别。国内风电场常用 机型主要包括异步风力发电机、双馈异步风力发电机、直驱式交流永磁同步发电机、高压同步发电机等。同步风力发电机的主要并网方式是准同步和自同步并网;异步风力发电机组的并网方式则主要有直接并网、降压并网、准同期并网和晶闸 管软并网等。各种并网方式都有其自身的优缺点,根据实际所采用的风电机组类 型和具体并网要求选择最恰当的并网方式,可以减小风电机组并网时对电网的冲击,保证电网的安全稳定运行。 我国在制定风力发电并网国家标准GB/Z19963-2005时,只考虑到当时的风电规模和机组的制造水平,是一个很低的标准。近年来风电事业发展迅速,整体呈 现大规模、远距离、高电压、集中接入的特点,对电网的渗透率越来越高,为使 风电成为一种能预测、能控制、抗干扰的电网友好型优质电源,有必要对原有标 准进行升级完善。 5风力发电电能质量 大部分国家和地区的风力发电并网标准均要求风电场正常运行时满足本国家

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

文献综述:风电并网存在问题分析

风电并网的不利影响及分析 一、风电并网的不利影响案例分析 1、加拿大阿尔塔特电力系统 截至2008 年,加拿大的阿尔伯塔电力系统(AIES)共有装机约280 台,总容量12 368 MW。其中,煤电5 893 MW,燃气发电4 895 MW(热电联产约3 000MW),水电869 MW,风电523 MW,生物质等其他可再生能源214 MW。阿尔伯塔的风电开发意向已达到11 000 MW,几乎与目前系统的装机容量相当,这在给AIES 带来巨大机遇的同时也带来了挑战。因为,大规模的风电接入会增加系统发电出力的不稳定性,降低系统维持供需平衡的能力。AIES 的装机以火电为主,且调节能力有限,系统备用容量也有限,电力市场的可调发电出力的灵活性不高,对外联络线的潮流交换能力相对有限。因此,系统需要增强调节及平衡能力和事故响应能力,否则难以应对风电出力变化给系统带来的巨大压力。 电力生产和使用必须同时完成的特点决定了系统运行必须维持每时每刻的供需平衡。供需失衡会引起发输电设备跳闸、负荷跳闸甚至系统崩溃等事故。因此,维持系统的实时平衡是一个非常艰巨的任务,而大规模的风电并网,会从以下4 个方面影响系统供需平衡:(1)能否准确预测供需走势。预测是实施供需平衡调节的基础。供需差可能来源于负荷、潮流交换、间歇性电源等的变化。供需走势的预测对于系统运行至关重要。预测越准确,相关的运行决策越准确,运行人员越容易维持系统稳定。而目前的风电预测,远不能达到系统运行对预测精度的要求,给大规模风电并网的系统运行带来很大隐患。 (2)需要足够的系统调节平衡资源来提升系统应对风电出力变化和不确定的能力。系统调节平衡资源是指能被随时调度的、能维持系统平衡的调节备用容量、负荷跟踪服务等运行备用。由于风电出力变化和不确定,导致系统必须维持很高的系统调节资源以作备用,降低了系统资源的利用率。否则,系统将无法应对风电出力变化和不确定性,影响系统的安全可靠运行。 (3)亟须建立相关的系统运行操作规程。为了保持系统的有效运行,必须提前研究并制定相关的系统运行操作规程,并纳入已有的运行规程以指导调度人员。由于人们对风电出力变化和不确定的了解还处于起步阶段,所以相关的运行规程还属空白。 (4)调度人员要学习并掌握应对风电出力变化和不确定影响的能力。拥有充足的系统调节平衡资源、建立相关的规程、具有可操作性的预测结果,加上操作人员多年的经验积累,在对系统特性有足够了解的基础上,才能准确地判断并作出正确决策,实现系统操作安全、可靠、及时。面对大规模的风电并网给系统运行带来的巨大挑战,调度人员需要学习如何应对风电出力变化和不确定给系统运行带来的复杂局势。 对于一个独立系统,供需不平衡可能导致系统出现频率偏差的情况,对于一个互联系统,供需不平衡可能导致系统从主网解列。特别是,阿尔伯塔系统的风电开发意向已远远大于其承受范围,所以面临的问题更加严峻。 胡明:阿尔伯塔风电并网对系统运行的影响和对策;电力技术经济;2009[4] 2、辽宁电网 预计在2010年底,辽宁电网的风电装机容量达到340万kW, 2015年风电装机容量达到787万kW。风电的大规模集中并网将给辽宁电网的调峰调频、联络线控制、系统暂态稳定、无功调压及电能质量等诸多方面带来直接影响,给电力系统的安全稳定运行带来新的挑战。 (1)导致系统调峰难度增加

风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15 资讯频道 偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。 使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。电机组的安全运行。舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。形式。 1.偏航系统的技术要求 1.1. 环境条件 在进行偏航系统的设计时,必须考虑的环境条件如下: 1). 温度; 2). 湿度; 3). 阳光辐射; 雨、冰雹、雪和冰;4). 5). 化学活性物质; 机械活动微粒;6). 盐雾。风电材料设备7). 近海环境需要考虑附加特殊条件。8). 应根据典型值或可变条件的限制,确定设计用的气候条件。选择设计值时,应考虑几 气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。不影响所设计的风力发电机组偏航系统的正常运行。 1.2. 电缆 必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效, 电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。的。阻尼1.3. 偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振, 阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。确定。阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。 1.4. 解缆和纽缆保护 偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。 所以在偏航系统中应设置与方向有关的计数作会导致机舱和塔架之间的连接电缆发生纽绞,检测装置或类一般对于主动偏航系统来说,装置或类似的程序对电缆的纽绞程度进行检测。对于被动偏航系统检测装置或类似似的程序应在电缆达到规定的纽绞角度之前发解缆信号;偏航系并进行人工解缆。的程序应在电缆达到危险的纽绞角度之前禁止机舱继续同向旋转,一般与偏航圈统的解缆一般分为初级解缆和终极解缆。初级解缆是在一定的条件下进行的,这个装置的控制逻纽缆保护装置是风力发电机组偏航系统必须具有的装置,数和风速相关。辑应具有最高级别的权限,一旦这个装置被触发,则风力发电机组必须进行紧急停机。偏航转速 1.5. 1 对于并网型风力发电机组的运行状态来说,风轮轴和叶片轴在机组的正常运行时不可避免的产生陀螺力矩,这个力矩过大将对风力发电机组的寿命和安全造成影响。为减少这个力矩对风力发

风力发电中的电能质量问题分析 朱国朋

风力发电中的电能质量问题分析朱国朋 发表时间:2019-07-24T13:45:59.330Z 来源:《电力设备》2019年第5期作者:朱国朋肖毅雄程胜利 [导读] 摘要:风能是一种清洁的、有可靠成本效益的发电资源,具有很高的环境效益和社会效益。 (深圳智润新能源电力勘测设计院有限公司广东深圳 518000) 摘要:风能是一种清洁的、有可靠成本效益的发电资源,具有很高的环境效益和社会效益。全球市场对于风力发电这样的具有很高环保效益和社会效益的技术有着巨大且持续增长的需求。随着风电技术发展,我国风电装机容量不断上升,风力发电将逐步成为电力系统重要的电力来源。但受自然、技术等因素影响,风力发电引起的电压波动、闪变和谐波等电能质量问题阻碍了其发展。因此,如何控制好风力发电中的电能质量就显得十分重要。 关键词:风力发电;电能质量;问题;措施 风力发电规模迅速扩大, 风电场并网是电力系统发展趋势。但风力发电过程中产生的电力谐波、电压波动及闪变等问题, 严重影响着风力发电的效率。只有这些问题得到有效解决, 才能发挥风力发电效能, 使整个发电系统稳定运行。 1风力发电并网技术 企业要开展风力发电,必须选择适合企业相关情况的风力发电技术,这直接影响到企业后的电能质量。合适的电网技术系统会影响风力发电机组的发电相位、发电机的电压频率和发电机输出峰值等相关数据。发电机组容量的提高对风力发电技术的最直接影响是并网过程中产生的冲击。并网过程中产生的冲击会降低发电机组的峰值发电量,损坏发电机组的物理部件,会对发电机的电机造成摩擦损坏,容易损坏支撑塔。由于发电机组的发电系统与各发电机组的电网相连,并网的影响也会影响同一电网下的相关机组,破坏系统的稳定性,使发电机分离。因此,适合企业的并网技术对企业有着重要的影响。 同步风力机具有效率高、体积小、结构紧凑、成本低、可靠性高、维护量小等特点。同步发电机的无功功率和有功功率同时输出。发电机转速稳定,负荷特性强,周期波稳定,发电机电能质量高。同步风力发电机广泛应用于风力发电,几乎所有的企业。均采用同步风电机组并网技术。但同步风力发电机组并不是所有的优点。在实际发电过程中,同步风力机对风力的控制较弱,不能形成稳定的电机运行。转子转矩的波动不能控制在一定的参数范围内。当每个发电机连接到电网时,发电机需要。发电机的频率应与系统频率和发电机出口功率相同。电压与系统电压相同,最大误差应小于5%,发电机相序与系统相序相同,但同步发电机往往达不到上述精度标准,会出现一些系统误差。并网时,要求运行人员调整发电机组,实现控制发电机组与系统的连接。然而,如果在这个过程中出现错误,由于负载突然变化时转子的惯性,旋转角度不能立即稳定在新的值上,并且在新的稳定值周围有几个摆动。这是同步风力发电机组容易出现的问题,但这些问题可以通过技术来解决。 与同步风机相比,与同步风机具有相同标准的异步风机在风机调速精度要求上明显优于同步风机,在发电机运行时,设备运行不同步或不连续。关于设备和速度要求。异步风力机控制力小,运行不复杂。由异步风力机组成的风力机只需调整一个重要参数即可实现发电控制。经简单控制,异步风力发电机组并网后运行平稳,无失步和振荡现象。异步风机的优点是运行稳定,稳定性好,几乎没有问题。然而,异步风力发电机组仍有不足之处。当工作人员进行机组并网运行时,如果操作不当,会对电网产生较大的电流冲击,降低电网电压,降低系统运行的不平衡度,降低稳定性。与可以产生无功功率的同步风力机不同,异步风力机需要手动补偿。当系统频率增大到峰值时,机组的同步速度也会加快。电动机旋转状态的变化将影响电能的产生,系统频率的降低和电网负荷的增加将影响电网的运行。因此,在异步风力发电机组运行过程中,工作人员应随时了解运行情况。 2风力发电对电网电能质量的影响 2.1电压波动和闪变 电压波动指电压方均根值一系列相对快速变动或连续改变的现象。电压波动大小可由相对电压变动特性d来描述: CP(λ,β)———风能利用系数,是叶尖速比λ和桨距角β的函数。 由式(3)可知,风电机组的输出功率与风速、空气密度有关,其值随风况在零功率和额定功率之间不断波动,其中风速影响更大。由于风电场风速的随机性大,风机功率频繁变化会引起电压频繁波动和闪变。此外,受塔影效应、偏航误差等因素影响,风机叶轮的转矩波动会造成风

风力发电并网技术分析及电能质量的控制

龙源期刊网 https://www.360docs.net/doc/7815311007.html, 风力发电并网技术分析及电能质量的控制 作者:王位俊 来源:《华中电力》2014年第04期 摘要:风力发电是一种新型的绿色能源,正逐渐成为世界各国争相开发的新技术能源。近几年来,随着科学技术的进步,变速双馈风力发技术在风力发电中得到广泛应用。该技术能够最大限度的捕获风能,同时还能够实现发电机组以及电网之间的柔性,提高风力发电系统运行的动静态稳定性。本文针对双馈风力机并网技术进行简单阐述,重点讨论双馈风力发电机组的控制策略,最后通过系统仿真来验证双馈发电机运行性能。 关键词:双馈风力发机;最大风能控制;工作原理;优化策略;仿真技术 近几年来,随着国际工业化的进程,全球气候逐渐变暖,环境污染日益严重,支撑工业化进程的能源以及电力所主要依靠的化石燃料已越来越少,常规能源面临着枯竭,因此,风能属于可再生能源,选择风力发电能够延缓煤炭以及石油、天然气等常规能源的枯竭。双馈恒频发电是20世纪末发展的一种新型发电模式,主要是利用电子技术以及矢量变换控制技术、微机信息处理技术从而引发的发电,在发电技术中得到广泛应用。[1]到目前为止,主要有爬山 法、功率信号反馈控制以及叶尖速比控制方法,来提高风力发电机组的工作效率。然而,这几种方法几乎都忽略了双馈发电机组本身的效率,即使在风力机中能够获得比较大的风能捕获,但是发电系统对电网输出的有功功率还是会随着电机效率的不同而出现差异。因此,本文就在捕获最大风能的基础之上,提出双馈风力发电机组的风能控制策略。 一、双馈风力发电机并网技术 到目前为止,适合交流励磁双馈风力发电机组的并网方式主要是基于定子磁链定向矢量控制的准同期并网控制技术,即空载并网方式、独立负载并网方式、孤岛并网方式。另外,对于垂直轴型的双馈机组,由于不能自动起动,所以必须采用“电动式”并网方式。 1、空载并网方式 所谓空载并网就是并网前双馈发电机空栽,定子电流为零,提取电网的电压信息(幅值!频率!相位)作为依据提供给双馈发电机的控制系统,通过引入定子磁链定向技术对发电机的输出电压进行调节,使建立的双馈发电机定子空载电压与电网电压的频率!相位和幅值一致。当满足并网条件时则可进行并网操作,并网成功之后控制策略就能够从并网控制切换到发电控制,如下图1所示: 2、独立负载并网方式 独立负载并网技术的基本思路为:并网前双馈电机带负载运行(如电阻性负载),根据电网信息和定子电压、电流对双馈电机和负载的值进行控制,在满足并网条件时进行并网"独立

风力发电机分析报告

风力发电技术概述 一、国内外风电发展历史、现状 风能是太阳能的一种表现形式。它是由太阳的热辐射引起的空气流动。太阳把自己能的绝大部分以热的形式给了地球,而到大气求得太阳能约有2%转变为风。所以,地球上风能资源蕴藏丰富。 人类对于风能的开发利用也很早就开始了。对风能的利用首先出现在波斯,在荷兰和英国的风车磨坊大约从公元七世纪就广泛应用,在中国对风能的利用至少不晚于13世纪中叶,主要用于磨面和提水灌溉。利用风力发电的设想始于1890年的丹麦,到1918年,丹麦已拥有120台风力发电机1931 年前苏联采用螺旋桨式的叶片建造了一台大型风力发电机。随后,各国相距建造了一大批大型风力发电机。 但是,近代火力、水力发电机的广泛应用和20世纪50年代中东油田的发展,使风力发电机的发展缓慢下来。20世纪70年代后,由于能源短缺,人类生存环境的进一步恶化,环境与能源问题成为当今世界面临的两大挑战。因此寻求无污染、可再生的能源成为科技界的一大目标。风能这一古老而丰富的自然资源,以其易于获得并转换,且分布广泛无污染又能够不断再生,而被重新认识,开发和利用。此时的风力发电机设计应用了航空器的成熟理论,使得风力机的效率比老式的风车提高了几倍乃至十倍。欧美工业发达国家凭借其先进的科技和工业水平,投入数以亿美元计的研制经费,相继制造了兆瓦级风力发电机,形成了风能工业,使风力机的概念由单机运行发展到并网运行和建成有相当规模的风车田。据报道,截止1990年底的报道材料统计,全球风力发电设备总装机容量已经达到3800MW,其中美国约200MW,而且各国正在不断加大对风能开发的投入。面对新世纪的来临,美国、丹麦、荷兰、德国、日本和英国等国家纷纷制定出能源规划的长远目标。 在我国风力发电机组的研制工作开展较早,但是没得到足够的重视与支持,因而发展较慢。五十年代后期有过一个兴旺时期,吉林、辽宁、内蒙古、江苏、安徽和云南等省都研制过千瓦级以下的风车,但是没有做好巩固和发展成果的工

风力发电与并网技术仿真分析

风力发电与并网技术仿真分析 发表时间:2017-11-15T18:35:50.290Z 来源:《电力设备》2017年第20期作者:石凯1 张帆2 陈默3 [导读] 摘要:作为可再生能源的风电近些年发展迅速,在风电大规模并网的同时也带了许多问题,如对电网稳态运行时的无功功率、有功功率、系统电压的控制和动态稳定性产生不利的影响。 (1北京送变电公司北京市良乡昊天大街 1002401;2 国网冀北电力有限公司经济技术研究院北京市西城区 100045; 3 国家电网公司交流建设分公司北京市西城区 100043) 摘要:作为可再生能源的风电近些年发展迅速,在风电大规模并网的同时也带了许多问题,如对电网稳态运行时的无功功率、有功功率、系统电压的控制和动态稳定性产生不利的影响。文章分析了风力发电系统的基本构造,介绍了风电并网技术中的动态无功补偿及电压调节、低电压穿越技术。采用Matlab/simulink软件对风力机接入系统后的运行情况进行仿真,可知风机接入电网会对电网电能质量造成影响。 关键词:风电;电力系统;低电压穿越;仿真 ABSTRACT:In recent years, wind power as renewable energy development rapid, wind power bring a lot of problems in large-scale grid-connected, such as take adversely affected to reactive power, the active power, system voltage control and dynamic stability in grid steady-state operation. This paper analyzes the basic structure of the wind power generation system, introduced dynamic reactive power compensation and voltage regulation, low voltage ride through technology in wind power grid-connected technology. Using Matlab/simulink software simulate the operation of the wind turbine access system, shows that wind turbine access grid would be take adversely affect to grid power quality. KEYWORD: wind power; power system; LVRT; Simulation 引言 我国风资源分布广泛,可利用量巨大。近年来,风能利用越来越多,风电装机容量不断增加,截至目前,我国风电装机容量已位居世界第一。 但由于风电具有间歇性、随机性、波动性的特点,所以,随着风电规模的不断扩大,风电装机的快速增加,电网安全稳定运行压力越来越大。一方面风力机弃风现象严重,另一方面风电场脱网事故频发,对电网安全运行构成威胁,突出表现为风电并网消纳问题,风电机组运行可靠性问题以及电力电子变流技术。所以,风电机组要具备低电压穿越、有功调节和无功补偿能力,满足电力系统安全运行的需要[1][2]。 风力发电系统是将风能转换为电能的机械、电气及控制设备的组合。典型的风力发电系统主要由叶轮、传动系统、变速器、发电机、调向机构及控制系统和储能装置等几大部分组成[3][4]。 2 仿真实验 仿真内容包括以下两个部分: (1)30MW,10kV同步发电机通过升压变压器进行并网,变压器的出线母线侧接有30MW,功率因数为0.9的负荷。并网经过200km 的LGJ400型双回架空线接到无穷大系统。并网中出现三相故障,持续时间为0.1s。并对负荷进行切除仿真。 (2)接入风力发电机,风力机的功率为15MW,通过升压变压器后,经过100km的LGJ400型架空线与母线连接。对三相故障和切除负荷进行仿真。 2.1 实验原理图 采用Matlab软件中的simulink进行上述仿真实验,观测内容包括同步电机并网后的节点电压和电流,以及支路功率和同步发电机的功角。对风力机接入系统后的运行情况进行了仿真。实验中对软件库中包含的同步电机和风力发电机的仿真实例进行了认真分析和比较,并选出了合理的模型进行搭建,原理图如图1所示。

风电机组选型

5 风电机组选型、布置及风电场发电量估算 5.1 风电机组选型 5.1.1 单机容量范围及方案的拟定 5.1.1.1 风电机组发电机类型的确定 风电场机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效益。随着国内外风力发电设备制造技术日趋成熟,针对不同区域风资源条件,各风机设备制造厂家已经开发出不同结构型式、不同控制调节方式的风力发电机组可供选择。按照IEC61400-1标准(风电机组设计要求),风电场机组按50年一遇极大风速可分为I、II、III三个标准等级,每个等级按15m/s风速区间的湍流强度可分为A、B、C三个标准等级,为特殊风况和外部条件设计的为S级。因此,根据怀宁风电场场址的地形、交通运输情况、风资源条件和风况特征,结合国内外商品化风电机组的制造水平、技术成熟程度以及风电机组本地化率的要求,进行风电场机组型式选择。 风力发电机组选型应考虑的几种因素 (1) 风电机组应满足一定的安全等级要求 表5.1.1.1-1 IEC61400-1各等级WTGS基本参数 上表中各数据应用于轮毂高度,其中V ref为10min平均参考风速,A 表示较高湍流特性,B表示中等湍流特性,C表示较低湍流特性,Iref为湍流强度15m/s时的特性。在轮毂高度处,15m/s风速区间的湍流强度值不大于0.12,极大风速为28.2m/s。根据国际电工协会IEC61400-1(2005)标准判定本风电场工程70~90m轮毂高度适宜选择IECⅢC及以上等级的风力发电机组。

(2) 风轮输出功率控制方式 风轮输出功率控制方式分为失速调节和变桨距调节两种。两种控制方式各有利弊,各自适应不同的运行环境和运行要求。从目前市场情况看,采用变桨距调节方式的风电机组居多。 (3) 风电机组的运行方式 风电机组的运行方式分为变速运行与恒速运行。恒速运行的风力机的好处是控制简单,可靠性好。缺点是由于转速基本恒定,而风速经常变化,因此风力发电机组经常工作在风能利用系数(Cp)较低的点上,风能得不到充分利用。变速运行的风电机组一般采用双馈异步发电机或多极永磁同步发电机。变速运行方式通过控制发电机的转速,能使风力机的叶尖速比接近最佳值,从而最大限度的利用风能,提高风力发电机组的运行效率。 (4) 发电机的类型 目前,市场上主流的变速变桨恒频型风电机组技术分为双馈式和直驱式两大类。双馈式变桨变速恒频技术的主要特点是采用了风轮可变速变桨运行,传动系统采用齿轮箱增速和双馈异步发电机并网,而直驱式变速变桨恒频技术采用了风轮与发电机直接耦合的传动方式,发电机多采用多极同步电机,通过全功率变频装置并网。直驱技术的最大特点是可靠性和效率都进一步得到了提高。 还有一种介于二者之间的半直驱式,由叶轮通过单级增速装置驱动多极同步发电机,是直驱式和传统型风力发电机的混合,但是该类产品还不是很成熟,因此本工程不推荐。 双馈式:交流励磁发电机又被人们称之为双馈发电机。双馈风电机组中,为了让风轮的转速和发电机的转速相匹配,必须在风轮和发电机之间用齿轮箱来联接,这就增加了机组的总成本;而齿轮箱噪音大、故障率高、需要定期维护,并且增加了机械损耗;机组中采用的双向变频器结构和控制复杂;电刷和滑环间也存在机械磨损。目前,世界各国正在针对这些缺点改进机组或研制新型机组,如无刷双馈机组。 永磁直驱风电机组,就是取消了昂贵而又沉重的增速齿轮箱,风轮轴直接和发电机轴直接相连,转子的转速随来流风速的变化而改变,其交流

风电并网技术标准(word版)

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

风力发电机的分类

,风力发电机按叶片分类. 按照风力发电机主轴地方向分类可分为水平轴风力发电机和垂直轴风力发电机. ()水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平地风力发电机. 水平轴风力发电机相对于垂直轴发电机地优点;叶片旋转空间大,转速高.适合于大型风力发电厂.水平轴风力发电机组地发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高.到目前为止,用于发电地风力发电机都为水平轴,还没有商业化地垂直轴地风力发电机组. 资料个人收集整理,勿做商业用途 ()垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直地风力发电机.垂直轴风力发电机相对于水平轴发电机地优点在于;发电效率高,对风地转向没有要求,叶片转动空间小,抗风能力强(可抗级台风),启动风速小维修保养简单. 垂直轴与水平式地风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式地要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式地更加安全稳定;另外,国内外大量地案例证明,水平式地风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故.资料个人收集整理,勿做商业用途 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机. 凡属轴流风扇地叶片数目往往是奇数设计. 这是由于若采用偶数片形状对称地扇叶,不易调整平衡.还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生地疲劳,将会使叶片或心轴发生断裂. 因此设计多为轴心不对称地奇数片扇叶设计.对于轴心不对称地奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内地各种扇叶设计中.包括家庭使用地电风扇都是个叶片地,叶片形状是鸟翼型(设计术语),这样地叶片流量大,噪声低,符合流体力学原理.所以绝大多数风扇都是三片叶地.三片叶有较好地动平衡,不易产生振荡,减少轴承地磨损.降低维修成本.资料个人收集整理,勿做商业用途 按照风机接受风地方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型.资料个人收集整理,勿做商业用途 上风向风机一般需要有某种调向装置来保持叶轮迎风. 而下风向风机则能够自动对准风向, 从而免除了调向装置.但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片地气流而形成所谓塔影效应,使性能有所降低.资料个人收集整理,勿做商业用途 ,按照风力发电机地输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列. ()小型风力发电机是指发电机容量为地风力发电机. ()中型风力发电机是指发电机容量为地风力发电机. ()大型风力发电机是指发电机容量为地风力发电机. 兆瓦级风力发电机是指发电机容量为以上地风力发电机. ,按功率调节方式分类.可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机. ()定桨距失速型风机;桨叶于轮毂固定连接,桨叶地迎风角度不随风速而变化.依靠桨叶地气动特性自动失速,即当风速大于额定风速时依靠叶片地失速特性保持输入功率基本恒定.资料个人收集整理,勿做商业用途 ()变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内.资料个人收集整理,勿做商业用途 ()主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加资料个人收集整理,勿做商业用途 ()独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同地位置,受力状况也是不同地故叶片中立对风轮力矩地影响也是不可忽略地.通过对三个叶片进行独立地控制,可以大大减小风力机叶片负载地波动及转矩地波动,进而减小传动机构与齿轮箱地疲劳度,减小塔架地震动,输出功率基本恒定在额定功率附近.资料个人收集整理,勿做商业用途

相关文档
最新文档