巧用圆的一般方程解题

巧用圆的一般方程解题
巧用圆的一般方程解题

巧用圆的一般方程解题

圆的一般方程C :)04(02222>-+=++++F E D F Ey Dx y x .当点),(00y x P 在圆外时,0002020>++++F Ey Dx y x ,该数值的几何意义是什么呢?

经过探索,我们发现:

结论 1: 已知圆C :)04(02222>-+=++++F E D F Ey Dx y x ,

当点),(00y x P 在圆外时,过点P 作圆的切线PA ,切点为A ,则切线长

;002020F Ey Dx y x PA ++++=

A

Cccccccc P

证明: 由圆C :)04(02222>-+=++++F E D F Ey Dx y x 可知: 圆心)2,2(E D C --

,半径F E D r 42

122-+=, 从而222r PC PA -=,即)4(41)2()2(2220202F E D E y D x PA -+-+++= 化简可得.002020F Ey Dx y x PA ++++=

已知圆)04(0:12121111221>-+=++++F E D F y E x D y x C ;

圆)04(0:22

222222222>-+=++++F E D F y E x D y x C .

若两圆相交,我们知道两圆方程相减,可得两圆公共弦方程: 0)()()(212121=-+-+-F F y E E x D D .

若两圆外离,两圆方程相减得到的直线方程:

0)()()(212121=-+-+-F F y E E x D D

有什么几何意义呢?

经过探索,我们发现:

结论2: (1)已知圆)04(0:12

121111221>-+=++++F E D F y E x D y x C 与圆)04(0:22

222222222>-+=++++F E D F y E x D y x C 相离,过直线

0)()()(212121=-+-+-F F y E E x D D 上任意一点P ,分别向两圆作切线PB PA ,.则 C

PB PA =.

(2)已知圆)04(0:12

121111221>-+=++++F E D F y E x D y x C 与圆)04(0:22222222222>-+=++++F E D F y E x D y x C 相离,过两圆外一点P ,分别向两圆作切线PB PA ,,切点分别为B A ,若PB PA =,则点P 在直线0)()()(212121=-+-+-F F y E E x D D 上.

P

A B

证明:(1)设直线0)()()(212121=-+-+-F F y E E x D D 上任意一点),(00y x P ,则

0)()()(21021021=-+-+-F F y E E x D D .

2020210101F y E x D F y E x D ++=++

由结论1得

;101012

020F y E x D y x PA ++++=

;202022020F y E x D y x PB ++++=

从而PB PA =

(2)设两圆外任意一点),(00y x P ,因为PB PA =,所以

101012020F y E x D y x ++++202022

020F y E x D y x ++++= 化简并整理得

0)()()(21021021=-+-+-F F y E E x D D

于是P 点在0)()()(212121=-+-+-F F y E E x D D 上.

灵活运用上述两个小结论解题,常常能节省思维量和运算量,提高解题速度,节省时间,达到事半功倍的效果,下面举几个例子.

例1 (2005年江苏高考题)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P

2C 1C

分别作圆1O 与圆2O 的切线PN PM ,(M 、N 分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.

P

M N

解:以21O O 所在直线为x 轴,21O O 的中垂线为y 轴,建立平面直角坐标系.设动点),(y x P , 则圆1O :03422=+++x y x ,圆2O :0342

2=+-+x y x .根据PN PM 2=及结论1,知 =+++3422x y x 2)34(2

2+-+x y x ,

整理得 031222=+-+x y x

点评:本题通常用圆的标准方程来解,运算量大,且易错.用圆的一般方程和结论1来解决,不仅简单方便,而且不宜错,同时还节省了时间.

例2(2007年四川高考题)已知圆O 的方程是,0222=-+y x 圆O '的方程是.010822=+-+x y x 由动点P 向圆O 和圆O '所引的切线长相等,则动点P 的轨迹方程是

解:由结论2(2)得动点P 的轨迹方程0)108()2(2222=+-+--+x y x y x ,整理得2

3=x 点评:本题通常采用设动点),(y x P ,由圆的基本性质建立等式方程,然后再化简,才能得到.此过程繁琐,且等量关系不易找到,化简容易错.采用本文中的结论2一步就解决了,不仅结果正确,而且提高解题速度.

例3(2013年江苏镇江模拟)已知圆422=+y x 与圆0146622=++-+y x y x 关于直线l 对称,则直线l 的方程是

解:过直线l 上任意一点分别向两圆作切线PA ,PB ,切点分别为A,B ,由于两圆关于直线l 对称,有对称性可知PB PA =,由结论2可得直线l 的方程为0)4()1466(2222=-+-++-+y x y x y x ,整理得03=--y x .

点评:本题通常采用求两圆的圆心的连线段的中垂线方程的来解.此方法不光运算量大,而且斜率容易求错.而巧用结论2很快就能解决.

总之,有关圆的一般方程与切线长的问题都可以运用本文的两个小结论,把复杂的问题简单化,达到事半功倍的效果.

2O 1O

用圆的几何性质解题

用圆的几何性质解题 圆是一个特殊的图形,它有许多重要的性质.在涉及到圆的有关问题时,若能抓住题设中圆的图形特征和数量关系,充分利用圆的有关几何性质,常常可得到简捷的解法.现举例说明如下: 性质1 “圆的弦的垂直平分线必过圆心” 例1 过点),(),,(1111--B A 且圆心在直线02=-+y x 上的圆的方程是 . (01年全国高考题) 分析:∵线段AB 为所求圆的弦,由性质1知,点C 为AB 的垂直平分线与已知直线的交点, 联立两直线方程组成方程组,解得),(11C .∴所求圆的方程为.)()(41122=-+-y x 例2 设圆过双曲线116 92 2=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 .(98年 全国高考题) 分析:由图形的对称性,不妨设圆心在右支上. 如图1,由条件知, 线段AF 1为⊙C 的弦,根据性质1,可得AF 1的垂直平分线直 线CD 段,由题设知A 、 F 1的横坐标分别为3、5,∴圆心C 的 横坐标为4 ,故圆心C 的纵坐标为±437,∴圆心C 到双曲线的中心的距离为42+(±437)2 = 163 . 点评:以上两例的关键在于确定圆的圆心。根据题设已知圆的弦,由性质1,得圆心必在此 弦的垂直平分线上. 性质2 “圆中90°的圆周角所对的弦是直径” 例3 设直线3x +4y +m =0与圆C 1:x 2+y 2+x -2y =0相交于点P 、Q 两点,当m 为何值时,OP ⊥OQ ? 分析:如图2,因圆C 1:x 2+y 2+x -2y =0过原点,则∠POQ 是圆C 1的 圆周角,且为直角.由性质2,可知PQ 为⊙C 1的直径,即直线3x +4y +m =0过⊙C 1的圆心C 1(- 12 ,1) 即3×(- 12)+4×1+m =0 ∴m = - 52 . 点评:处理直线与圆的位置关系常用△法或几何法.本例由于直线与圆的交点和原点的连线互相垂直,且原点在圆上,由性质2,知PQ 为直径,从而得以上解法. 性质3 “圆中同一条弦所对的圆周角小于它所对的圆角” 例4 椭圆14 92 2=+y x 的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值围是 .(00年全国高考题) 分析:以F 1F 2为直径作圆:522=+y x ,与椭圆14922=+y x 联立, 解得A 、B 两点的横坐标分别为 - 3 5 5,3 5 5.由性质2,知点P 在椭圆的AB 或CD 弧线(在辅助圆)上时,∠F 1PF 2为钝角 (如图3),故点P 的横坐标的取值围是(- 3 5 5,3 5 5 ). 点评:本题看似与圆无关,但通过构作辅助圆,并利用其几何性质,让问题变得直观明了,便于图1 图2 图3

圆的标准方程 练习题

第四章 4.1 4.1.1 A 级 基础巩固 一、选择题 1.圆心是(4,-1),且过点(5,2)的圆的标准方程是 ( ) A .(x -4)2+(y +1)2=10 B .(x +4)2+(y -1)2=10 C .(x -4)2+(y +1)2=100 D .(x -4)2+(y +1)2=10 2.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 ( ) A .是圆心 B .在圆上 C .在圆内 D .在圆外 3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为 ( ) A .(-1,2),2 B .(1,-2),2 C .(-1,2),4 D .(1,-2),4 4.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1 D .(x +1)2+(y +2)2=1 5.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = ( ) A .-4 3 B .-34 C .3 D .2 6.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ( A ) A .x -y -3=0 B .2x +y -3=0 C .x +y -1=0 D .2x -y -5=0 二、填空题 7.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是 . 8.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是 三、解答题 9.圆过点A (1,-2)、B (-1,4),求 (1)周长最小的圆的方程; (2)圆心在直线2x -y -4=0上的圆的方程. 10.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a >0). (1)若点M (6,9)在圆上,求a 的值; (2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.

圆的方程_基础 知识讲解

圆的方程 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 【要点梳理】 【高清课堂:圆的方程370891 知识要点】 要点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释: (1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2 2 2 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时: ||||a b r ==;过原点:222a b r += (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 要点二:点和圆的位置关系 如果圆的标准方程为2 2 2 ()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()2 2 200||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()2 2 200||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()2 2 200||CM r x a y b r ?时,方程2 2 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ?为圆心, 为半径. 要点诠释: 由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当2240D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.

初中数学巧用辅助圆解题

初中数学巧用辅助圆解题 添加辅助圆解平面几何题,虽远不如辅助(直)线那么为人们所熟知,但许多直线形问题,若辅助圆添加得合理,则能收到化难为易,事半功倍的效果. 一、根据圆的定义作辅助圆 例1 如图,四边形ABCD 中,AB ∥CD ,AB =AC =AD =p ,BC =q ,求BD 的长. 解析:以点A 为圆心、AB 为半径作⊙A .因为AB =AC =AD ,所以B 、C 、D 三点在⊙A 上. 延长BA 交⊙A 于点E ,连结DE .因为DC ∥EB ,所以弧ED =弧BC ,所以ED =BC =q . 在Rt △BDE 中,根据勾股定理,得BD =. 例2 如图, PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =5,PD =3, 求AD·DC 的值. 解析:以点P 为圆心、P B为半径的作⊙P .因为PA =PB ,∠APB =2∠ACB ,所以点A、B 、C 在⊙P 上.此时⊙P 的直径BE =10,DE =8,DB =2,由相交弦定理,得AD·DC=DE·DB=8×2=16 二、作三角形的外接圆 例3 如图,D 、E 为△ABC 边BC 上的两点,且BD=CE ,∠BAD=∠CAE ,求证:AB=AC . 解析:作△ADE 的外接圆,分别交AB 、AC 于点M 、N ,连结MD 、NE . 因为∠BAD =∠CAE ,所以∠BAD +∠DAE =∠CAE+∠DAE ,即∠NAD =∠MAE .因为∠BDM =∠MAE ,∠CEN =∠NAD ,所以∠BDM =∠CEN . 又BD =CE ,DM =EN ,所以△BDM ≌△CEN ,所以∠B =∠C ,即AB =AC . 例4 如图,△ABC 中,BF 、CE 交于点D ,BD =CD ,∠BDE =∠A ,求证:BE =CF . 解析:作△ABC 的外接⊙O ,延长CE 交⊙O 于G ,连接BG . 因为∠G =∠A ,∠BDE =∠A ,所以∠G =∠BDE ,所以BG=BD .又BD =CD ,所以BG =CD. 又因为∠G =∠CDF ,∠GBE =∠DCF ,所以△GBE ≌△DCF . 所以BE =CF . 例5 如图,在△ABC 中,AB =AC ,∠BAC =100°,∠B 的平分线交AC 于D ,求证:BC =BD +AD . 解析:作△ABD 的外接圆交BC 于E ,连结DE . 因为BD 是∠ABC 的平分线,所以弧AD =弧DE ,所以AD =DE . 在△BDE 中,∠DBE =20°,∠BED =180°―100°=80°, 所以∠BDE =80°, B C C

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

圆的参数方程及应用

对于圆的普通方程222()()x a y b R -+-=来说,圆的方程还有另外一种表达 形式cos sin x a R y b R θθ=+??=+?(θ为参数) ,在解决有些问题时,合理的选择圆方程的表达形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例1 已知点(x ,y )在圆221x y +=上,求2223x xy y ++的最大值和最小值。 【解】圆2 2 1x y +=的参数方程为:cos sin x y θθ=??=? 。 则2223x xy y ++=22cos 2sin cos 3sin θθθθ++ = 1cos 21cos 2sin 2322θθθ+-++? 2sin 2cos 2θθ=+-=22sin(2)4π θ+-,则38k πθπ=+(k ∈Z )时,2223x xy y ++的最大值为:22+;8 k π θπ=-(k ∈Z ) 时,2223x xy y ++的最小值为22-。 【点评】解某些与圆的方程有关的条件制问题,可应用圆的参数方程转化为三角函数问题的方法解决。 二、求轨迹 例2 在圆224x y +=上有定点A (2,0),及两个动点B 、C ,且A 、B 、C 按逆时针方向排列, ∠BAC=3π ,求△ABC 的重心G (x ,y )的轨迹 方程。 【解】由∠BAC= 3 π,得∠BOC=23π,设∠ABO=θ(403π θ<<),则B(2cos θ,2sin θ),C(2cos(θ+23π),2sin(θ+23 π )),由重心坐标公式并化简,得: 22cos()333 2sin()33x y πθπθ? =++??? ?=+?? ,由5333πππθ<+<,知0≤x <1, C x y O A B 图1

2021届高考数学(理)考点复习:圆的方程(含解析)

2021届高考数学(理)考点复习 圆的方程 圆的定义与方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准 式 (x -a )2+(y -b )2=r 2(r >0) 圆心为(a ,b ) 半径为r 一 般 式 x 2+y 2+Dx +Ey +F =0 充要条件:D 2+E 2-4F >0 圆心坐标:????-D 2,-E 2 半径r =1 2 D 2+ E 2-4F 概念方法微思考 1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ???? ? A =C ≠0, B =0, D 2+ E 2-4A F >0. 2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种. 已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2

, 半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时, 连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =, 即圆心到原点的距离的最小值是4, 故选A . 2.(2018?天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=. 【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则0 42020F D F D E F =?? ++=??+++=? , 解得2D =-,0E F ==; ∴所求圆的方程为2220x y x +-=. 故答案为:22(1)1x y -+=(或2220)x y x +-=.

辅助圆 解题精讲

第二十五讲 辅助圆 在处理平面几何中的许多问题时,常需要借助于圆的性质,问题才得以解决. 而我们需要的圆并不存在(有时题设中没有涉及圆;有时虽然题设涉及圆,但是此圆并不是我们需要用的圆),这就需要我们利用已知条件,借助图形把需要的实际存在的圆找出来,添补辅助圆的常见方法 1.利用圆的定义添补辅助圆; 2.作三角形的外接圆; 3.运用四点共圆的判定方法:(1)若一个四边形的一组对角互补,则它的四个顶点共圆. (2)同底同侧张等角的三角形,各顶点共圆. (3)若四边形ABCD 的对角线相交于P ,且PA ·PC=PB ·PD ,则它的四个顶点共圆. (4)若四边形ABCD 的一组对边AB 、DC 的延长线相交于P ,且PA ·PB =PC ·PD ,则它的四 个顶点共圆. 【例题求解】 一·利用圆的定义添加辅助圆 【例1】 如图,若PA=PB ,∠APB=2∠ACB ,AC 与PB 交于点P ,且PB=4,PD=3,则AD ·DC 等于( ) A .6 B .7 C .12 D .16 思路点拨 作出以P 点为圆心、PA 长为半径的圆,为相交弦定理的应用创设了条件. 注:到一个定点等距离的几个点在同一个圆上,这是利用圆的定义添辅助圆的最基本方法. 变式练习:如图,已知OA=OB=OC ,且∠AOB=k ∠BOC ,则∠ACB 是∠BAC 的( ) A .k 2 1倍 B .是k 倍 C .k 2 D . k 1 二·作三角形的外接圆 【例2】 如图,在△ABC 中,AB=AC ,任意延长CA 到P ,再延长AB 到Q ,使AP=BQ ,求证:△ABC 的外心O 与A ,P ,Q 四点共圆. 思路点拨 先作出△ABC 的外心O ,连PO 、OQ ,将问题转化为证明角相等. 变式练习: 5.如图,在等腰梯形ABCD 中,AB ∥CD ,AB=998,CD=1001,AD=1999,点P 在线段AD 上,满足条件的∠BPC=90°的点P 的个数为( ) A .0 B .1 C .2 1 D .不小于3的整数 (全国初中数学联赛题)

(完整版)高中数学必修2圆的方程练习题(基础训练).doc

专题:直线与圆 1.圆 C1 : x2+ y2+ 2x+ 8y- 8=0 与圆 C2 : x2+ y2- 4x+4y- 2= 0 的位置关系是 ( ) . A .相交B.外切C.内切D.相离 2.两圆 x2+ y2-4x+ 2y+ 1= 0 与 x2+ y2+ 4x-4y- 1= 0 的公共切线有 ( ) . A.1 条B.2 条C.3 条D.4 条 3.若圆 C 与圆 ( x+ 2) 2+ ( y- 1) 2= 1 关于原点对称,则圆 C 的方程是 ( ) . A . ( x- 2) 2+ ( y+ 1) 2= 1 B. ( x- 2) 2+ ( y- 1) 2=1 C. ( x- 1) 2+ ( y+ 2) 2= 1 D.( x+ 1) 2+ ( y- 2) 2= 1 4.与直线 l : y= 2x+ 3 平行,且与圆x2+ y2-2x- 4y+ 4=0 相切的直线方程是 ( ) . A . x- y± 5 = 0 B. 2x- y+ 5 = 0 C. 2x- y- 5 = 0 D.2x- y± 5 = 0 5.直线 x- y+ 4= 0 被圆 x2+ y2+ 4x-4y+ 6= 0 截得的弦长等于 ( ) . A . 2 B. 2 C.2 2 D. 4 2 6.一圆过圆 x2+ y2- 2x=0 与直线 x+ 2y- 3=0 的交点,且圆心在y 轴上,则这个圆的方程是( ) . A . x2+ y2+4y- 6= 0 B. x2+ y2+ 4x- 6= 0 C. x2+ y2- 2y= 0 D. x2+ y2+ 4y+ 6= 0 7.圆 x2+ y2- 4x-4y- 10= 0 上的点到直线 x+y- 14= 0 的最大距离与最小距离的差是( ) . A.30 B. 18 C.6 2 D. 5 2 8.两圆 ( x- a) 2+ ( y-b) 2= r 2和 ( x- b) 2+( y- a) 2= r 2相切,则 ( ) . A . ( a- b) 2= r2 B. ( a- b) 2= 2r2 C. ( a+ b) 2= r 2 D.( a+ b) 2= 2r 2 9.若直线 3x- y+ c= 0,向右平移 1 个单位长度再向下平移 1 个单位,平移后与圆 x2+ y2= 10相切,则 c 的值为 ( ) .A.14 或- 6 B.12 或- 8 C.8 或- 12 D.6 或- 14 10.设 A( 3,3,1) ,B( 1,0,5) ,C( 0,1,0),则 AB 的中点 M 到点 C 的距离 | CM| =( ) . 53 B.53 53 D. 13 A .C. 2 4 2 2 11.若直线 3x- 4y+ 12= 0 与两坐标轴的交点为A,B,则以线段AB 为直径的圆的一般方程为____________________. 12.已知直线x= a 与圆 ( x- 1) 2+y2= 1 相切,则a 的值是 _________. 13.直线 x= 0 被圆 x2+ y2― 6x― 2y―15= 0 所截得的弦长为_________. 14.若 A( 4,- 7, 1) ,B( 6, 2, z) , | AB| = 11,则 z= _______________ . 15.已知 P 是直线 3x+ 4y+ 8= 0 上的动点, PA,PB 是圆 ( x- 1) 2+ ( y- 1) 2= 1 的两条切线, A, B 是切点, C 是圆心,则四边形PACB 面积的最小值为. 三、解答题 16.求下列各圆的标准方程: ( 1) 圆心在直线y=0 上,且圆过两点A( 1, 4) , B( 3, 2) ; ( 2) 圆心在直线2x+ y=0 上,且圆与直线x+y- 1= 0 切于点 M( 2,- 1) .

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

圆的方程练习题答案

圆的方程练习题答案 A级基础演练 一、选择题 1.(2013·济宁一中月考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为 ( ).A.-1 B.1 C.3 D.-3 解析化圆为标准形式(x+1)2+(y-2)2=5,圆心为(-1,2).∵直线过圆心,∴3×(- 1)+2+a=0,∴a=1. 答案 B 2.(2013·太原质检)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若00,所以原点在圆外. 答案 B 3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为 ( ).A.(x-2)2+y2=5 B.x2+(y-2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5 解析由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x2+(y+2)2=5. 答案 D 4.(2013·郑州模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为 ( ). A.x2+y2=32 B.x2+y2=16 C.(x-1)2+y2=16 D.x2+(y-1)2=16 解析设P(x,y),则由题意可得:2x-22+y2=x-82+y2,化简整理得x2+y2=16,故选B. 答案 B 二、填空题 5.以A(1,3)和B(3,5)为直径两端点的圆的标准方程为________.

极坐标与参数方程高考常见题型及解题策略

极坐标与参数方程高考常见题型及解题策略 【考纲要求】 (1)坐标系 ①了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。 ②了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化。表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化。 ③能在极坐标系中给出简单图形表示的极坐标方程。 ④了解参数方程,了解参数的意义。能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。 ⑤能选择适当的参数写出直线,圆和椭圆的参数方程。了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解他们的区别。 (2)参数方程 ①了解参数方程,了解参数的意义 ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程。 ③了解平摆线、渐开线的生成过程,并能推导出他们的参数方程。 ④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨迹中的作用。 【热门考点】 高考题中这一部分主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程。冷点是推导简单图形的极坐标方程、直角坐标方程化为参数方程。盲点是柱坐标系、球坐标系中表示空间中点的位置的方法,摆线在实际中的应用,摆线在表示行星运动轨道中的作用。涉及较多的是极坐标与直角坐标的互化及简单应用。多以选做题形式出现,以考查基本概念,基本知识,基本运算为主,一般属于中档题。 【常见题型】

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

圆的解题技巧总结

圆的解题技巧总结 一、垂径定理的应用 给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,我们很容易发现A、B两点重合,即有结论AP=BP,弧AC=弧BC.其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 垂径定理是“圆”这一章最早出现的重要定理,它说明的是圆的直径与弦及弦所对的弧之间的垂直或平分的对应关系,是解决圆内线段、弧、角的相等关系及直线间垂直关系的重要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据. 例1某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. 例2如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD 的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=? 例3如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为多少? 例4图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具?

二、与圆有关的多解题 几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解. 1.忽视点的可能位置. 例5 △ABC 是半径为2的圆的内接三角形,若32 BC cm ,则∠A 的度数为______. 2.忽视点与圆的位置关系. 例6 点P 到⊙0的最短距离为2 cm ,最长距离为6 cm ,则⊙0的半径是______. 3.忽视平行弦与圆心的不同位置关系. 例7 已知四边形ABCD 是⊙0的内接梯形,AB∥CD,AB=8 cm ,CD=6 cm ,⊙0的半径是5 cm ,则梯形的面积是______. 4.忽略两圆相切的不同位置关系 例8 点P 在⊙0外,OP=13 cm ,PA 切⊙0于点A ,PA=12 cm ,以P 为圆心作⊙P 与⊙0相切,则⊙P 的半径是______. 例9 若⊙O 1与⊙02相交,公共弦长为24 cm ,⊙O 1与⊙02的半径分别为13 cm 和15 cm ,则圆心距0102的长为______. 三、巧证切线 切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点. 判断直线是否是圆的切线,主要有两条途径: 1.圆心到直线的距离等于半径 当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,然后证明圆心到直线

椭圆及其标准方程练习题

椭圆及其标准方程练习题 【基础知识】 一.椭圆的基本概念 1.椭圆的定义:我们把平面内与两个定点的距离的和等于常数 ( )的 点的轨迹叫做椭圆,用符号表示为这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。 椭圆的定义、椭圆的标准方程、椭圆的性质 椭圆的图象和性质 数学定义式 |M F1|+|MF 2|=2a 焦点位置 x 轴 y 轴 图形 标准方程 焦点坐标 焦距 顶点坐标 a , b, c 的关系式 长、短轴 长轴长=2a , 短轴长=2b 对称轴 两坐标轴 离心率 a c e = = ( 0 < e < 1) 椭圆方程的总形式为 [经典例题]: 例1. 根据定义推导椭圆标准方程. 已知B,C 是两个定点,|BC|=6,且ABC ?的周长等于16,求顶点A的轨迹方程 已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D)线段 y x o y x o

例2.写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2 5) 例3 求适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0). (2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. 例4 已知椭圆经过两点()5,3()2 5 ,23与-,求椭圆的标准方程 例5 1.椭圆短轴长是2,长轴是短轴的2倍,则椭圆离心率是 ; 2.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 ; 3.若椭圆的两个焦点F 1、F2与短轴的一个端点B 构成一个正三角形,则椭圆的离心率为 ; [典型练习]: 1 椭圆 19 252 2=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.10 2.椭圆 1169 252 2=+y x 的焦点坐标是( ) A .(±5,0) B .(0,±5) C.(0,±12) D.(±12,0) 3.已知椭圆的方程为 182 2 2=+m y x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.28 2-m D.222-m

4用椭圆和圆的参数方程解题

用椭圆和圆的参数方程解题 题1 (2004年全国高中数学联赛四川省初赛第16题)已知椭圆 )0(1:22 22>>=+b a b y a x C 和动圆)(:222a r b r y x T <<=+.若点A 在椭圆C 上,点B 在 动圆T 上,且使直线AB 与椭圆C 、动圆T 均相切,求点A ,B 的距离AB 的最大值. 解 如图1所示,可不妨设点A ,B 均在第一象限. 图1 由点A 在椭圆C 上,可设?? ? ? ? <<20)sin ,cos (παααb a A ,得椭圆C 在点A 处的切线方程为 1sin cos =+y b x a α α ① 由点B 在动圆T 上,可设?? ? ? ? <<20)sin ,cos (πβββr r B ,得圆T 在点B 处的切线方程为 r y x =+ββsin cos ② 因为①②表示同一条直线,所以 r b a 1 sin sin cos cos ==βαβα αβαβsin sin ,cos cos b r a r == 222221 sin cos r b a =+αα ) ()(cos 2222222 b a r b r a --=α 所以 22222222222 22cos )(sin cos r b b a r b a OB OA AB -+-=-+=-=ααα

2 2222222 2 )(2)()(b a ab b a r b a r b a -=-+≤???? ? ?+-+= 进而可得AB 的最大值是b a -. 题2 (2015年浙江省高中数学竞赛第17题)已知椭圆)0(1:22 221>>=+b a b y a x C 的离 心率为 2 3 ,右焦点为圆7)3(:222=+-y x C 的圆心. (1)求椭圆1C 的方程; (2)若直线l 与曲线21,C C 都只有一个公共点,记直线l 与圆2C 的公共点为A ,求点A 的坐标. 解法1 (1)(过程略)14 22 =+y x . (2)如图2所示,可设直线l 与椭圆1C 相切于点)sin ,cos 2(ααB ,得椭圆1C 在点B 处的切线方程为 2sin 2cos =+ααy x ③ 图2 还可设直线l 与圆2C 相切于点)sin 7,3cos 7(ββ+A ,得圆2C 在点A 处的切线方程为 7cos 3sin cos +=+βββy x ④ 由③④表示同一条直线,可得 7 cos 32 sin sin 2cos cos +==ββαβα 所以 7 cos 3sin sin ,7cos 3cos 2cos +=+= ββ αββα

巧用辅助圆,妙解几何题

巧用辅助圆,妙解几何题 在一些数学题中,看似与圆毫无关系但是用常规的解题方法却无法解决问题,而通过题中的某些条件构造辅助圆,运用圆的知识进行解答,往往就会使题目简单化,从而使难题迎刃而解.本文结合一些实例,探析如何巧用辅助圆妙解几何题. 一、几何问题中的求线段长度 求线段的长度是初中数学比较常见的问题.该问题的常规解法是通过做垂直线构建直角三角形从而运用勾股定理或是巧用面积公式.但是在一些问题中,通过直接作出垂线,往往会使图形更加复杂,从而不能成功解题 例 1 如图所示,在四边形ABCD 中,//AD BC ,已知BC CD AC ===, AB =.则BD = . 解析 通过题干中的条件BC CD AC ==,我们可以想到以C 为圆心,BC 为半径作圆.根据圆的性质:直径对应的圆周角为直角,可以延长BC 交于⊙C 于点E ,连接DE , 如图所示,此时BDE V 为直角三角形.//AD BC Q ,AB DE ∴==,由勾股定理得 BD =BD. 点拨 根据题干中的线段相等,从而构建辅助圆,接着利用圆的性质进行解题.其中需要注意的是,虽然辅助圆能做出,但是要想解题,就要对圆的性质有一个深刻的理解. 二、几何问题中的求角的度数 求角的度数问题一般都是以三角形为载体,该问题的常规解法是利用三角函数的知识去解答,但是由于初中数学只学习了一些特殊的三角函数值且在直角三角形的载体中.当遇到一般的三角形,此时学生往往会无计可施 例 2 如图所示,在ABC V 中,其中AB AC =,BD 是ABC ∠的平分线,BD AD BC +=,则A ∠= . 解析 由题意得,本题要求的是A ∠,由于此题告知任意一个角的大小且ABC V 也不是直角三角形,因此运用三角函数的知识是很难解答该题的.由题干中BD 平分ABC ∠,可

相关文档
最新文档