柯布道格拉斯生产函数使用中多重共线性消除方法优劣比较

柯布道格拉斯生产函数使用中多重共线性消除方法优劣比较
柯布道格拉斯生产函数使用中多重共线性消除方法优劣比较

柯布道格拉斯生产函数使用中多重共线性消除方法优劣比较

研究生三班 陈颖辉 学号:20100201

【摘要】在分析各种主要因素对经济增长的贡献时,柯布道格拉斯生产函数被广泛应用。在这个生产函数中,劳动和资本两个内生变量往往存在严重的多重共线性。本文采用了两种不同的方法对多重共线性进行了消除,并比较其优劣,最后认为用模型一中的方法消除多重共线性更符合山东省实际。 【关键词】多重共线性 柯布道格拉斯生产函数 规模报酬不变

在分析各种主要因素对经济增长的贡献时,柯布道格拉斯生产函数被广泛应用。在这个生产函数中,劳动和资本两个内生变量往往存在严重的多重共线性。本文采用了两种不同的方法对多重共线性进行了消除,并比较其优劣,最后认为用模型一中的方法消除多重共线性更符合山东省实际。

本文决定沿着两个思路消除这种多重共线性:

第一个思路是在柯布道格拉斯函数的基础上,等式两边取对数,然后等式两边同减Lnl ,得到等式:即由ln ln ln ln y A k l αβ=++ 两边同减得到:ln y l

=lna+αln k

l +(α+β

-1)lnl 。从经济意义来考虑,

k

l

代表人均资本,l 表示的是劳动人数,从经济意义看两者之间的多重共线性要小于l 和k 之间的多重共线性。

第二个思路是假设αβ+=1。由l n

l n l n l n y A k l αβ=++得到ln

ln ln y k

A l l

α=+消除了多重共线性。但这条思路的前提是山东省的规模报酬不变。

本文通过这两个思路的对比,得出第一个模型更符合山东省实际情况。具体方法是用得到的两个模型进行预测,预测值与实际值偏差最小者,笔者认为便是两者之中较优者。

第一种模型的回归:

首先对ln y l

=lna+αln k

l +(α+β-1)lnl 用EVIEWS5.0进行回归,回归结果如下:

回归结果一

Dependent Variable: LOG(Y/L)

Method: Least Squares Date: 12/14/10 Time: 18:50 Sample: 1991 2008 Included observations: 18

Variable Coefficien t Std. Error t-Statistic Prob.

LOG(K/L) 0.730722 0.061064 11.96651 0.0000 LOG(L) 0.107864 0.007189 15.00366 0.0000

R-squared 0.897089 Mean dependent var 0.551117

Adjusted R-squared 0.890657 S.D. dependent var 0.671588 S.E. of regression 0.222075 Akaike info criterion -0.067168 Sum squared resid 0.789074 Schwarz criterion 0.031762

Log likelihood 2.604510 Durbin-Watson stat 1.166907

由上表得

α=0.730722 ,由αβ+-1=0.107864,

得出:β=0.377142

第二种模型的回归:

当αβ+=1时,对等式两边同减lnl,得:

ln

ln ln y k A l l

α=+, 这样就将原等式化为一元线性模型的回归,用Eviews5.0做出回归结果如下:

回归结果二 Dependent Variable: LOG(Y/L) Method: Least Squares Date: 12/14/10 Time: 18:59 Sample: 1991 2008 Included observations: 18

Variable Coefficien t Std. Error t-Statistic Prob.

LOG(K/L) 0.263864 0.197872 1.333512 0.2000 R-squared -0.550806 Mean dependent var 0.551117

Adjusted R-squared -0.550806 S.D. dependent var 0.671588 S.E. of regression 0.836338 Akaike info criterion 2.534385 Sum squared resid 11.89084 Schwarz criterion 2.583850 Log likelihood -21.80946 Durbin-Watson stat 0.231491

由上表可得:α=0.263864,

又因为假定:αβ+=1,β=0.736136

两种模型的对比:

分别用上述得到的结果,用两种模型对GDP 进行预测,求其离差,比较大小,从而据此得出两个模型之间的优劣判断。

预测值1 预测值2 预测值1估计的离

预测值2估计的离差

834.8093 426.5786 952050.5 1915349.108 2519.303

2560.12 104182.4 132197.3986

3383.71 2878.231 376186.2

11634.0433

3964.084 3048.722 14300.31 633263.3727 4810.59 3626.016 20380.55 1761816.816 5435.035 3798.116 201389.8 4350077.085 6033.084 3956.955

254002 6656993.403

6687.213 4121.603 111647.8 8408530.67

7089.207 4222.338 163727.5 10702725.18

7892.646 4451.917

197868 15097520.88

8505.619 4590.668 475300.6 21200241.92 10046.6 4902.718 52395.13 28866785.39 13718.57 5541.989 2690965 42721406.97 17960.13 6178.043 8633520

78212741.2

22915.33 6825.486 19346469 136688453.4

24034.73 7028.805

3831314 226459001.1

26408.7 7360.499 399161.2 339164195.3 30945.32 7875.518 145.0089 531660410.8 离差平方和

37825005

1454643344

从上表可以看出第二个模型即假设1αβ+=的模型预测结果的离差和为1454643344,远大于第一个模型的离差和37825005。因此笔者认为用第一种方法消除资本与劳动之间的多重共线性更符合山东省的实际情况。而第一种结果因为规模报酬不变这一假设太苛刻,与山东省的实际情况不符。因此在预测山东省的GDP 时应使用第一个模型。

柯布-道格拉斯(Cobb-Douglas)生产函数模型

柯布-道格拉斯(Cobb-Douglas )生产函数模型 齐微 辽宁工程技术大学理学院,辽宁阜新(123000) E-mail: qiwei1119@https://www.360docs.net/doc/7816957044.html, 摘 要:柯布-道格拉斯生产函数(Cobb-Douglas production function )用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数.本文对大量的生产数据进行处理,建立多项式拟合模型和线性规划模型对数据进行处理完成问题,对生产数据分析我们建立了多项式拟合,通过误差分析,多项式拟合模型是完全符合数据的.但通过使用线性回归方法求得的柯布-道格拉斯生产函数,通过对其进行误差分析我们知道柯布-道格拉斯生产函数与原始数据的误差比多项式拟合模型下的误差小的多. 关键词:柯布-道格拉斯生产函数;多项式拟合;线性回归 柯布-道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素.他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为: Y AK L αβ= 其中: Y —— 产量; A —— 技术水平; K —— 投入的资本量; L —— 投入的劳动量; ,αβ——K 和L 的产出弹性. 经济学中著名的柯布-道格拉斯(Cobb-Douglas )生产函数的一般形式为 (,),0,1Q K L aK L αβαβ=<< (1-1) 其中,,Q K L 分别表示产值、资金、劳动力,式中,,a αβ要由经济统计数据确定.现有《中国统计年鉴(2003)》给出的统计数据如表(其中总产值取自“国内生产总值”,资金 取自“固定资产投资”,劳动力取自“就业人员”)[3]. 问题1:运用适当的方法,建立产值与资金、劳动力的优化模型,并做出模型的分析与检验. 问题2:建立Cobb-Douglas 优化模型,并给出模型中参数,αβ的解释. 问题3:将几个模型做出比较与分析.

多重共线性的解决之法

第七章 多重共线性 教学目的及要求: 1、重点理解多重共线性在经济现象中的表现及产生的原因和后果 2、掌握检验和处理多重共线性问题的方法 3、学会灵活运用Eviews 软件解决多重共线性的实际问题。 第一节 多重共线性的产生及后果 一、多重共线性的含义 1、含义 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X 1,X 2,……,X k 中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 2、类型 多重共线性包含完全多重共线性和不完全多重共线性两种类型。 (1)完全多重共线性 完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。 如对于多元线性回归模型 i ki k i i i X X X Y μββββ+++++= 22110 (7-1) 存在不全为零的数k λλλ,,,21 ,使得下式成立: X X X 2211=+++ki k i i λλλ (7-2) 则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共线性。 从矩阵形式来看,就是0' =X X , 即1)(-

(2)不完全多重共线性 不完全多重共线性是指线性回归模型中解释变量间存在不严格的线性关系,即近似线性关系。 如对于多元线性回归模型(7-1)存在不全为零的数k λλλ,,,21 ,使得下式成立: X X X 2211=++++i ki k i i u λλλ (7-3) 其中i u 为随机误差项,则可以说解释变量k X ,,X ,X 21 之间存在不完全多重共线性。随机误差项表明上述线性关系是一种近似的关系式,大体上反映了解释变量间的相关程度。 完全多重共线性与完全非线性都是极端情况,一般说来,统计数据中多个解释变量之间多少都存在一定程度的相关性,对多重共线性程度强弱的判断和解决方法是本章讨论的重点。 二、多重共线性产生的原因 多重共线性在经济现象中具有普遍性,其产生的原因很多,一般较常见的有以下几种情况。 (一)经济变量间具有相同方向的变化趋势 在同一经济发展阶段,一些因素的变化往往同时影响若干经济变量向相同方向变化,从而引起多重共线性。如在经济上升时期,投资、收入、消费、储蓄等经济指标都趋向增长,这些经济变量在引入同一线性回归模型并作为解释变量时,往往存在较严重的多重共线性。 (二)经济变量间存在较密切关系 由于组成经济系统的各要素之间是相互影响相互制约的,因而在数量关系上也会存在一定联系。如耕地面积与施肥量都会对粮食总产量有一定影响,同时,二者本身存在密切关系。 (三)采用滞后变量作为解释变量较易产生多重共线性 一般滞后变量与当期变量在经济意义上关联度比较密切,往往会产生多重共线性。如在研究消费规律时,解释变量因素不但要考虑当期收入,还要考虑以往各期收入,而当期收入与滞后收入间存在多重共线性的可能很大。 (四)数据收集范围过窄,有时会造成变量间存在多重共线性问题。 三、多重共线性产生的后果 由前述可知,多重共线性分完全多重共线性和不完全多重共线性两种情况,两种情况都会对模

(完整版)多重共线性检验与修正

问题: 选取粮食生产为例,由经济学理论和实际可以知道,影响粮食生产y的因素有:农业化 肥施用量x1,粮食播种面积x2,成灾面积x3,农业机械总动力x4,农业劳动力x5,由此建 立以下方程:y=β0+β1x1+β2x2+β3x3+β4x4+β5x5,相关数据如下: 解:1、检验多重共线性 (1)在命令栏中输入:ls y c x1 x2 x3 x4 x5,则有; 可以看到,可决系数R2和F值都 很高,二自变量x1到x5的t值 均较小,并且x4和x5的t检验 不显著,说明方程很可能存在多 重共线性。 (2)对自变量做相关性分析: 将x1——x5作为组打开,view——covariance analysis——correlation,结果如下: 可以看到x1和x4的相关系数 为0.96,非常高,说明原模型 存在多重共线性

2、多重共线性的修正 (1)逐步回归法 第一步:首先确定一个基准的解释变量,即从x1,x2,x3,x4,x5中选择解释y 的最好的一个建立基准模型。分别用x1,x2,x3,x4,x5对y 求回归,结果如下: 在基准模型的基础上,逐步将x2,x3等加入到模型中, 加入x2,结果: 从上面5个输出结果可以知道,y 对x1的可决系数R2=0.89(最高),因此选择第一个方程作为基准回归模型。即: Y = 30867.31062 + 4.576114592* x1

再加入x3,结果:再加入x4,结果: 拟合优度R2=0.961395,显著提高; 并且参数符号符合经济常识,且均显著。 所以将模型修改为: Y= -44174.52+ 4.576460*x1+ 0.672680*x2 拟合优度R2=0.984174,显著提高; 并且参数符号符合经济常识(成灾面积越大,粮食产量越低),且均显著。 所以将模型修改为: Y=-12559.35+5.271306*x1+0.417257*x2-0.212103*x3 拟合优度R2=0.987158,虽然比上一次拟 合提高了; 但是变量x4的系数为-0.091271,符号不 符合经济常识(农业机械总动力越高, 粮食产量越高),并且x4的t检验不显著。 因此应该从模型中剔除x4。

多重共线性问题的几种解决方法

多重共线性问题的几种解决方法 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释 变量之间不存在线性关系,也就是说,解释变量X 1,X 2 ,……,X k 中的任何一个 都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考: 1、保留重要解释变量,去掉次要或可替代解释变量 2、用相对数变量替代绝对数变量 3、差分法 4、逐步回归分析 5、主成份分析 6、偏最小二乘回归 7、岭回归 8、增加样本容量 这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。 逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。具体方法分为两步: 第一步,先将被解释变量y对每个解释变量作简单回归: 对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。

第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别: 1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。 2.如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。 3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。 下边我们通过实例来说明逐步回归分析方法在解决多重共线性问题上的具体应用过程。 具体实例 例1设某地10年间有关服装消费、可支配收入、流动资产、服装类物价指数、总物价指数的调查数据如表1,请建立需求函数模型。 表1 服装消费及相关变量调查数据

多重共线性的检验与修正

计量经济学实验报告成绩 课程名称计量经济学指导教师苏卫东实验日期 2014-6-24 院(系)财政与金融学院专业班级金融二专实验地点实验楼八机房 学生姓名单一芳学号 201212041018 同组人无 实验项目名称多重共线性的检验与修正 一、实验目的和要求 1、理解多重共线性的含义与后果 2、掌握Eviews软件的操作和多重共线性的检验与修正 二、实验原理 Eviews软件的操作和多重共线性的检验修正方法 三、主要仪器设备、试剂或材料 Eviews软件,计算机 四、实验方法与步骤 1、准备工作:建立工作文件,并输入数据 CREATE A 1974 1981; DATA Y X1 X2 X3 X4 X5 2、OLS估计: LS Y C X1 X2 X3 X4 X5; 3、计算简单相关系数 COR X1 X2 X3 X4 X5 4、多重共线性的解决 LS Y C X1; LS Y C X2; LS Y C X3; LS Y C X4; LS Y C X5;

LS Y C X1 X3; LS Y C X1 X3 X2; LS Y C X1 X3 X4; LS Y C X1 X3 X5 五、实验数据记录、处理及结果分析 1、建立工作组,输入以下数据: obs Y X1 X2 X3 X4 X5 1974 98.45 560.2 153.2 6.53 1.23 1.89 1975 100.7 603.11 190 9.12 1.3 2.03 1976 102.8 668.05 240.3 8.1 1.8 2.71 1977 133.95 715.47 301.12 10.1 2.09 3 1978 140.13 724.27 361 10.93 2.39 3.29 1979 143.11 736.13 420 11.85 3.9 5.24 1980 146.15 748.91 497.16 12.28 5.13 6.83 1981 144.6 760.32 501 13.5 5.47 8.36 1982 148.94 774.92 529.2 15.29 6.09 10.07 1983 158.55 785.3 552.72 18.1 7.97 12.57 1984 169.68 795.5 771.16 19.61 10.18 15.12 1985 162.14 804.8 811.8 17.22 11.79 18.25 1986 170.09 814.94 988.43 18.6 11.54 20.59 1987 178.69 828.73 1094.65 23.53 11.68 23.37 2、OLS估计 LS Y C X1 X2 X3 X4 X5 Dependent Variable: Y Method: Least Squares Date: 06/24/14 Time: 18:45 Sample: 1974 1987 Included observations: 14 Variable Coefficient Std. Error t-Statistic Prob. C -3.650950 30.00144 -0.121692 0.9061 X1 0.125752 0.059087 2.128275 0.0660 X2 0.072656 0.037445 1.940317 0.0883 X3 2.681426 1.258639 2.130418 0.0658 X4 3.405866 2.444896 1.393052 0.2011 X5 -4.430561 2.194164 -2.019248 0.0781 R-squared 0.970397 Mean dependent var 142.7129

第七章 多共线性及其处理

第七章 多重共线性及其处理 第一部分 学习辅导 一、本章学习目的与要求 1.理解多重共线性的概念; 2.掌握多重共线性存在的主要原因; 3.理解多重共线性可能造成的后果; 4.掌握多重共线性的检验与修正的方法。 二、本章内容提要 本章主要介绍计量经济模型的计量经济检验。即多重共线性问题。 多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。模型的多个解释变量间出现完全共线性时,模型的参数无法估计。更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t 统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。 (一)多重共线性及其产生的原因 当我们利用统计数据进行分析时,解释变量之间经常会出现高度多重共线性的情况。 1.多重共线性的基本概念 多重共线性(Multicollinearity )一词由弗里希(Frish )于1934年在其撰写的《借助于完全回归系统的统计合流分析》中首次提出。它的原义是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系。 如果在经典回归模型Y X βε=+中,经典假定(5)遭到破坏,则有()1R X k <+,此时称解释变量k X X X ,,,21ΛΛ间存在完全多重共线性。解释变量的完全多重共线性,也就是解释变量之间存在严格的线性关系,即数据矩阵X 的列向量线性相关。因此,必有一个列向量可由其余列向量线性表示。 同时还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,但是却有近似的线性关系,即解释变量之间高度相关。 2.多重共线性产生的原因 多元线性回归模型产生多重共线性的原因很多,主要有: (1)经济变量的内在联系 这是产生多重共线性的根本原因。 (2)解释变量中含有滞后变量 (3)经济变量变化趋势的“共向性” 必须指出,多重共线性基本上是一种样本现象。因为人们在设定模型时,总是尽量避免将理论上具有严格线性关系的变量作为解释变量收集在一起,因此,实际问题中的多重共线性并不是解释变量之间存在理论上或实际上的线性关系造成的,而是由所收集的数据(解释变量观察值)之间存在近似的线性关系所致。 (二)多重共线性的影响 多重共线性会产生以下问题: (1)增大了OLS 估计量的方差 (2)难以区分每个解释变量的单独影响 (3)回归模型缺乏稳定性 (4)t 检验的可靠性降低 (三)多重共线性的判别 在应用多元回归模型中,人们总结了许多检验多重共线性的方法。 1.系数判定法

多重共线性检验与修正

多重共线性检验与修正 数据来源:《中国统计年鉴2014》12-10、4-3、12-4、12-5、12-8、 Eviews操作: 1、基本操作: (1)录入数据:命令:data y l m f a ir (y代表粮食产量,l代表第一产业劳动力数量,m代表农业机械总动力,f代表化肥施用量,a代表农作物总播种面积,ir为有效灌溉面积/农作总播种面积得出的灌溉率) (2)做线性回归:命令:LS y c l m f a ir 2、检验多重共线性 (1)方差膨胀因子判断法 在生成的线性回归eq01中,view—coefficient diagnostics—variance inflation factors 看生成表格中的Centered VIF,发现L、M、F、A、IR的方差膨胀因子都很大,说明存在严重多重共线性。(eg:L的Centered VIF指以L为因变量,M、A、F、IR为自变量所做出的辅助回归的判定系数R2,然后1/1-R2得出的值。) (由课本内容可知,当完全不共线性时,VIF=1;完全共线性时,VIF=正无穷)(2)相关系数矩阵判断法 命令:cor l m f a ir 这个是通过看各个解释变量之间的相关系数来判断是否存在多重共线性的。可以看到大多数解释变量之间两两相关系数都大于0.9。相关系数极大说明解释变量之间存在很高的相关性,因而也就很可能存在共线性。 3、修正多重共线性 (1)逐步回归排除引起共线性的变量 ①菜单栏操作 在生成的线性回归eq01中,Estimate—Method—STEPLS 接下来会出现两个框框,上面的框框是固定住不做逐步回归的变量,一般设定为y和c

解决多元线性回归中多重共线性问题的方法分析

解决多元线性回归中多重共线性问题的方法分析 谢小韦,印凡成 河海大学理学院,南京 (210098) E-mail :xiexiaowei@https://www.360docs.net/doc/7816957044.html, 摘 要:为了解决多元线性回归中自变量之间的多重共线性问题,常用的有三种方法: 岭回 归、主成分回归和偏最小二乘回归。本文以考察职工平均货币工资为例,利用三种方法的 SAS 程序进行了回归分析,根据分析结果总结出三种方法的优缺点,结果表明如果能够使用 定性分析和定量分析结合的方法确定一个合适的k 值,则岭回归可以很好地消除共线性影 响;主成分回归和偏最小二乘回归采用成份提取的方法进行回归建模,由于偏最小二乘回归 考虑到与因变量的关系,因而比主成分回归更具优越性。 关键词:多重共线性;岭回归;主成分回归;偏最小二乘回归 1. 引言 现代化的工农业生产、社会经济生活、科学研究等各个领域中,经常要对数据进行分析、 拟合及预测,多元线性回归是常用的方法之一。多元线性回归是研究多个自变量与一个因变 量间是否存在线性关系,并用多元线性回归方程来表达这种关系,或者定量地刻画一个因变 量与多个自变量间的线性依存关系。 在对实际问题的回归分析中,分析人员为避免遗漏重要的系统特征往往倾向于较周到地 选取有关指标,但这些指标之间常有高度相关的现象,这便是多变量系统中的多重共线性现 象。在多元线性回归分析中,这种变量的多重相关性常会严重影响参数估计,扩大模型误差, 破坏模型的稳健性,从而导致整体的拟合度很大,但个体参数估计值的t 统计量却很小,并 且无法通过检验。由于它的危害十分严重,存在却又十分的普遍,因此就要设法消除多重线 性的不良影响。 常用的解决多元线性回归中多重共线性问题的模型主要有主成分回归、岭回归以及偏最 小二乘回归。三种方法采用不同的方法进行回归建模,决定了它们会产生不同的效果。本文 以统计职工平均货币工资为例,考察一组存在共线性的数据,运用SAS 程序对三种回归进 行建模分析,并对结果进行比较,总结出它们的优势与局限,从而更好地指导我们解决实际 问题。 2. 共线性诊断 拟合多元线性回归时,自变量之间因存在线性关系或近似线性关系,隐蔽变量的显著性, 增加参数估计的方差,导致产生一个不稳定的模型,因此共线性诊断的方法是基于自变量的 观测数据构成的矩阵T x x 进行分析,使用各种反映自变量间相关性的指标。共线性诊断常 用统计量有方差膨胀因子VIF (或容限TOL )、条件指数和方差比例等。 一般认为:若VIF>10,说明模型中有很强的共线性关系;若条件指数值在10与30间 为弱相关,在30与100间为中等相关,大于100为强相关;在大的条件指数中由方差比例 超过0.5的自变量构成的变量子集就认为是相关变量集[1]。 3. 三种解决方法 岭回归基本思想: 当出现多重共线性时,有0T X X ≈,从而使参数的1?()T T X X X Y β ?=很不稳定,出现不符合含义的估计值,给T X X 加上一个正常数矩阵(0)KI K >,则T X X KI +等

数据建立柯布道格拉斯生产函数分析美国某行业的投入产出情况

数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况实验目的 1.利用数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况,并用多种统计方法检验规模报酬不变的假设。 2.利用CES生产函数检验是否使用柯布道格拉斯生产函数建模是较为合适的。 实验报告 1、问题提出 生产力水平决定了一个国家或者地区的生活水平,因此研究分析产出受那些因素的影响以及是如何被影响对于把握生产规律并进而提高生产效率有着极大的意义。 2、指标选择 从经济学原理的课程学习中可以知道,产量Y主要是被这几个因素所决定:技术水平(T),资本量(K),劳动(L),人力资本(H)自然资源(N)。根据已有的数据资料,为达到实验目的,并且简化实验模型与分析,只分析劳动与资本量这两个因素的投入对产出的影响。在本次实验中,我们分析美国某行业投入与产出情况。选择样本容量为27的样本,分析劳动量,资本与产出的关系。 3、数据来源 数据由老师提供,详细数据见表1

4.数据处理 将表1中的实验数据化为其对数,方便建模时分析,如表2所示

5.09565.367985.228105.50465.35375 6.537576.115426.571165.770005.534065.465694.946845.0372 15.481766.28549 7.355535.368866.987586.25715.71986.728255.648975.015755.560336.209795.6174 94.8978 表2 5.数据分析 而且没有发现明显产出越多。投入越多,K与资本L可以明显的发现劳动量数据,1观察表. 不符合实际的数据。但是其中的幂函数关系需要通过进一步的分析发现。 6.建立模型 通过数理经济学的学习我们还了解到,生产函数常以柯布-道格拉斯(Cobb-Douglas)幂函数的形式出现。柯布-道格拉斯生产函数最初是美国数学家柯布(Cobb)和经济学家道格拉斯(Douglas)共同探讨投入生产关系时创立的生产函数,他们根据历史资料,研究了1899-1922年美国资本和劳动对生产的影响,认为在技术不变的情况下产出与投入的劳动力??LAKY?及资本的关系可以表示为:,其中Y表示产量,A表示技术水平,K表示投入的资本量,L表示投入的劳动量,α、β分别表示K和L的产出弹性。

所有计量经济学检验方法(全)

计量经济学所有检验方法 一、拟合优度检验 可决系数 TSS RSS TSS ESS R - ==12 TSS 为总离差平方和,ESS 为回归平方和,RSS 为残差平方和 该统计量用来测量样本回归线对样本观测值的拟合优度。 该统计量越接近于1,模型的拟合优度越高。 调整的可决系数)1/() 1/(12---- =n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的 自由度。将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。 二、方程的显著性检验(F 检验) 方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。 原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1: βj 不全为0 统计量 )1/(/--= k n RSS k ESS F 服从自由度为(k , n-k-1)的F 分布,给定显著性水平α,可得到临界值 F α(k,n-k-1),由样本求出统计量F 的数值,通过F>F α(k,n-k-1)或F ≤F α(k,n-k-1)来拒绝或接受原假设H 0,以判定原方程总体上的线性关系是否显著成立。 三、变量的显著性检验(t 检验) 对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。 原假设与备择假设:H0:βi =0 (i=1,2…k );H1:βi ≠0 给定显著性水平α,可得到临界值t α/2(n-k-1),由样本求出统计量t 的数值,通过 |t|> t α/2(n-k-1) 或 |t|≤t α/2(n-k-1) 来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。 四、参数的置信区间 参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。 统计量 )1(~1??? ----'--= k n t k n c S t ii i i i i i e e βββββ 在(1-α)的置信水平下βi 的置信区间是 ( , ) ββααββ i i t s t s i i -?+?2 2 ,其中,t α/2为显著性水平 为α、自由度为n-k-1的临界值。 五、异方差检验 1. 帕克(Park)检验与戈里瑟(Gleiser)检验 试建立方程:i ji i X f e ε+=)(~2 或 i ji i X f e ε+=)(|~| 选择关于变量X 的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。

最新多重共线性的解决之法

多重共线性的解决之 法

第七章多重共线性 教学目的及要求: 1、重点理解多重共线性在经济现象中的表现及产生的原因和后果 2、掌握检验和处理多重共线性问题的方法 3、学会灵活运用Eviews软件解决多重共线性的实际问题。 第一节多重共线性的产生及后果 一、多重共线性的含义 1、含义 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,X k中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 2、类型 多重共线性包含完全多重共线性和不完全多重共线性两种类型。 (1)完全多重共线性 完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。 如对于多元线性回归模型

i ki k i i i X X X Y μββββ+++++= 22110 (7- 1) 存在不全为零的数k λλλ,,,21 ,使得下式成立: 0X X X 2211=+++ki k i i λλλ (7-2) 则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共 线性。 从矩阵形式来看,就是0'=X X , 即1)(-

多重共线性问题的检验和处理

山西大学 实验报告 实验报告题目:多重共线性问题的检验和处理 学院: 专业: 课程名称:计量经济学 学号: 学生姓名: 教师名称:崔海燕 上课时间:

一、实验目的: 熟悉和掌握Eviews在多重共线性模型中的应用,掌握多重共线性问题的检 验和处理。 二、实验原理:1、综合统计检验法; 2、相关系数矩阵判断; 3、逐步回归法; 三、实验步骤: (一)新建工作文件并保存 打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存。 (二)输入并编辑数据 在主菜单栏点击Quick键,选择empty\group新建空数据栏,根据理论和经 验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面积(X2)、 成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾面积的符号为 负,其余均应为正。下表给出了1983——2000中国粮食生产的相关数据。点击name 键进行命名,选择默认名称Group01,保存文件。 Y X1 X2 X3 X4 X5 1983 38728 1660 114047 16209 18022 31151 1984 40731 1740 112884 15264 19497 30868 1985 37911 1776 108845 22705 20913 31130 1986 39151 1931 110933 23656 22950 31254 1987 40208 1999 111268 20393 24836 31663 1988 39408 2142 110123 23945 26575 32249 1989 40755 2357 112205 24449 28067 33225 1990 44624 2590 113466 17819 28708 38914 1991 43529 2806 112314 27814 29389 39098 1992 44264 2930 110560 25895 30308 38669 1993 45649 3152 110509 23133 31817 37680 1994 44510 3318 109544 31383 33802 36628 1995 46662 3594 110060 22267 36118 35530 1996 50454 3828 112548 21233 38547 34820 1997 49417 3981 112912 30309 42016 34840 1998 51230 4084 113787 25181 45208 35177 1999 50839 4124 113161 26731 48996 35768 2000 46218 4146 108463 34374 52574 36043 2001 45264 4254 106080 31793 55172 36513 2002 45706 4339 103891 27319 57930 36870 2003 43070 4412 99410 32516 60387 36546

柯布_道格拉斯生产函数及其应用

柯布-道格拉斯生产函数及其应用 [容提要] 生产函数是指在一定时期,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。 [关键词]生产函数柯布道格拉斯经济数量分析经济增长 一、生产函数 (一)简述 生产函数是指在一定时期,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。它可以用一个数理模型、图表或图形来表示。换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。另外,在宏观经济学的增长理论中,在讨论技术进步的时候,生产函数得到了很大的讨论。

(二)常见生产函数 1、固定投入比例生产函数 固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。 2、柯布-道格拉斯生产函数 柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。 (三)特点 1、生产函数反映的是在既定的生产技术条件下投入和产出之间的数量关系。如果技术条件改变,必然会产生新的生产函数。 2、生产函数反映的是某一特定要素投入组合在技术条件下能且只能产生的最大产出。 (四)分类 生产函数分一种可变投入生产函数和多种可变投入生产函数。 1、一种可变投入生产函数 对既定产品,技术条件不变、固定投入(通常是资本)一定、一种可变动投入(通常是劳动)与可能生产的最大产量间的关系,通常又称作短期生产函数。2、多种可变投入生产函数 在考察时间足够长时,可能两种或两种以上的投入都可以变动、甚至所有的投入都可以变动,通常称为长期生产函数。 二、柯布-道格拉斯生产函数

检验多重共线性

实验目的:在回归模型牵涉到多个自变量的时候,自变量之间可能会相互关联,即他们之间存在有多重共线性,本节实验的实验目的是如何用Eviews检测各个自变量之间是否存在的多重共线问题以及如何对多重共线性进行修正。 我们实验的原始数据如图所示,判断钢产量y与生铁产量X1,发电量X2,固定资产投资X3,国内生产总值X4,铁路运输量X5之间的关系。 实验步骤: 1:打开Eviews7.0. →File→Workfile,选择年度数据,在初始日期和结束日期分别输入“1978”和结束年份“1997”。点击“OK”确定。 2:在新建工作表中,点击Proc→Import→Read,选定需要导入的Excel工作表,在“Upper-left data cell”中输入数据在Excel中的初始位置“B2”,在“Excel 5+….”中输入“sheet1”,在“Name for serises、”中输入“y x1 x2 x3 x4 x5”点击“OK”即可。 3:在Eviews空白处输入:“ls y c x1 x2 x3 x4 x5”,回车即可,结果如下。

Dependent Variable: Y Method: Least Squares Date: 04/19/13 Time: 11:24 Sample: 1978 1997 Included observations: 20 Variable Coefficient Std. Error t-Statistic Prob. C 354.5884 435.6968 0.813842 0.4294 X1 0.026041 0.120064 0.216892 0.8314 X2 0.994536 0.136474 7.287380 0.0000 X3 0.392676 0.086468 4.541271 0.0005 X4 -0.085436 0.016472 -5.186649 0.0001 X5 -0.005998 0.006034 -0.994019 0.3371 R-squared 0.999098 Mean dependent var 5153.450 Adjusted R-squared 0.998776 S.D. dependent var 2512.131 S.E. of regression 87.87969 Akaike info criterion 12.03314 Sum squared resid 108119.8 Schwarz criterion 12.33186 Log likelihood -114.3314 Hannan-Quinn criter. 12.09145 F-statistic 3102.411 Durbin-Watson stat 1.919746 Prob(F-statistic) 0.000000 经查表可知,t(17)=1.345,结合上表可知,x1和x5没有通过t检验,而且F\检验较大,估计解释变量之间可能存在着多重共线性。相关性如下图所示: 可知X1 X2 X3 X4 X5,之间存在着较强的多重共线

柯布道格拉斯生产函数及其应用

柯布-道格拉斯生产函数及其应用 考号:: [内容提要] 生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。 [关键词]生产函数柯布道格拉斯经济数量分析经济增长 一、生产函数 (一)简述 生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。它可以用一个数理模型、图表或图形来表示。换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。另外,在宏观经济学的增长理论中,在讨论

技术进步的时候,生产函数得到了很大的讨论。 (二)常见生产函数 1、固定投入比例生产函数 固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。 2、柯布-道格拉斯生产函数 柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。 (三)特点 1、生产函数反映的是在既定的生产技术条件下投入和产出之间的数量关系。如果技术条件改变,必然会产生新的生产函数。 2、生产函数反映的是某一特定要素投入组合在技术条件下能且只能产生的最大产出。 (四)分类 生产函数分一种可变投入生产函数和多种可变投入生产函数。 1、一种可变投入生产函数 对既定产品,技术条件不变、固定投入(通常是资本)一定、一种可变动投入(通常是劳动)与可能生产的最大产量间的关系,通常又称作短期生产函数。 2、多种可变投入生产函数 在考察时间足够长时,可能两种或两种以上的投入都可以变动、甚至所有的投入都可以变动,通常称为长期生产函数。 二、柯布-道格拉斯生产函数

多重共线性的判断与修正

多重共线性的判断与修正 一、多重共线性的判断 1. 综合统计检验法 LS Y C X1 X2 对模型进行OLS, 得到参数估计表 (1) 当2,R F 很大,而回归系数的t 检验值小于临界值时,可判定该模型存在多重共线性。 (2) 当完全共线性存在时,模型的OLS 无法进行,Eviews 会提示:矩阵的逆(1()T X X -)不 存在。 2. 简单相关系数检验法 LS Y C X1 X2 对模型进行OLS, 得到参数估计表中的2 R . 点击:Quick/Group Statistics/Correlation 在对话框中输入:X1 X2 , 点击OK, 即可得到简单相关系数矩阵 检验:若存在 i j x x r 接近于1, 或 22,i j x x r R >,则说明,i j x x 之间存在着严重的相关性。 3. 辅助回归法(方差扩大因子法) 设 121112...(1)(1)...j j k Xj X X X j X j Xk V ααααα-+=+++-+++++ (j ) LS Xj X1 X2…Xk 对(j) 进行OLS, 得到参数估计表 检验:若表中 (2,1)F F k n k α>--+, 则可确定存在多重共线性。 或者(方差扩大因子法):计算211j j VIF R =-, (2j R 为以上方程的可决系数), 若10j VIF ≥, 则可确定存在多重共线性。 4. 逐步回归法 1) 首先计算被解释变量对每个解释变量的回归方程,得到基本回归方程: LS Y C Xi OLS ,得到基本回归方程(i), i = 1,2,…,k 2) 从这些基本回归方程中选出最合理的方程, 即,2 R 取值最大,且t 检验显著。比方说,0j Y Xj ββ=+ 3) 在这个选出的方程中增加新的解释变量, 再进行OLS 分析: LS Y C Xj Xi ( i= 1,2,…,j-1, j+1,…k) 判断: 如果新加入的解释变量对2 R 改进最大, 且每个系数又是t 统计显著,则保留这个新的解释变量。转4) 如果新加入的解释变量不仅使2R 变小, 且t 统计不显著,以至于使某些系数达到不能

相关文档
最新文档