(汽车行业)混合电动汽车用逆变器关键技术研究

(汽车行业)混合电动汽车用逆变器关键技术研究
(汽车行业)混合电动汽车用逆变器关键技术研究

(汽车行业)混合电动汽车用逆变器关键技术研究

混合电动汽车用逆变器关键技术研究

电动汽车(EV)、混合电动汽车(HEV)和燃料电池汽车(FCEV)具有良好的应用前景和经济效益[1-2],其中HEV的应用在当前壹段时期可能达到较大的规模。许多X公司和科研机构对HEV的研究非常深入,所包括的不同于普通汽车的关键技术有:电池[3];电机及其驱动系统[4];系统能源管理[5]等。

电机及其驱动系统是HEV的关键部件。首先,其高可靠性必须能够保证HEV长期可靠工作;其次,系统效率对HEV的能耗水平具有决定影响。当下得到大规模应用的有基于永磁电机和感应电机的变频调速系统(以下简称逆变器)。基于永磁电机的逆变器,以日立、川崎等日本X公司的产品最为成熟;基于异步电机的逆变器,ABB、SIEMENS、ALSTON等欧洲著名X公司都能够提供不同功率等级的应用系统。在电力机车市场方面,产品应用和发展趋势也是壹致的。本文研究的是基于异步电机的逆变器,配套电机为湘电股份X公司生产的YQ57型变频牵引异步电动机,应用于湘电股份X公司的XD6120型HEV客车上。

不同于普通的风机、水泵等壹般工业应用场合,应用于HEV的逆变器由于使用环境的特殊性,其关键要求有:结构设计可靠,安装维修方便,防护等级高,适应恶劣的环境。

1电气系统设计

HEV的电气系统主要包括三个部分:蓄电池、电机、逆变器。参考文献[6]对电气系统设计过程进行了详细说明,而且也对这三个部分的参数进行了详细的说明和分析。

(1)电机基本参数确定:电机的功率和转矩参数应根据HEV的速度要求、转矩特性和传动比来确定,最后确定和XD6120型混合电动汽车配套的电机功率为57kW,额定转速为2000r/min,最大起动转矩为2Tn。

(2)电压等级确定:由于汽车以安全为第壹要素,因此在HEV上应用的IGBT以600V和1200V 系列最为广泛。确定电池和电机电压的等级应考虑如下因数:IGBT在关断时有可能产生过电压,因此600V系列IGBT实际使用时的直流侧电压低于400V;电池电压是浮动的,按照壹般要求,最高电压等于额定电压的120%;功率相同时,电压等级越高,电流越小,电机和变频器的体积就相对越小。综合之上因素,确定电池的电压等级为312V,电机的电压等级为230V。

(3)其他参数确定:蓄电池电压选定后,仍应根据HEV的续航里程等要求选定蓄电池的安时数;根据电机电流计算逆变器电流;根据系统电压和电流等级选择保护用开关及其熔断器、电线电缆的型号规格、各种电气系统的绝缘和电气间隙等。

2逆变器设计关键技术

逆变器设计关键技术包括:主电路参数计算;散热器和风机计算;数字控制电路设计和软件设计;总体结构设计。

2.1主电路电气图和主要器件参数计算

逆变器采用电压源型主电路,直流侧加支撑电容,附加直流继电器和预充电电路。其电路图如图1所示。

在主电路设计时,最重要的是确定功率器件的电压和电流等级。本系统选择的IGBT电压等级为600V,对应的蓄电池电压等级选择为312V,电机额定电流In=192A,考虑到在低速起动时要求起动转矩为2Tn,对应的电机的启动电流约为2In,因此选择IGBT的电流等级为600A。

根据所选择的电压等级,直流侧电容电压等级选定为450V。其容量则壹般使用如下经验公式进行计算[7]:

式中,P为逆变器输出功率,VDC为直流侧电压,CDC为直流侧电容容量。经计算得到需要的电容容量为0.0175F≤CDC≤0.035F。实际系统中的电容容量为20000μF。

2.2功率器件损耗计算[8]

功率器件的损耗由IGBT静态损耗、IGBT开关损耗、二级管静态损耗和二极管动态损耗等四个部分组成。

(1)IGBT静态损耗计算公式为:

式中,ICP为额定输出电流;Vce(sat)为在额定输出电流时的饱和压降;D为平均占空比;cosθ为功率因数。

(2)IGBT开关损耗计算公式为:

式中,fC为开关频率;PSW(ON)为IGBT开通能耗;PSW(OFF)为IGBT关断能耗。

(3)二极管静态损耗计算公式为:

式中,Vec为二极管导通压降。

(4)二极管动态损耗计算公式为:

式中:Irr为二极管反向恢复电流;trr为二极管反向恢复时间。

综合上述四项,计算得到的最大损耗为1350W。

2.3数字控制电路设计和控制软件设计

逆变器的控制算法由数字控制电路完成,数字控制电路包括俩大部分:电源及功率器件驱动板和数字控制电路板。

数字控制电路板的核心芯片使用TIX公司的TMS320F240,它接收外部命令,检测外部模拟信号,完成复杂的数字控制算法,产生PWM脉冲;使用CPLD芯片作为外围接口芯片;使用AMP防水插座接收外部信号。

由于HEV传动系统的速度和转矩变换范围非常大,系统采用的是有速度传感器的转子磁场定向控制,参考文献[9]对此控制有详细的叙述,且给出了完整的DSP算法实现。

3系统可靠性设计

对于HEV车辆用变频器,由于安装位置在车底下,工作环境非常差,具体表现为:

(1)环境温度差别非常大,在实际运行测试中曾经监测的温度最高达到了50℃,最低为-10℃;

(2)在天气晴朗时工作环境有灰尘,在下雨天时则有雨水;

(3)变频器需要承受很强的冲击和振动。

为了保证车辆能安全运行,系统的可靠性设计是最重要的。

3.1散热器和风机计算

在计算了功率器件的损耗之后,就能够根据损耗确定散热器和风机。为此,使用热分析软件FLOTHERM进行仿真计算,仿真结果要求散热器温升在30K以下。

软件计算结果:表1为散热器的物理结构和参数;表2为风机的风量和风压计算结果;表3为散热器上选择的五个测试点的温度值。

根据软件仿真计算结果,散热器选择钎焊式铝散热器,风机选择EBMX公司的EBM6224N。

3.2壹体化结构设计

为了减轻重量,外壳使用铝合金材料,强度好、重量轻。在结构设计上尽量减小体积,因此使用壹体化结构设计。

(1)驱动板直接压接在IGBT上;

(2)直流侧电容通过复合母排直接连接在IGBT上,

减小电感;

(3)风机直接安装在散热器底部;

(4)数字控制电路板安装在铝外壳上,方便拆卸。

使用壹体化结构设计后,系统的维修时间大大缩短。数字控制板和外部信号的连接都使用AMP连接件,使用可靠、拆装方便;电源板和IGBT之间的连接使用容易拆卸的针式连接。所有的拆卸工作和更换工作都能够在5分钟内完成。由于系统组成简单,所以维修工作也非常简单,只需要更换损坏的电路板。因此所有工作都能够在非常短的时间内完成。

3.3宽范围工作温度设计

由于使用环境的不同,实际的工作环境温度有可能比条件(1)更加恶劣,这就要求变频器能够适应非常宽的工作环境温度。系统设计时充分考虑了使用环境的问题,在生产和出厂试验中要保证变频器能够长期可靠地工作。具体采取了如下措施:

(1)选择器件的工作温度范围为-40℃~85℃,且对所有器件进行筛选;

(2)对所有功率器件都进行额定功率24小时通电试验;

(3)电路板测试完成后进行-40℃的低温存放48小时试验;

(4)电路板测试完成后进行80℃的高温存放48小时试验;

(5)电路板测试完成后进行-40℃和85℃的高低温循环试验,试验3次共24小时;

(6)变频器装配完成后进行4小时的额定工况试验;试验结果要求散热器温升在30K以下;通过之上措施能够保证变频器在宽温度范围内工作。

3.4防水防尘设计

考虑到变频器安装在车底下,工作环境非常差,有雨水和灰尘,所以系统必须采用防水防尘结构设计。

(1)机壳和散热底座之间加密封防水橡胶;

(2)电机电缆通过防水插座和内部功率器件连接;

(3)外部控制电源和电源线通过AMP防水插座和内部控制电路板连接;

(4)使用EBMX公司的防水风机对散热器进行强制风冷,其控制线通过防水插座和内部控制电路板相连。

采用这些措施使系统整体防护等级达到IP55,在使用过程中,能够用水冲洗变频器。虽然由于环境因素导致变频器的外部都是灰尘,可是且不影响变频器的正常工作。

3.5软件上的特殊设计

为了使变频器适用于HEV,软件也进行了壹些特殊设计:控制方式为开环转矩控制;限制转矩变化率,使驾驶者感觉加速和减速都非常平稳;限制电机和变频器的温度上升速度,以提高系统的可靠运行能力;限制充电电流,以保护蓄电池。这些软件上的特殊设计使系统可靠性得到大大提高。

3.6完善的保护功能

为系统提供了完善的保护功能:对蓄电池、电机和功率器件提供过压和过流保护功能,对电机和变频器提供过温保护功能;对功率器件的故障及时响应,以提高电气系统的可靠性能。4实验室测试

电机额定功率为57kW,额定转矩为270N·m,额定转速为2000r/min,额定端电压为230V。变频器系统参数根据使用的电机进行匹配。在额定功率下运行时的转矩和电流波形如图2所示。

使用采集系统对直流输入电压和电流、交流输出电压和电流进行分析,得到了变频器效率和电机效率。具体的数据如表4所示。

在功率大于50%时,变频器效率在98%左右,电机效率在93%左右,系统总效率大于91%。在低速和低功率的情况下,系统效率略有下降。

5实车运行考核

2004年7~8月,XD6120型HEV在国家汽车质量检测检验中心襄樊汽车试验场完成了56项定型试验和7000公里可靠性行驶试验。给出的报告表明,此车完全符合各种国家强制性标准,动力性能良好,节能效果明显。

2004年10月,XD6120型HEV在上海国际赛车场参加第六届国际清洁能源汽车必比登挑战赛,获得了混合动力客车第壹名。

2006年7月开始在长沙9路公交车上示范运行,从示范运行返回的信息来见,逆变器和电机

的可靠性是非常高的。将近壹年来,只有壹次现场服务的意外记录。其原因是由于风机被泥水堵死,导致风机控制电路过流损坏。

实际运行试验情况表明,使用之上方法设计和生产的逆变器可靠性高,完全适合HEV的恶劣运行工况。

电动汽车发展状况及关键技术

电动汽车发展状况及关键技术 一、电动汽车的发展背景 能源的短缺和人们对生活质量的更高要求是电动车发展的主要原因。汽车的能源消费占世界能源总消费的近四分之一。随着世界经济的发展,汽车的保有数量在急剧增加,由此而引起的能源与环境问题就显得更加严重。 因石油危机的影响,发达国家领先进行节能技术的开发,将产业部门的能源消费停留在GNP(能源消费总量)的一半水平。但是,以汽车为主的运输部门因其急速发展,能源的消费比其它部门大,占总能源消费的24%。以传统的石油作为动力能源的汽车因其尾气中的有害物质如CO、HC和NOX等对人类及环境造成的危害,人类必将面临巨大的挑战。经计算从全世界汽车排出的CO2为64亿标准炭吨。在当今世界面临能源与环境的双重危机之前,势必要求汽车工业提高汽车的能源使用效率,减少污染物质的排出量。但是,仅通过改善现有内燃机车的性能来解决这一问题是很困难的。开发电动汽车(ElectricVehicle),以下简称(EV)是解决这一问题的有效途径之一。 二、电动汽车的特点 1、污染低 电动汽车由电力驱动,在行驶中不排放有害气体,即使电动汽车所消耗的电力由使用石油燃料的火力发电厂提供,但火力发电厂的大气污染物的排放量,也不到同类型汽油车的10%。 2、可使用多种能源 由于电动汽车使用二次电力能源,其不受石油资源的限制,可利用核能、水力、太阳能等,从而可节省日益枯竭的石油资源。 3、效率高电动汽车没有怠速损失,在制动时能回收能量,80%以上的电池能量可由电动机转为汽车的动力,即使考虑原油的发电效率、配送电效率、充放电效率等,其最终效率也比内燃机高。 4、噪声低 发动机性能是影响汽车的噪声、振动大小的重要因素,传统汽车和电动汽车相比,由动力部分引起的噪声和振动,特别是在加速时,电动机的噪声和振动要比发动机低得多。 5、更有利于智能化 由于电动汽车已达到电气化,所以电动汽车系统中更利于采用先进的电子信息技术,提高汽车智能化程度。电动汽车的电动机控制系统,可与各个电子控制系统包括无级变速、防抱死制动系统(ABS)、制动能量回收系统、安全气囊系统、自动空调系统等相协调,在电动汽车上实现计算机智能控制。 6、结构简单,使用维修方便 电动汽车较内燃机汽车结构简单,运转、传动部件少,维修保养工作量小,当采用交流感应电动机时,电机无需保养维护,更重要的是电动汽车易操纵。 7、能源效率高,多样化

新能源电动汽车市场分析报告

新能源电动汽车行业分析报告 班级:车辆122 姓名:刘书成 学号:201210603103

在这深入研究新能源汽车的产业,包括它的产业链、产业结构、产业运营等。还将通过国内外数个案例来进行具体分析。进一步让读者了解新能源电动汽车的发展。 一、产业研究(一)新能源产业链上游:IC制造、正极材料、负极材料、电解液、隔膜、有色资源、钢铁等。 中游:电控系统(电池管理系统、电机控制系统、动力总成控制系统)、电池系统(电芯、电池组)、电机系统(驱动电机)、充电配套设备(充电桩、充电机)、仪表仪器、橡胶轮胎、变速箱系统、配件内饰等。 下游:乘用车、客车 后服务:销售、维修保养、金融、保险、二手车、充电设施、电池回收、汽车租赁、车联网、增值应用。 (二)产业链上游是资源类公司,主要为新能源汽车提供原始材料有色资源:天齐锂业、赣峰锂业、吉思镍业、贵研铂业、包钢稀土、厦门钨业 负极材料:杉杉股份、中国宝安 电解液:新亩邦、天赐材料、多氟多 隔膜:沧州明珠、南洋科技、云天化 正极材料:中信国安、杉杉股份、中国宝安、恒店东磁、当升科技 钢铁:宝钢股份、鞍钢股份、武钢股份、马钢股份、方大股份 (三)产业链中游的三大核心技术:电池+电机+电控,其中电池厂商可以成为东软的潜在合作伙伴新能源汽车=插电式混合动力+纯电动 核心技术: 1、镍氢电池:科力远、春兰股份、中炬高新、凯恩股份、北方稀土 2、锂电池: (1)电芯:比亚迪、成飞集团、万向集团、东莞ATL、佛山照明 (2)BMS:比亚迪、德赛电池、欣旺达、凹凸科技 3、电机+电控:大洋电机、江特电机、宁波韵升、方正电机、湘电股份、信质电机、宗升

电动汽车市场分析报告

新能源汽车行业 概述: ●十二五规划中明确要求,重点发展新兴产业,新能源汽车要着重发展插电式混 合动力汽车、纯电动汽车、燃料电池汽车等安全、节能的汽车。 ●即将出台的《节能与新能源汽车产业发展规划》(2011 年~2020 年),为我国新能源汽车的发展指明了方向。 ●在油价和政策的双重影响,节能和新能源汽车将更受关注。油价上涨在一定程 度上影响到消费者利益的同时,也在发挥着它的积极作用,促使一些消费者改变消费习惯。可以预见的是,随着燃油成本上升和消费者对燃油经济性的关注,再加上“节能产品惠民工程”的惠及面不断扩大,小排量、经济型轿车和新能与汽车的市场前景要乐观一些。 ●新能源汽车必将取代传统内燃机汽车。在石油资源枯竭和环境污染严重的双重 压力下,传统汽车产业已经走到了穷途末路,人类再次站在了交通能源动力系统变革的十字路口,以纯电动汽车为代表的新能源汽车将最终取代传统内燃机汽车。 ●新能源汽车有望成为“再次改变世界的机器”。汽车曾被誉为“改变世界的机 器”,在给我们带来快捷交通方式的同时,也产生了能源安全、环境污染和全球气候变暖等一系列问题。目前节能减排已成为全球汽车产业的首要任务,发展新能源汽车产业已成为我国汽车工业的战略方向。 ●中国发展新能源汽车产业的优势。巨大的市场容量,明确的增长预期;政策的

大力扶持;较好的技术储备;众多企业和科研机构的联合攻关;能源状况、自然资源对发展新能源汽车产业比较有利。预计到2015年中国新能源汽车将达到100万辆左右,年均复合增长率在216%左右。 ●初步建立了“三纵三横”的研发布局和技术体系,技术路线基本明确。混合动 力汽车具有较好的节能减排效果,技术上易实现,是近期产业化重点,但其过渡性特征明显;纯电动汽车是中长期发展方向;燃料电池是未来汽车工业发展战略方向。预计“三纵”各类产品将各领风骚数十年。与此同时,多能源动力总成控制、驱动电机和动力蓄电池”三横”技术得到很大提升。 ●产业政策加快新能源汽车技术进步的步伐。国家对私人购买新能源汽车补贴政 策意义重大,政策效果将远大于政府补贴对公交领域新能源汽车的影响。预计国家近期将出台全面、系统的新能源汽车发展规划,为新能源汽车产业发展增添新动力,同时也将成为新能源汽车类股票表现的催化剂。 ●新能源汽车的产业带动作用强。将带动上游矿产资源开采、电池材料制造和充 电设备需求的大幅增长,此外还将产生电池租赁等新的商业模式。整车领域则看好传统汽车基础扎实、具有一定新能源产业链技术、较强整合匹配能力和产业化能力的公司。 ●驱动电机系统是新能源车三大核心部件之一。电机驱动控制系统是新能源汽车 车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成。 ●动力电池是新能源汽车的绿色心脏。动力电池是电动汽车的动力之源,是能量

电动汽车逆变器功率损耗计算

电动汽车逆变器功率损耗计算 【摘要】针对目前电动汽车电机驱动系统中广泛使用的逆变器,提出一种在不同功率因数角范围内的逆变器中绝缘栅双极型晶体管(IGBT)和续流二级管的导通功率损耗的计算方法。该文是对论文[1]中提出的计算公式的补充,能更精确的计算IGBT以及续流二极管上功率的损失。该方法是基于目前电机控制中普遍运用的空间电压矢量调制(SVPWM)7段式的方法计算得出的,最终推导出了在不同的功率因数角范围内逆变器中IGBT和续流二级管上的导通功率损耗的计算表达式。本文给出的计算表达式可以为设计合适的散热装置提供一定的数学理论基础。 【关键词】逆变器;IGBT;续流二级管;空间电压矢量调制;功率因数角 1.前言 在逆变器中,其功率损耗主要出现在绝缘栅双极型晶体管(IGBT)和续流二级管上。IGBT具有驱动功率低,工作频率高,通态电流大和通态电阻小等优点,已成为当前电力电子装置中的主导器件,因此也成为学者研究的热点。当前,对IGBT/DIODE功率损耗研究的方法主要分为基于物理结构的损耗模型和基于数学方法的损耗模型。通过物理结构计算IGBT功率损耗时,需要通过分析IGBT/DIODE的物理结构和内部载流子的工作情况,采用电容,电阻,电感,电流源,电压源等一些相对简单的元件模拟出IGBT/DIODE的特性。这种损耗模型的准确程度取决于器件物理模型的准确程度,因此实现起来非常困难。相反,通过数学模型的IGBT/DIODE功率损耗模型则是利用相关实验数据,推导出电流,电压与IGBT自身参数之间的数学关系,该方法易于实现且通用较强。在已有的论文中,也有类似的功率损耗计算,但表达式不够精准,且没有在常见的功率因数角范围内分段推导得出。本文推导了SVPWM 7段调制情况下,在不同的功率因数角范围内,逆变器中IGBT和续流二级管的导通功率损耗公式。 2.逆变器的功率损耗模型 逆变器的功率损耗主要集中在IGBT和续流二极管上。而这二者的大小主要取决IGBT的开关次数和导通电流的大小,逆变器与永磁同步电机的拓扑结构如图1所示: 图1 逆变器与永磁同步电机拓扑结构 在如图1的结构中,每个周期内6个IGBT开关按照SVPWM 7段式调制顺序依次开关,在一个PWM周期内,每个IGBT和每个续流二级管导通时间相等,因此在一个PWM周期内,每个IGBT/DIODE的导通功率是相等的,在计算中仅需计算一个IGBT/DIODE导通功率,总功率损耗等于6个IGBT的导通功率损耗加上6个续流二极管的导通功率损耗。

电动汽车电池组热管理系统的关键技术

第22卷 第3期 2005年3月 公 路 交 通 科 技 Journal of Highway and T ransportation Research and Development V ol 122 N o 13 Mar 12005 文章编号:1002Ο0268(2005)03Ο0119Ο05 收稿日期:2004Ο03Ο16 基金项目:国家高技术研究发展计划(863计划)重大专题项目(2003AA501100) 作者简介:付正阳(1978-),男,北京人,清华大学汽车工程系硕士研究生,主要从事电动汽车方面的研究1 电动汽车电池组热管理系统的关键技术 付正阳,林成涛,陈全世 (清华大学 汽车安全与节能国家重点实验室,北京 100084) 摘要:电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。关键词:电动汽车;电池组;热管理系统 中图分类号:T M911141 文献标识码:A K ey Technologie s of Thermal Management System for EV Battery Packs FU Zheng Οyang ,LIN Cheng Οtao ,CHEN Quan Οshi (S tate K ey Laboratory of Autom otive Safety and Energy ,Tsinghua University ,Beijing 100084,China ) Abstract :Research and development of battery thermal management system (BT MS )is very im portant for the operation safety and relia 2bility of electric vehicle (E V )1In this paper ,by analyzing the in fluence of tem perature on the per formance and service life of batteries ,the desired function of a BT MS was outlined ,a procedure for designing BT MS was introduced 1Several key technologies during designing a BT MS were introduced and analyzed ,including optimum operating tem perature range of a battery ,heat generation mechanism ,ac 2quisition of the therm odynamic parameters ,calculation of tem perature distribution ,selection of heat trans fer medium ,design of cooling structure and s o on 1 K ey words :E lectric vehicle ;Battery pack ;Thermal management system 0 引言 能源与环境的压力使传统内燃机汽车的发展面临前所未有的挑战,各国政府、汽车公司、科研机构纷纷投入人力物力开发内燃机汽车的替代能源和动力,这大大促进了电动汽车的发展。 电池作为电动汽车中的主要储能元件,是电动汽车的关键部件[1,2],直接影响到电动汽车的性能。电池组热管理系统的研究与开发对于现代电动汽车是必需的,原因在于:(1)电动汽车电池组会长时间工作 在比较恶劣的热环境中,这将缩短电池使用寿命、降 低电池性能;(2)电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡;(3)电池组的热监控和热管理对整车运行安全意义重大。 清华大学从承担国家“八五”电动汽车攻关项目以来,在电动汽车、混合动力汽车和燃料电池汽车关键技术的研究中,积极开展了电池组热管理系统的研究,并在样车上进行了道路试验,目前电池组热管理系统的优化设计与改进工作正在进行中。本文是对前阶段研究工作的总结和今后工作的展望。

电动车市场调研报告

竭诚为您提供优质文档/双击可除电动车市场调研报告 篇一:雅迪电动车市场调研报告 调研承担:德州学院委托调研:完成日期: 11级市场营 销第四组 雅迪科技有限公司(市 场部) 20XX年12月调研项目:雅迪电动车市场调研 目录 经理揽要 -------------------------------------------------------------------------3引言 -------------------------------------------------------------------------------5方法 -------------------------------------------------------------------------------9调查结果 ---------------------------------------------------

----------------------12局限 -------------------------------------------------------------------------------15结论和建议 ----------------------------------------------------------------------16参考文献 -------------------------------------------------------------------------17附件 -------------------------------------------------------------------------------18 附件1、调查问卷 ----------------------------------------------------------------------------18 尊敬的市场部经理先生: 您好! 首先感谢您对我团队的信任。在过去的1个月里,我团队经过充分的市场调查和研究分析,现就本次调查的相关情况向您做一个简单的汇报。正如您多期望的,我们本次调研的主要目的是通过对德州市雅迪电动车消费市场的调研,初步了解到德州市雅迪电动车消费偏好及特征,为贵公司的经营决策提供参考意见。在调查中,我们根据具体实际情况,选取了人流量较多的步行街雅迪电动车消费者组成的对象 进行了调研。通过对以上对象实施关于雅迪电动车的优势、

电动车用辅助逆变器的设计与实现

电动车用辅助逆变器的设计与实现 摘要: 电动汽车的运行与普通汽车有许多不同, 需要设计安装大量专用辅助设备, 且要求辅助设备结构简单、运行稳定、运行成本低。文章描述了电动车用辅助逆变器的特殊应用环境和工作要求, 提出一种设计思路, 并分别从硬件结构和软件流程两方面介绍系统的构成。关键词: 逆变器 SA 4828 芯片脉宽调制 CAN 总线 1 引言 目前各种类型的电动汽车发展日新月异, 车辆主动力单元采用的电机和驱动方式各有特色, 但在车用辅助电机的选择上却观点一致, 即充分利用电动车直流母线电压高 (通常为300~ 600 V ) 的特点, 利用辅助逆变器将直流变成三相交流电驱动交流异步电机, 为车上的刹车气泵、液压助力泵、空调压缩机等设备提供动力。在大型电动车上, 驱动这些设备的电机功率在 3~ 10 kW 之间, 采用交流电机可以比同等直流电机成本更低、体积更小、重量更轻, 而且运行噪音小、维护量大大降低。电动车的发展在国外已经进入实际应用阶段, 而国内仍处于开发样车阶段, 多数研发单位只是将通用变频器进行简单改装后作为辅助逆变电源投入使用。这样不仅成本较高, 不能完全适应电动车的实际运行需要, 也不具备 CAN 总线通讯能力, 无法参与整车系统的数据通讯。新公布的国家“863 计划”关于电动车发展规划中已经明确规定: 新申报的电动车开发项目必须采用基于CAN 总线的整车通讯控制系统。因此辅助逆变器在提供三相交流电源功能的同时, 系统必须具有CAN 总线通讯接口, 以便参与整车系统的控制。电动车用辅助逆变器的设计必须充分考虑产品的运行环境和负载特点, 简化系统硬件结构, 确保设备运行稳定。从直流输入来看, 电动车动力电池电压有一定的波动范围, 在电量充足时每个电池单体的电压可以达到 1. 45 V 或更高, 随着使用过程中能量的不断输出, 电压会逐渐降低, 达到 1. 2 V 甚至更低。由 280 节单体串联成的电池组, 其母线电压通常会在 400~ 330 V 之间浮动, 变化率高达 21. 2%。因此逆变器必须能够适应较宽范围内的电压浮动。同时, 作为电源设备, 这种辅助逆变器不仅可以驱动各种三相交流电机, 还可以作为车上的工频电源, 为更多的车载设备服务。因此, 设计开发一种专用的电动车用辅助逆变器, 不仅可适应电动车直流母线电压浮动大的特点, 还可以参与整车控制, 提高系统运行效率、节约能源。 2 系统整体构成设计 完成辅助逆变器的设计必须从其输入?输出要求出发, 做到结构清晰、功能明确。在系统结构上可以将电动车用辅助逆变器按功能分为 4 个部分, 如图 1 所示。

新能源汽车行业分析报告产业竞争现状与发展战略评估

新能源汽车行业分析报告产业竞争现状与发展战略 评估 Revised final draft November 26, 2020

2019年中国新能源汽车行业分析报告-产业竞争现状与发展战略评估 观研天下-中国报告网 观潮向·研精深·怀天下

【目录名称】2019年中国新能源汽车行业分析报告-产业竞争现状与发展战略评估 【交付方式】Email电子版/特快专递 目前全球新能源车发展仍处于高速增长阶段,未来渗透率将持续提升。根据数据显示,2017年全球插电式的新能源销量达128.1万辆,渗透率1.34%,基于预测,到2030年新能车的渗透率可达30%。 全球新能源汽车销量增速(%) 数据来源:汽车工业协会 我国作为全球最大的新能源汽车消费国地位稳固。目前中国已经成为世界新能源汽车的最大市场,根据数据显示,2017年我国插电式新能车销量达60.6万辆,同比增长73%,全球占比49.5%。到2018年一季度我国插电式新能车销量达13.2万辆,同比增长113%,全球占比42.3%。 2017年我国占比全球49.5% 数据来源:汽车工业协会 但未来随着补贴渐退,预计我国新能源汽车的增速将会放缓,预计到2022年,我国新能源汽车销量有望超过300万辆。 2017-2022年中国新能源汽车销量预测(单位:万辆) 数据来源:汽车工业协会(ww)中国报告网是观研天下集团旗下打造的业内资深行业分析报告、市场深度调研报告提供商与综合行业信息门户。《2019年中国新能源汽车行业分析报告-产业竞争现状与发展战略评估》涵盖行业最新数据,市场热点,政策规划,竞争情报,市场前景预测,投资策略等内容。更辅以大量直观的图表帮助本行业企业准确把握行业发展态势、市场商机动向、正确制定企业竞争战略和投资策略。本报告依据国家统计局、海关总署和国家信息中心等渠道发布的权威数据,以及我中心对本行业的实地调研,结合了行业所处的环境,从理论到实践、从宏观到微观等多个角度进行市场调研分析。 它是业内企业、相关投资公司及政府部门准确把握行业发展趋势,洞悉行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。本报告是全面了解行业以及对本行业进行投资不可或缺的重要工具。观研天下是国内知名的行业信息咨询机构,拥有资深的专家团队,多年来已经为上万家企业单位、咨询机构、金融机构、行业协会、个人投资者等提供了专业的行业分析报告,客户涵盖了华为、中国石油、中国电信、中国建筑、惠普、迪士尼等国内外行业领先企业,并得到了客户的广泛认可。本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。本研究报告采用的行

电动汽车产业研究报告

、全球汽车行业 进入21世纪,全球汽车行业保持快速增长,但是增速大幅下滑。2013年至2015年,全球汽车行业产值CAGR为7.5%,增速高于全球生产总值增速;汽车生 产数量CAGR为2.6%,低于行业产值增速,表明单位汽车的附加产值逐步上升。而根据Market Line的预测,2015年至2019年,全球汽车产业产值仍将以5.4%的年复合增长率增长,生产数量以2.9%的年复合增长率上升。 图1 全球汽车年生产量预测 对于全球两大汽车市场——中国和美国来说,一直都保持正增长,2013年至2015年,中国市场和美国市场的汽车生产数量CAGR分别为6.4%和4.1%。中国汽车市场持续实现高增长,已经成为了支撑全球汽车产业发展的重要市场之一。2015年至2019年,尽管中国市场和美国市场的增速均有所放缓,但中国汽车 生产数量仍大幅超过全球平均水平。

图2 中美汽车生产量预测 二、电动汽车行业情况 近几年,自电动汽车进入市场以来,快速增长。2013年至2015年全球电动汽车行业年均复合增长率达到了31.8%。未来随着电池、电池管理系统BMS、电机等方面的技术进一步完善,以及车联网等生态的构建和丰富,电动汽车的需求势必更快增长。中国和美国作为两大主要的电动汽车开发和生产国,在发展电动汽车方面具有得天独厚的优势,预计未来将实现持续高增长。

图3 中美汽车市场规模预测 三、中美政府补贴政策 中美两国在电动汽车方面都有非常大力度的补贴,中美两国对电动汽车的支持政策如下:

图4 中美政府新电动汽车优惠政策 在补贴方面,美国的电动车补贴政策具有显著的区域特征,总体补贴力度低于我国。但美国政府建设了大量充电桩供车主免费充电,从而极大提升了电动车的活动半径,使得购车人在选择车型时更少受到电动车行驶里程弱点的影响,逐步促进消费者转变消费习惯。 四、电动汽车——三电设备 电动汽车的核心——电池、电机、电控三电技术关系到电动汽车整车生产,是电动汽车能否突破商业化瓶颈的关键。 电机方面,我国新能源汽车驱动电机系统将朝着永磁化、数字化和集成化方向发展。永磁同步驱动电机系统具有宽调速范围、高功率密度、低转矩脉动等特性,能够有效满足不同车型在不同工况下的行驶需求,因此其应用范围不断扩大,已从乘用车逐步扩展到了商用车领域。

新能源汽车技术分类及三大关键技术详解

新能源汽车技术分类及三大关键技术详解(总 10页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

新能源汽车技术分类及三大关键技术详解 来源:第一电动网作者:杨伟斌2015年01月12日 14:03 [导读]为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。## 在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术。##充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。 关键词:VCUBMS特斯拉MCU新能源汽车 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 表1 消费者角度分类 技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。

纯电动汽车的基本构成和其关键技术

如图1所示,纯电动汽车EV (Electric Vehicle)是仅由动力蓄电池向电动机提供电能驱动车辆行驶的道路车辆,也称为蓄电池电动汽车。纯电动汽车具有以下特点:节能,不消耗石油;环保,无污染;噪声和振动小;能量主要是通过柔性的电线而不是通过刚性联轴器和转轴传递,各部件的布置具有很大的灵活性;驱动系统布置不同会使系统结构区别很大,采用不同类型的电动机(如直流电动机和交流电动机)会影响到纯电动汽车的质量、尺寸和形状;不同类型的储能装置会影响纯电动汽车的质量、尺寸及形状;不同的补充能源装置具有不同的硬件和机构,例如蓄电池可通过感应式和接触式的充电器充电,或者采用替换蓄电池的方式,对替换下来的蓄电池进行集中充电。 1 纯电动汽车的类型 纯电动汽车按照用途进行分类,可以分为纯电动轿车、纯电动货车和纯电动客车3种类型;按照驱动型式进行分类,可以分为直流电动机驱动的纯电动汽车、交流电动机驱动的纯电动汽车、双电动机驱动的纯电动汽车、双绕组电动机驱动的纯电动汽车和电动轮纯电动汽车等5种类型。 2纯宅动汽车的基本构成 如图2所示,纯电动汽车主要由电力驱动系统、电源系统、辅助系统、控制系统、安全保护系统等组成。汽车行驶时,由蓄电池输出电能(电流)通过控制驱动电动机运转,

电动机输出的转矩经传动系统带动车轮前进或后退。图3所示为奥运纯电动客车的基本构成。 21电力驱动系统 纯电动汽车的电力驱动系统的构成简图如图4所示,主要由电子控制器、驱动电动机、电动机逆变器、各种传感器、机械传动装置和车轮等组成,其中最关键的是电动机逆变器,电动机不同,控制器也有所不同,控制器将蓄电池直流电逆变成交流电后驱动交流驱动电动机,电动机输出的转矩经传动系统驱动车轮,使电动汽车行驶。该系统的功用是将存储在蓄电池中的电能高效地转化为车轮的动能,并能够在汽车减速制动时,将车轮的动能转化为电能充入蓄电池。 驱动电动机是驱动EV行驶的唯一动力装置。目前EV上使用的驱动电动机主要类型有直流电动机、交流电动机、永磁电动机和开关磁阻电动机等。再生制动是EV节能的重要措施之一。制动时电动机可实现再生制动,一般可回收10%—15%的能量,有利于延长EV的行驶里程。在EV制动系统中,还保留有常规制动系统和ABS,以保证车辆在紧急制动时有可靠的制动性能。关于电动机,本讲座后文将详细讲解。22电源系统 纯电动汽车的电源系统包括车载电源、能量管理系统和充电机等。它的功用是向电动机提供驱动电能、监测电源使用情况及控制充电机向蓄电池充电。

2018年电动汽车行业分析报告

2018年电动汽车行业 分析报告 2018年2月

目录 一、内生驱动换挡,平价时代来临 (5) 1、回顾2017年:增速喜人拐点落地,政策立体指向明确 (9) (1)双积分政策要求支撑产销,2019年执行延长窗口 (9) (2)降本增效砥砺前行,产业链协同推动平价 (10) (3)乘用车接力成为市场主力,拐点落地市场自驱前行 (11) (4)中外合资布局加速,互联网车企成为市场第三极 (11) (5)物流车加速放量,多面优势筑基发展 (12) 2、展望2018年:自驱启动结构放量,重要窗口承前启后 (13) 3、2019-2020:双积分接力迎平价,全面竞争市场化主导 (16) 二、百舸争流渐不在,龙头突围真成长 (16) 1、电芯:高镍三元路线坚定,2018启动渗透 (20) (1)能量密度需求坚定三元路线,乘用车主导动力电池需求 (21) (2)结构性产能过剩明显,CATL突围一家独大 (25) (3)龙头加速深度绑定下游,互利共赢聚拢市场份额 (28) (4)锂电价格持续下降,加速推动新能源车经济性 (29) 2、正极:高镍三元定方向,产能资本上游供应定格局 (31) (1)市场换档乘用车,三元正极需求加速提升 (31) (2)政策市场双驱动,高镍三元加速发展 (32) (3)产能一超多强,龙头集团高镍布局加速,拓展上游稳定未来产能输出 (34) (4)三元价格取决于上游壁垒,铁锂价格稳定下降 (37) 3、负极:马太效应加剧,硅碳布局加速 (38) (1)新能源车爆发拉动负极需求持续高景气 (38) (2)马太效应持续加剧,龙头产能市场份额双提升 (38) (3)价格短期受环保限产影响,全年涨跌互现,长期稳定下降 (40) (4)硅碳负极发展布局加速 (41) 4、隔膜:湿法隔膜产能落地,优质龙头加速突围 (42) (1)三元路线坚定,铁锂湿法渗透率提升,湿法隔膜市场广阔 (43)

电动汽车逆变器用IGBT驱动电源设计与可用性测试

电动汽车逆变器用IGBT驱动电源设计及可用性测试 电动汽车逆变器用于控制汽车主电机为汽车运行提供动力,IGBT功率模块是电动汽车逆变器的核心功率器件,其驱动电路是发挥IGBT性能的关键电路。驱动电路的设计与工业通用变频器、风能太阳能逆变器的驱动电路有更为苛刻的技术要求,其中的电源电路受到空间尺寸小、工作温度高等限制,面临诸多挑战。本文设计一种驱动供电电源,并通过实际测试证明其可用性。 常见的驱动电源采用反激电路和单原边多副边的变压器进行设计。由于反激电源在开关关断期间才向负载提供能量输出的固有特性,使得其电流输出特性和瞬态控制特性相对来说都比较差。在100kW量级的IGBT模块空间布局中,单个变压器集中生产4到6个互相隔离的正负电源的设计存在诸多不弊端:电源过于集中,爬电距离和电气间隙难以保证,板上电源供电距离过长等等。本设计采用常见的非专用芯片进行电路设计,前级SEPIC电路实现闭环,后级半桥电路实现隔离有效解决了上述问题。该电路成功应用于国际领先的新能源汽车逆变器设计中。应用表明,该设计具有较好的灵活性、高可靠性和瞬态响应能力。 1 电动汽车逆变器驱动电源的要求分析 电动汽车逆变器驱动电源一般为6个互相隔离的+15V/-5V电源。该电源的功率、电气隔离能力、峰值电流能力、工作温度等等都有严格的要求。以英飞凌的汽车级IGBT模块FS800R07A2E3_B31为目标进行电源指标的具体计算,该模块支持高达150kW的逆变器系统设计。 1.1 驱动功率计算 该驱动电源的输入功率计算公式为: P=f_sw×Q_g×△V_g/η(1) 其中f_sw开关频率取10kHz,Q_g根据数据手册取8.6nC,△V_g为门极驱动电压取23V。考虑到功率较小,效率取85%。此外注意到数据手册中的8.6nC 是按照电压+/-15V计算,需考虑折算,最后计算结果为1.8W。考虑设计裕量1.1倍,记为2W。 1.2 驱动电流计算 平均驱动电流计算公式为:

我国电动汽车发展现状分析

我国电动汽车进展现状分析 一、新能源汽车和电动汽车的分类 按照我国2009年7月1日正式实施的《新能源汽车生产企业及产品准入治理规则》,新能源汽车是指采纳特不规的车用燃料作为动力来源(或使用常规的车用燃料,但采纳新型车载动力装置),综合车辆的动力操纵和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括:纯电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等。 电动汽车是全部或部分由电能驱动电机作为动力系统的汽车,按照目前技术的进展方向或者车辆驱动原理,可划分为纯电动汽车、混合动力汽车和燃料电池电动汽车三种类型。 新能源汽车和电动汽车的分类关系见下图:

1、纯电动汽车 纯电动汽车是完全由可充电电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力源的汽车。纯电动汽车由底盘、车身、蓄电池组、电动机、操纵器和辅助设施六部分组成。由于电动机具有良好的牵引特性,因此纯电动汽车的传动系统不需要离合器和变速器。车速操纵由操纵器通过调速系统改变电动机的转速即可实现。现在纯电动汽车技术进展差不多相当成熟,国外发达国家和我国都有部分车型投入量产和商业化运营。 纯电动汽车的优点:(1)减少对石油资源的依靠,实现能源利用的多元化。由于电力能够从多种一次能源获得,如煤、核能、水力、风力、光、热等,解除人们对石油资源日见枯竭的担心。 (2)减少环境污染。本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的都市,对人类损害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物

纯电动汽车结构与控制技术课程标准

《纯电动汽车结构与控制技术》课程标准一、课程计划 课程名称 纯电动汽车结构与控制技术课程性质 汽车运用技术新能源 专业方向的核心课程 教学时间安排 第4学期72课时 课程描述 本课程主要内容是纯电动汽车结构与控制技术,具体内容包括:电动汽车的主体结构认识,主要介绍传动系统、能源系统、驱动电机;电动汽车循环冷却技术认识,主要介绍电池组冷却、电机冷却、控制器冷却;电动汽车能量补充系统认识,主要介绍充电系统、制动能量回收等等;电动汽车辅助系统认识,主要介绍电动转向系统、电控制动系统、电动空调系统、电动冷却系统、辅助dc/dc 转换器等等;典型的纯电动汽车结构认识,主要介绍整体开发的纯电动汽车(如荣威E50);改装式的纯电动汽车(如福特福克斯);未来的纯电动汽车技术。课程以理论讲授和实物操作相互结合,集中讲授与学生分组学习交替进行。通过本课程的学习,学生能够掌握纯电动汽车结构与控制技术的主要内容,并且学会使用通用工具、专用工具、设备和相关资料等进行规范作业。同时,培养学生生产安全、环保、效率、5S要求、团队协作等意识和素养。 学习目标 在教师指导下,学生以独立或小组合作的形式进行学习。 能描述传动系统、能源系统、驱动电机等电动汽车的主体结构; 能描述电池组冷却、电机冷却、控制器冷却等电动汽车循环冷却技术; 能描述充电系统、制动能量回收等等电动汽车能量补充系统;

能描述电动转向系统、电控制动系统、电动空调系统、电动冷却系统、辅助DC/DC转换器等等电动汽车辅助系统; 知道整体开发的纯电动汽车(如荣威E50)、改装式的纯电动汽车(如福特福克斯)、未来的纯电动汽车技术等典型纯电动动力汽车的结构。在实践过程中,重视劳动安全和环境保护规定。 学习与工作内容 学习对象 ●应对新能源汽车车主的咨询并正确指导合理使用; ●对纯电动汽车的主体结构认识与应用; ●对电动汽车循环冷却技术的认识与应用; ●对电动汽车能量补充系统的认识与应用; ●对电动汽车辅助系统的认识工具 用户使用手册、驾驶员手册、维 护手册等资料; 汽车使用维护通用工具、汽车举 升器、维护检测专用工具及测量 仪器设备。 工作方法 与顾客进行新能源车辆使用、保 养、故障情况等方面的沟通; 与维修接待员或车间主任就新能 源车辆维护工单内容的沟通与记 录; 制订完成工单作业项目的工作计 划,确定必要的专用工具和仪器 设备; 工作要求 ●组内成员之间、员工与完 成任务涉及的其他部门相 关人员之间进行良好沟通 合作; ●注意车上作业的安全、环 保、经济性; ●对已完成的工作进行记 录存档,评价和反馈; ●自觉保持规范、安全作业 及“5S”的工作要求。

电动汽车产业分析报告

电动汽车产业分析报告

目录 第一章新能源汽车行业概况 一、新能源汽车的时代即将来临 二、新能源汽车发展的主要方向 三、锂离子电池在动力电池中的地位 四、动力锂离子电池正极材料的选择 五、政策对新能源汽车产业化的推进 六、新能源汽车产业链的核心价值 七、技术优势将决定企业未来 第二章纯电动汽车的产业化发展概况 一、国外企业产业化概况 二、国内企业产业化概况 第三章纯电动汽车的发展历程及地区概况 一、历史变革 二、地区发展 第四章纯电动汽车面临的瓶颈问题 一、技术争议 二、运行经济性 三、基础设施装备 四、政府政策支持 第五章国内主要锂离子动力电池及材料厂家概况一、国内主要锂离子动力电池厂家

二、国内主要锂电池材料供应商 第六章锂电池材料的制备及生产工艺概述 一、当前国内锂电池材料现状 二、锂电池材料的制备设备 三、锂电池材料制备工艺的优化及性能 第七章动力锂电池生产工艺概述 一、动力锂电池主要生产设备 二、动力锂电池生产工艺概述 第八章电动汽车用驱动电机的现状及发展趋势 一、引言 二、驱动电机系统的特点及分类 三、驱动电机系统的研究现状 四、发展趋势 第九章国内外电动汽车技术现状分析 一、纯电动汽车的技术动态 二、电动汽车用锂电池技术的国内外进展简析 三、国内外锂离子动力电池的关键技术及最新动态 四、锂电动力电池组的均衡管理 五、电池管理系统的软件设计 六、电池管理系统的硬件设计 第十章锂离子动力电池生产过程的自动化与信息化技术

第一章概况 一、新能源汽车的时代即将来临 1.大力发展新能源汽车是能源与环境的必然要求 根据美国能源信息署EIA发布的国际能源展望,世界能源市场消耗量2005年到2030年预计增加50%。 随着能源消耗的逐年增加,二氧化碳的排放量也将增加,目前二氧化碳排放中,25%来自于汽车。至2030年,将由2005年的281亿吨增至423亿吨。在我国,汽车排放的污染已经成为城市大气污染的重要因素,我国的二氧化碳排放目

(汽车行业)混合电动汽车用逆变器关键技术研究

(汽车行业)混合电动汽车用逆变器关键技术研究

混合电动汽车用逆变器关键技术研究 电动汽车(EV)、混合电动汽车(HEV)和燃料电池汽车(FCEV)具有良好的应用前景和经济效益[1-2],其中HEV的应用在当前壹段时期可能达到较大的规模。许多X公司和科研机构对HEV的研究非常深入,所包括的不同于普通汽车的关键技术有:电池[3];电机及其驱动系统[4];系统能源管理[5]等。 电机及其驱动系统是HEV的关键部件。首先,其高可靠性必须能够保证HEV长期可靠工作;其次,系统效率对HEV的能耗水平具有决定影响。当下得到大规模应用的有基于永磁电机和感应电机的变频调速系统(以下简称逆变器)。基于永磁电机的逆变器,以日立、川崎等日本X公司的产品最为成熟;基于异步电机的逆变器,ABB、SIEMENS、ALSTON等欧洲著名X公司都能够提供不同功率等级的应用系统。在电力机车市场方面,产品应用和发展趋势也是壹致的。本文研究的是基于异步电机的逆变器,配套电机为湘电股份X公司生产的YQ57型变频牵引异步电动机,应用于湘电股份X公司的XD6120型HEV客车上。 不同于普通的风机、水泵等壹般工业应用场合,应用于HEV的逆变器由于使用环境的特殊性,其关键要求有:结构设计可靠,安装维修方便,防护等级高,适应恶劣的环境。 1电气系统设计 HEV的电气系统主要包括三个部分:蓄电池、电机、逆变器。参考文献[6]对电气系统设计过程进行了详细说明,而且也对这三个部分的参数进行了详细的说明和分析。 (1)电机基本参数确定:电机的功率和转矩参数应根据HEV的速度要求、转矩特性和传动比来确定,最后确定和XD6120型混合电动汽车配套的电机功率为57kW,额定转速为2000r/min,最大起动转矩为2Tn。 (2)电压等级确定:由于汽车以安全为第壹要素,因此在HEV上应用的IGBT以600V和1200V 系列最为广泛。确定电池和电机电压的等级应考虑如下因数:IGBT在关断时有可能产生过电压,因此600V系列IGBT实际使用时的直流侧电压低于400V;电池电压是浮动的,按照壹般要求,最高电压等于额定电压的120%;功率相同时,电压等级越高,电流越小,电机和变频器的体积就相对越小。综合之上因素,确定电池的电压等级为312V,电机的电压等级为230V。 (3)其他参数确定:蓄电池电压选定后,仍应根据HEV的续航里程等要求选定蓄电池的安时数;根据电机电流计算逆变器电流;根据系统电压和电流等级选择保护用开关及其熔断器、电线电缆的型号规格、各种电气系统的绝缘和电气间隙等。 2逆变器设计关键技术 逆变器设计关键技术包括:主电路参数计算;散热器和风机计算;数字控制电路设计和软件设计;总体结构设计。 2.1主电路电气图和主要器件参数计算 逆变器采用电压源型主电路,直流侧加支撑电容,附加直流继电器和预充电电路。其电路图如图1所示。 在主电路设计时,最重要的是确定功率器件的电压和电流等级。本系统选择的IGBT电压等级为600V,对应的蓄电池电压等级选择为312V,电机额定电流In=192A,考虑到在低速起动时要求起动转矩为2Tn,对应的电机的启动电流约为2In,因此选择IGBT的电流等级为600A。 根据所选择的电压等级,直流侧电容电压等级选定为450V。其容量则壹般使用如下经验公式进行计算[7]: 式中,P为逆变器输出功率,VDC为直流侧电压,CDC为直流侧电容容量。经计算得到需要的电容容量为0.0175F≤CDC≤0.035F。实际系统中的电容容量为20000μF。 2.2功率器件损耗计算[8]

相关文档
最新文档