物化实验报告 恒温槽的装配和性能测试

物化实验报告 恒温槽的装配和性能测试
物化实验报告 恒温槽的装配和性能测试

物化实验报告-恒温槽的装配和性能测试.

恒温槽的装配和性能测试

33

材张鹏翔 2013012030

2015提交报告日期:日实验日期:2015年5月14

日月20年5

引言1

实验目的1.1初步掌握其装配和调试了解恒温槽的原理,1.的基本技术。分析恒温槽的性能,找出合理的最佳布局。2.掌握水银接点温度计、热敏电阻温度计、继.3 电器、自动平衡记录仪的基本测量原理和使用方法。

实验原理1.2

许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现,叫介质恒温槽1图、℃)0℃)如:浴。液氮(-195.9、冰-水(℃)(、5-78干冰-丙酮℃)(沸点水100、(。℃)沸点萘218温度恒定。相变点介质浴的最大优点是装置简单、等等。缺点是对温度的选择有一定限制,无法任意调节。另一种是利用电子调节系统,对加热或制冷器的工作状态进

行自动调节,使被控对象处于设定的温度之下。

本实验讨论的恒温水浴就是一种常用的控

温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温

的目的。其简单恒温原理线路如

图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I 又成为通路。如此反复进行,从而使恒温槽

维持在所需恒定的温度。

恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。

1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。

恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水。本实℃)200-70、石蜡油、硅油(℃)160-80溶液(.

验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。

2.温度计观察恒温浴槽的温度可选择

1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。

将热敏电阻与1/10温度计绑在一起,安装位置应尽量靠近被测系统。

3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,螺母套在一根长螺杆上。顶部是磁性调节冒,当转动磁性调节冒时螺杆转动,可带动螺母和金属丝上下移动,螺母在温度调节指示标尺的位置

就是要控制温度的大致温度值。顶部引出的两根导线,分别接在水银温度计和上部金属丝上,这两根导线再与继电器相连。当浴槽温度升高时,水银膨胀上升,与上面的金属丝接触,继电器内线圈通电产生磁场,加热线路弹簧片吸下,加热器停止加热。随着浴槽热量的散失,温度下降,水银收缩并与上面的金属丝脱离,继电器电磁效应消失,弹簧片回到原来位置,接通加热电路,系统温度回升。如此反复,从而使系统温度得到控

制。.

需要注意的是,温度调节指示标尺的刻度一般不是很准确,恒温槽温℃温度计来度的设

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

实验1__恒温槽的装配和性能测试_702408269

实验1 恒温槽的装配和性能测试 实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现,叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮(-78.5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II 为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。

恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10℃温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,螺母套在一根长螺杆上。顶部是磁性调节冒,当转动磁性调节冒时螺杆转动,可带动螺母和金属丝上下移动,螺母在温度调节指示标尺的位置就是要控制温度的大致温度值。顶部引出的两根导线,分别接在水银温度计和上部金属丝上,这两根导线再与继电器相连。当浴

恒温槽的性能测试

精品文档 实验报告 课程名称: 大学化学实验P 指导老师:_杜志强______成绩:__________________ 实验名称: 恒温槽的性能测试 实验类型: 设计型 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 (1)了解恒温槽的构造和恒温原理 (2)学会分析恒温槽的性能 (3)掌握电接点水银温度计的调节和使用 (4)学会恒温槽温度波动曲线的绘制 二、实验内容和原理 1.恒温槽的结构: 恒温槽由于超、温度调节器、温度控制器、加热器、搅拌器和温度指示器组成 2.恒温槽的恒温原理: 恒温槽通过温度控制器对加热器进行自动调节,具体实现方式:当恒温槽的温度超过预设温度时,温度计的汞柱会与温度计中的铂丝相接触,继电器电路导通,电子继电器工作,电路断开,加热器停止加热,继而温度下降;当温度低于预设温度,温度计的汞柱会与温度计中的铂丝相分离,继电器电路断开,电子继电器停止工作,电路导通,加热器开始工作,温度上升。 3.电接点水银温度计的构造: 下半部分与普通温度计相似,有一根铂丝引出线与水银想接触;上半部分也有一根铂丝引出线,通过顶部磁钢旋转可以控制器高低。上铂丝运动在定温指示标杆上,可以通过改变上铂丝的位置来设定温度。 4.温度测定: 一般采用1/10温度计作为测温元件,同时使用紧密温差测试仪来测量温差。 三、主要仪器设备 仪器:玻璃钢;温度调节器;紧密电子测温仪;温度计;搅拌器;继电器;加热器; 试剂:蒸馏水 四、操作方法和实验步骤 1.准备 1.将蒸馏水灌入恒温水浴槽4/5处 2.连接电路 3.打开电源、搅拌器,开始升温 2.温度调节 1.调节上铂丝于25℃(略低于25℃) 2.当汞柱与上铂丝相接触时,向上旋转调节冒,使上铂丝接近25℃ 3.重复步骤1、2,直至上铂丝位于25℃位置 专业:高分子 姓名:毛俞硕 学号:3080102750 日期:2010.4 地点:化学实验楼 装 订 线

恒温槽装配、性能测试及恒温操作 (1)

恒温槽装配、性能测试及恒温操作 预习题: 1.玻璃恒温水浴槽包括哪些部件?它们的作用? 2.如何操作温度控制仪调节温度?如何确定水浴温度已恒温于某一温度? 3.电加热器加热过程中,加热电压如何调节? 4.如何防止水浴温度超过所需要的恒温温度? 5.一个优良的恒温水浴槽应具备哪些基本条件? 6.绘制恒温槽灵敏度曲线的温度如何读取? 7.恒温槽灵敏度θE的意义是什么?如何求得? 8.实验结束,感温元件(热敏电阻)应如何处理? 9.实验中三个测量温度的元件(水银温度计、温度指示控制仪、贝克曼温度计)的作用分别 是什么?哪一个温度显示值是水浴的准确温度? 一.实验目的 1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本操作技术。 2.绘制恒温槽的灵敏度曲线。 3.掌握贝克曼温度计的使用方法。 二.实验原理 在许多物理化学实验中,由于欲测的数据,如折射率、蒸汽压、电导、粘度、化学反应速率等都随温度而变化,因此,这些实验都必须在恒温条件下进行。一般常用恒温槽达到热平衡条件。当恒温槽的温度低于所需的恒定温度时,恒温控制器通过继电器的作用,使加热器工作,对恒温槽加热,待温度升高至所需的恒定温度时,加热器停止加热,从而使恒温槽的温度仅在一微小的区间内波动,本实验所用恒温槽的装置如图 现将恒温槽各部分的设备分别介 绍于下: 1.浴槽。通常有金属槽和玻璃槽 两种,槽的容量及形状视需要而定。 槽内盛有为热容较大的液体作为工作 物质,一般所需恒定温度1~100℃之 间时,多采用蒸馏水;所需恒定温度 在100℃以上时,常采用石蜡油,甘 油等。 图1-1 恒温槽装置图 1-浴槽;2-加热器;3-搅拌器;4-水银温度计;5-温度控制仪传感器(感 温元件);6-恒温控制仪;7-贝克曼温度计传感器

性能测试工具LoadRunner实验报告

性能测试工具LoadRunner实验报告 一、概要介绍 1.1 软件性能介绍 1.1.1 软件性能的理解 性能是一种指标,表明软件系统或构件对于其及时性要求的符合程度;同时也是产品的特性,可以用时间来进行度量。 表现为:对用户操作的响应时间;系统可扩展性;并发能力;持续稳定运行等。1.1.2 软件性能的主要技术指标 响应时间:响应时间=呈现时间+系统响应时间 吞吐量:单位时间内系统处理的客户请求数量。(请求数/秒,页面数/秒,访问人数/秒) 并发用户数:业务并发用户数; [注意]系统用户数:系统的用户总数;同时在线用户人数:使用系统过程中同时在线人数达到的最高峰值。 1.2 LoadRunner介绍 LoadRunner是Mercury Interactive的一款性能测试工具,也是目前应用最为广泛的性能测试工具之一。该工具通过模拟上千万用户实施并发负载,实时性能监控的系统行为和性能方式来确认和查找问题。 1.2.1 LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户; 压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;

监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 1.2.2 LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner就是通过代理方式截获客户端和服务器之间交互的数据流。 1)虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,记录并将其转发给服务器端;接收到从服务器端返回的数据流,记录并返回给客户端。 这样服务器端和客户端都以为在一个真实运行环境中,虚拟脚本生成器能通过这种方式截获数据流;虚拟用户脚本生成器在截获数据流后对其进行了协议层上的处理,最终用脚本函数将数据流交互过程体现为我们容易看懂的脚本语句。 2)压力生成器则是根据脚本内容,产生实际的负载,扮演产生负载的角色。 3)用户代理是运行在负载机上的进程,该进程与产生负载压力的进程或是线程协作,接受调度系统的命令,调度产生负载压力的进程或线程。 4)压力调度是根据用户的场景要求,设置各种不同脚本的虚拟用户数量,设置同步点等。 5)监控系统则可以对数据库、应用服务器、服务器的主要性能计数器进行监控。 6)压力结果分析工具是辅助测试结果分析。 二、LoadRunner测试过程 2.1 计划测试 定义性能测试要求,例如并发用户的数量、典型业务流程和所需响应时间等。 2.2 创建Vuser脚本 将最终用户活动捕获(录制、编写)到脚本中,并对脚本进行修改,调试等。协议类型:取决于服务器端和客户端之间的通信协议;

恒温槽的装配与性能测定

恒温槽的装配与性能测定 中科大地空学院地化专业 郭继业pb10007203 摘要:本实验测定在不同电压、控温方式、有无水冷条件下恒温槽的温度波动大小,并借此分析恒温槽的性能及最佳适用范围。 关键字:恒温槽温度波动 The Assembly and Capability Test of Thermostatic Bath Abstract: The experiment determined temperature fluctuation in such condition that is in different voltage and temperature-controlling method and condition whether there is water-cooling machines. The result shows the property of the thermostatic bath and grasps the range the bath can be well used of. Key words: thermostatic bath, temperature fluctuation 序言 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸汽压、电动势、化学反应的速度常数‘电力平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行,这就需要各种恒温的设备。通常用恒温槽来控制温度,维持恒温。一般恒温槽的温度都相对稳定,多少总有一定的波动,大约在±0.1℃,如果稍加改进也可达到0.01℃。要使恒温设备维持在高于室温的某一温度,就必须不断补充一定的热量,石油与散热等原因引起的热损失得到补偿。恒温槽之所以能够恒温,主要是依靠恒温控制起来控制恒温槽的热平衡。当恒温槽的热量由于对外散失而使其温度降低时,恒温控制器就能驱使恒温槽中的电加热器工作,待加热到所需要的温度时,它又会使其停止加热,是恒温槽温度保持恒定。 因此,这种加热——散热的恒温方法由于温度的变化、测量具有一定的滞后性,即使搅拌器具有适宜的转速,也必然导致温度在一定程度上的波动。以下,将分别测试在加热方式不同、恒温温度与环境温度温差不同(采用冷却水方式)两种情况下的恒温槽恒温性能。

PC性能评测实验报告

计算机体系结构课程实验报告 PC性能测试实验报告 学号: 姓名:张俊阳 班级:计科1302 题目1:PC性能测试软件 请在网上搜索并下载一个PC机性能评测软件(比如:可在百度上输入“PC 性能benchmark”,进行搜索并下载,安装),并对你自己的电脑和机房电脑的性能进行测试。并加以比较。 实验过程及结果: 我的电脑:

机房电脑:

综上分析:分析pcbenchmark所得数据为电脑的current performance与其potential performance的比值,值大表明计算机目前运行良好,性能好,由测试结果数据可得比较出机房的电脑当前运行的性能更好。分析鲁大师性能测试结果:我的电脑得分148588机房电脑得分71298,通过分析我们可以得出CPU占总得分的比重最大,表明了其对计算机性能的影响是最大的,其次显卡性能和内存性能也很关键,另外机房的电脑显卡性能较弱,所以拉低了整体得分,我的电脑各项得分均超过机房电脑,可以得出我的电脑性能更好的结论。 题目2:toy benchmark的编写并测试 可用C语言编写一个程序(10-100行语句),该程序包括两个部分,一个部分主要执行整数操作,另一个部分主要执行浮点操作,两个部分执行的频率(频率整数,频率浮点)可调整。请在你的计算机或者在机房计算机上,以(,),(,),(,)的频率运行你编写的程序,并算出三种情况下的加权平均运行时间。 实验过程及结果: #include<> #include<> int main() {

int x, y, a; double b; clock_t start, end; printf("请输入整数运算与浮点数运算次数(单位亿次)\n"); scanf("%d%d", &x, &y); /*控制运行频率*/ start = clock(); for (int i = 0; i

恒温槽的装配和性能测试

恒温槽的装配和性能测试 丛乐2005011007 生51班 实验日期:2007年10月27日星期六提交报告日期:2007年11月3日星期六 助教老师:刘马林同组实验同学:韩益平 1 引言 1.1实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 1.2 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现,叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮(-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部 件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一 套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一 般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较 大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择 1/10℃水银温度计,测量恒温槽灵敏度则 采用热敏电阻测温装置。将热敏电阻与 1/10温度计绑在一起,安装位置应尽量靠 近被测系统。 3.接点温度计(温度调节器)接点 温度计又称接触温度计或水银导电表,如 图2-1-3所示。它的下半段是水银温度计, 上半段是控制指示装置。温度计上部的毛 细管内有一根金属丝和上半段的螺母相 连,螺母套在一根长螺杆上。顶部是磁性 调节冒,当转动磁性调节冒时螺杆转动, 可带动螺母和金属丝上下移动,螺母在温 度调节指示标尺的位置就是要控制温度的 大致温度值。顶部引出的两根导线,分别图1恒温槽工作原理图 图2恒温槽装置图

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

恒温槽的装配与性能测定

恒温槽的装配与性能测定 摘要:本实验在掌握恒温槽的装配及恒温原理基础上,通过对比电子自动控温与机械自动化控温以及它们在不同的散热情况下得到的温度-时间曲线,分析出各种方法的优劣。 关键词:恒温槽灵敏度温度控制 The setting up of the thermostatic bath and the measure of its feature Chen Yimeng PB08206231 University of Science and Technology of China, Department of Material Science Engineering Abstract: In this experiment, we assemble the thermostatic in order to know its theory and the method to operate the equipment. We measure the temperature and analyze the T-t curve to get its performance. Keywords:thermostatic, sensitivity, temperature control 引言: 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸汽压、电动势、化学反应的速度常数、电离平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行,这就需要各种恒温的设备,最常用的恒温设备就是恒温槽。本实验就来探讨一下恒温槽的构造、基本原理以及影响控制灵敏度的因素。了解恒温槽的控温原理可以实现对其的进一步了解及更合理的应用。 实验部分: 1. 实验原理 恒温槽之所以能够恒温,主要是依靠恒温控制器来控制恒温槽的热平衡。当恒温槽的热量由于对外散失而使其温度降低时,恒温控制器就驱使恒温槽中的电

恒温槽调节及液体粘度的测定

实验1 恒温槽调节及液体粘度的测定 一、实验目的 1.了解恒温槽的构造、控温原理,掌握恒温槽的调节和使用。 2.掌握一种测量粘度的方法。 二、实验原理 1. 恒温槽 许多化学实验中的待测数据如粘度、蒸气压、电导率、反应速率常数等都与温度密切相关,这就要求实验在恒定温度下进行,常用的恒温槽有玻璃恒温水浴和超级水浴两种,其基本结构相同,主要由槽体、加热器、搅拌器、温度计、感温元件和温度控制器组成,如图1所示。 恒温槽恒温原理是由感温元件将温度转化为电信号输送给温度控制器,再由控制器发出指令,让加热器工作或停止工作。 水银定温计是温度的触感器,是决定恒温程度的关键元件,它与水银温度计的不同之处是毛细管中悬有一根可上下移动的金属丝,从水银球也 引出一根金属丝,两根金属丝温度控制器相联接。调节温度时,先松开固定螺丝,再转动调节帽,使指示铁上端与辅助温度标尺相切的温度示值较欲控温度低1~2℃。当加热到下部的水银柱与铂丝接触时,定温计导线成通路,给出停止加热的信号(可从指示灯辨出),此时观察水浴槽中的精密温度计,根据其与欲控温度的差值大小进一步调节铂丝的位置。如此反复调节,直至指定温度为止。 恒温槽恒温的精确度可用其灵敏度衡量,灵敏度是指水浴温度随时间变化曲线的振幅大小。即 灵敏度 = 2 ()(最低温度)最高温度t t 灵敏度与水银定温计、电子继电器的灵敏度以及加热器的功率、搅拌器的效率、各元件的布局等因素有关。搅拌效率越高,温度越容易达到均匀,恒温效果越好。加热器功率大,则到指定温度停止加热后释放余热也大。一个好的恒温槽应具有以下条件:①定温灵敏度高;②搅拌强烈而均匀;③加热器导热良好且功率适当。各元件的布局原则:加热器、搅拌器和定温计的位置应接近,使被加热的液体能立即搅拌均匀,并流经定温计及时进行温度控制。 图1 恒温槽装置示意图 1— 浴槽;2—加热器;3搅拌器;4—温度计; 5—水银定温计;6—恒温控制器;7—贝克曼温度计

软件测试实验报告LoadRunner的使用

南昌大学软件学院 实验报告 实验名称 LoadRunner的使用 实验地点 实验日期 指导教师 学生班级 学生姓名 学生学号 提交日期 LoadRunner简介: LoadRunner 是一种适用于各种体系架构的自动负载测试工具,它能预测系统行为并优化系统性能。LoadRunner 的测试对象是整个企业的系统,它通过模拟实际用户的操作行为和实行实时性能监测,来帮助您更快的查找和发现问题。此外,LoadRunner 能支持广范的协议和技术,为您的特殊环境提供特殊的解决方案。LoadRunner是目前应用最为广泛的性能测试工具之一。 一、实验目的

1. 熟练LoadRunner的工具组成和工具原理。 2. 熟练使用LoadRunner进行Web系统测试和压力负载测试。 3. 掌握LoadRunner测试流程。 二、实验设备 PC机:清华同方电脑 操作系统:windows 7 实用工具:WPS Office,LoadRunner8.0工具,IE9 三、实验内容 (1)、熟悉LoadRunner的工具组成和工具原理 1.LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户;压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 2.LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner 就是通过代理方式截获客户端和服务器之间交互的数据流。 ①虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,

物化实验报告_恒温槽的装配和性能测试

恒温槽的装配和性能测试 张鹏翔30 材33 实验日期:2015年5月14日提交报告日期:2015年5月20日 1 引言 实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某 一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现, 叫介质浴。如:液氮(℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮 (-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是装置简 单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。另一种 是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控 图1恒温槽工作原理图 对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温 度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简 单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,

恒温水浴的组装及其性能测试 实验报告

姓名: 班级: 学号: 实验日期: 课程名称:物理化学实验 实验题目:恒温水浴的组装及其性能测试 一、目的要求 1.了解恒温水浴的构造及其工作原理,学会恒温水浴的装配技术。 2.测绘恒温水浴的灵敏度曲线。 3.掌握数字贝克曼温度计的使用方法。 二、实验原理 在许多物理化学实验中,由于待测的数据如折射率、粘度、电导、蒸气压、电动势、化学反应的速率常数、电离平衡常数等都与温度有关。因此,这些实验都必须在恒温的条件下进行.这就需要各种恒温的设备。通常用恒温槽来控制温度,维持恒温。一般恒温槽的温度都是相对的稳定.多少总有一定的波动,大约在±0.1℃,如果稍加改进也可达到0.01℃,要使恒温设备维持在高于室温的某一温度,就必须不断补充一定的热量,使由于散热等原因引起的热损失得到补偿。恒温槽之所以能够恒温,主要是依靠恒温控制器来控制恒温槽的热平衡。当恒温槽的热量由于对外散失而使其温度降低时,恒温控制器就驱使恒温槽中的电加热器工作。待加热到所需要的温度时,它又会使其停止加热,使恒温槽温度保持恒定。 恒温槽的装置是多种多样的。它主要包括下面的几个部件:敏感元件,也称感温元件;控制元件;加热元件。感温元件将温度转化为电信号而输送给控制元件,然后由控制元件发出指令,让电加热元件加热或停止加热。 图l.1即是一恒温装置。它由浴槽、加热器、搅拌器、温度计、感温元件、恒温控制器等组成。现分别介绍如下: 1.浴槽: 通常用的是10dm 3的圆柱形玻璃容器。槽内一般放蒸馏水,如恒温的温度超过了100℃可采用液体石蜡或甘油。温度控制的范围不同,水浴槽中介质也不同,一般来说: -60℃~30℃时用乙醇或乙醇水溶液; 0℃~90℃时用水; 80℃~160℃时用甘油或甘油水溶液; 70℃~200℃时用液体石蜡、硅油等。 图1.1 恒温槽装置图 2.加热器 常用的是电热器、把电阻丝放人环形的玻璃管中,根据浴槽的直径大小,弯曲成圆环制成。它可以把加热丝放出的热量均匀地分布在圆形恒温槽的周围。电加热器由电子继电器进行自动调节,以实现恒温。电加热器的功率是根据恒温槽的容量、恒温控制的温度以及环境的温差大小来决定的。最好能使加热和停止加热的时间各占一半。 200V 弹簧片 恒温控制器1/10刻度温度计温差传感器接触温度计搅拌器 加热器 浴槽

恒温槽的性能测试

实验一恒温槽的性能测试 【实验目的】 1.了解恒温槽的构造及恒温原理,初步掌握其调试的基本技术。 2.绘制恒温槽灵敏度曲线,学会分析恒温槽的性能。 【实验原理】 恒温槽装置示意图 1. 浴槽 2. 加热器 3. 搅拌器 4. 温度计 5. 电接点温度计 6. 继电器 7. 贝克曼温度计 恒温槽的部分构件简介: 1.浴槽 如果控制的温度同室温相差不是太大,则用敞口大玻璃缸作为浴槽是比较合适的,对于较高和较低温度,则应考虑保温问题。具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。 2.加热器 如果要求恒温的温度高于室温,则需不断向槽中供给热量以补偿其向四周散失的热量,如恒温的温度低于室温,则需不断从恒温槽取走热量,以抵偿环境向槽中的传热。在前一种情况下,通常采用电加热器间隙加热来实现恒温控制。对电加热器的要求是热容量小、导热性好、功率适当。选择加热器的功率最好能使加热和停止的时间约各占一半。 3.搅拌器 加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。

设计一个优良的恒温槽应满足的基本条件:(1)测量探头灵敏度高;(2)搅拌强烈而均匀;(3)加热器导热良好而且功率适当;(4)搅拌器、测量探头和加热器相互接近,使被加热的液体能立即搅拌均匀并流经测温探头及时进行温度控制。恒温槽控制的温度是有一个波动范围的,控制的温度波动范围越小,灵敏度越高,灵敏度是恒温槽性能的主要标志。它除与感温元件、电子继电器有关外,还受搅拌器的效率、加热器的功率等因素影响。恒温槽灵敏度的测定,是在指定温度下用贝克曼温度计记录温度波动范围,即T—t曲线。最高温度为T2,最低温度为T1,则灵敏度 te=(T2—T1)/2 由图2—2可以看出:曲线A表示恒温槽灵敏度较高;B表示恒温槽灵敏度较差;C表示加热器功率太大;D表示加热器功率太小或散热太快。 图1—1 恒温槽控温灵敏度曲线图 【仪器和试剂】 SYP—ⅡC玻璃恒温水浴1台; SWC—ⅡD精密数字温度温差仪1台 【实验步骤】 1.根据所给元件和仪器,安装恒温槽,并接好线路,接通电源。 2.槽体中放入约2/3容积的蒸馏水。 3.接通电源,打开搅拌器开关加热,并将继电器上的温度调到所需控制的温度。 4.将恒温槽分别两次设定在30℃和40℃。 5.调节贝克曼温度计,并插入恒温槽中进行测量。 6.待恒温槽达到指定温度后,观察贝克曼温度计的读数,利用秒表每隔2min记录一次读数,共测定60min。 7.实验完毕后,关闭电源,整理实验台。 【数据记录与处理】 1.记录:

恒温槽的装配和性能测试.

实验一恒温槽的装配和性能测试 一.实验目的: 1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术。 2.绘制恒温槽灵敏度曲线。 3.掌握水银接点温度计,继电器的基本测量原理和使用方法。 二.实验原理: 恒温槽使实验工作中常用的一种以液体为介质的恒温装置。用液体作介质的优点是热容量大和导热性好,从而使温度控制的稳定性和灵敏度大为提高。 根据温度控制的范围,可采用下列液体介质: -60℃~30℃—乙醇或乙醇水溶液;0℃~90℃—水;80℃~160℃—甘油或甘油水溶液;70℃~200℃—液体石蜡、汽缸润滑油、硅油。 恒温槽通常由下列构件组成: 1. 槽体:如果控制的温度同室温相差不是太大,则用敞口大玻璃缸作为槽体是比较满意的。对于较高和较低温度,则应考虑保温问题。具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。 2. 加热器及冷却器:如果要求恒温的温度高于室温,则须不断向槽中供给热量以补偿其向四周散失的热量;如恒温的温度低于室温,则须不断从恒温槽取走热量,以抵偿环境向槽中的传热。在前一种情况下,通常采用电加热器间歇加热来实现恒温控制。对电加热器的要求是热容量小、导热性好,功率适当。选择加热器的功率最好能使加热和停止的时间约各占一半。 3. 温度调节器:温度调节器的作用是当恒温槽的温度被加热或冷却到指定值时发出信号,命令执行机构停止加热或冷却;离开指定温度时则发出信号,命令执行机构继续工作。 目前普遍使用的温度调节器是汞定温计(接点温度计)。它与汞温度计不同之处在于毛细管中悬有一根可上下移动的金属丝,金属丝再与温度控制系统连接。 4. 温度控制器温度控制器常由继电器和控制电路组成,故又称电子继电器。从汞定温计传来的信号,经控制电路放大后,推动继电器去开关电热器。 5. 搅拌器:加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。 设计一个优良的恒温槽应满足的基本条件是:(1)定温计灵敏度高,(2)搅拌强烈而均匀,(3)加热器导热良好而且功率适当,(4)搅拌器、汞定温计和加热器相互接近,使被加热的液体能立即搅拌均匀并流经定温计及时进行温度控制。

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

物化实验报告_恒温槽的装配和性能测试

恒温槽的装配和性能测试 张鹏翔2013012030 材33 实验日期:2015年5月14日提交报告日期:2015年5月20日 1 引言 1.1实验目的 1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。 2.分析恒温槽的性能,找出合理的最佳布局。 3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。 1.2 实验原理 许多物理化学实验都需要在恒温条件下进行。欲控制被研究体系的某 一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现, 叫介质浴。如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰 -丙酮(-78。5℃)、沸点萘(218℃)等等。相变点介质浴的最大优点是 装置简单、温度恒定。缺点是对温度的选择有一定限制,无法任意调节。 另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节, 图1恒温槽工作原理图 使被控对象处于设定的温度之下。 本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温 度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。其简 单恒温原理线路如图2-1-1所示。当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。如此反复进行,从而使恒温槽维持在所需恒定的温度。 恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。如图2-1-2所示。为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。现将恒温槽主要部件简述如下。 1.浴槽浴槽包括容器和液体介质。根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。若设定温度与室温差距较大时,则应对整个缸体保温。以减少热量传递,提高恒温精度。 恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。本实验采用去离子水为工作介质,如恒温在50℃以上时,可在水面上加一层液体石蜡,避免水分蒸发。 2.温度计观察恒温浴槽的温度可选择1/10℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。将热敏电阻与1/10温度计绑在一起,安装位置应尽量靠近被测系统。 3.接点温度计(温度调节器)接点温度计又称接触温度计或水银导电表,如图2-1-3所示。它的下半段是水银温度计,上半段是控制指示装置。温度计上部的毛细管内有一根金属丝和上半段的螺母相连,

耐磨材料及性能测试课程实验报告中国地质大学

实验一、表面纳米化实验 一、实验设备:普通数控车床,USP-125表面加工装置,待加工钢锭。 二、实验原理:应用球形超硬材料工具头对金属工件表面进行表面强化和光整加 工,原理图如下所示: 超声波发生器产生的超声信号经过换能器变幅杆的转换和放大使球形工具头产生超声波机械振动,工具头以一定静压力对工件挤压的同时,对工件表面进行超声波冲击强化。在工具头静压力和冲击力的作用下,工件表面的微观凹、凸峰谷产生挤压塑性变形而压平表面,使得表面粗糙度降低,表面层金属组织得到强化,表面层的力学性能得以改善。 三、实验流程 1、将待加工件装夹在机床卡盘上,由于此次加工的是厚度约5mm的圆钢锭, 用螺钉在其周向均匀固定。 2、通过机床卡块将超声波加工装置固定在车床刀架上,调节高度使得硬质加 工球中心与待加工钢锭回转中心处于同一高度。 3、确认主机机箱正面开关处于管断状态,用220V电源线接通主机电源,然后 打开电源开关,主机接通电源,红色电源指示灯亮。 4、拧动电源旋钮,使液晶屏幕上的预设为合适的值,按下执行机构开关,绿 色工作指示灯亮,约为2—5秒钟后频率值较为稳定,电流值也稳定在预设值左右波动,表明设备进入正常工作状态,执行机构可以开始工作。 5、开启冷却液冷却加工球,缓慢地向零件方向进给刀架,加工球与零件表面 接触,继续进给,直至加工球对零件表面的静压力逐渐增大到预设的值。在施加静压力的过程中,电流值会变化较大,停止进给刀架后,待2—15分钟,使电流值稳定在预设值左右波动,可以开始往加工方向进给刀架,加工零件。 6、处理过程中,可随时调整静压力和振幅。由于加工参数对负载影响较大,

在加工过程中参数改变不宜过快。参数的调整也可在关闭执行机构开关后(仍保持超声波电源工作)进行。 7、结束加工,先关闭执行机构开关,再关断超声电源。 四、注意事项 1、设备工作时,操作人员如对执行机构振动声音感到不适,应佩戴防护耳塞与 防护耳套。 2、应该先用超声电源线连接超声电源与执行机构,再接通主机与220V电源。 最后按下执行机构开关。结束工作时则要先按下关闭执行机构开关,再断开主机与220V电源,最后取下超声电源线。 3、用220V电源线为主机接通电源之前,应保电源开关处于关断状态。执行 机构开关按下之前,电路调节旋钮最好不要扭到电流最大处,根据所处理材料、静压力的不同应使用相应的电流加工。 4、定期(实际加工时间超过10小时后开始)检查加工球,当加工球表面光 洁度显著降低时,应更换新的加工球,否则影响加工效果。 5、每次使用后务必将加工装置上的油污、冷却液清理干净,尤其将进入前 盖内的冷却液清理干净,否则装置内的换能器长期接触冷却液会损坏。可以每次使用后使用吹风机热风吹干冷却液。 五、实验感悟及分析 超声波表面振动加工是一种机械冲击式的压力光整加工,它利用金属在常温下的冷塑性特点,利用表面施加预紧力,加以高频超声波振动,使得原有的微观波峰熨平,,使其填入波谷,从而使工件表面质量提高。具体可表现在: 1、表面粗糙度明显降低。在强烈的高频振动下,工件表面上微观的波峰被 冲击变形、碎裂,填入波谷,原有的波峰波谷高低差值降低,使得工件 表面粗糙度显著降低,一般可降低2—4级。表面粗糙度的降低对于零件 接触面的耐磨性、防止零件表面应力集中和提高其疲劳强度都有好处。 2、工件表面金属硬化。工件表层金属在塑性变形过程中,随着冷作硬化, 表面硬度提高,一般可提高3—4倍,并且从工件表面到内部呈阶梯式逐 渐降低。与其他表面强化技术比起来,即在不改变原有材料基础上提高 了工件综合性能。

相关文档
最新文档