抛光机理及抛光机床

抛光机理及抛光机床
抛光机理及抛光机床

抛光机

工作原理:

抛光机操作的关键是要设法得到最大的抛光速率,以便尽快除去磨光时产生的损伤层。同时也要使抛光损伤层不会影响最终观察到的组织,即不会造成假组织。前者要求使用较粗的磨料,以保证有较大的抛光速率来去除磨光的损伤层,但抛光损伤层也较深;后者要求使用最细的材料,使抛光损伤层较浅,但抛光速率低。

解决这个矛盾的最好的办法就是把抛光分为两个阶段进行。粗抛目的是去除磨光损伤层,这一阶段应具有最大的抛光速率,粗抛形成的表层损伤是次要的考虑,不过也应当尽可能小;其次是精抛(或称终抛),其目的是去除粗抛产生的表层损伤,使抛光损伤减到最小。抛光机抛光时,试样磨面与抛光盘应绝对平行并均匀地轻压在抛光盘上,注意防止试样飞出和因压力太大而产生新磨痕。同时还应使试样自转并沿转盘半径方向来回移动,以避免抛光织物局部磨损太快在抛光过程中要不断添加微粉悬浮液,使抛光织物保持一定湿度。湿度太大会减弱抛光的磨痕作用,使试样中硬相呈现浮凸和钢中非金属夹杂物及铸铁中石墨相产生“曳尾”现象;湿度太小时,由于摩擦生热会使试样升温,润滑作用减小,磨面失去光泽,甚至出现黑斑,轻合金则会抛伤表面。为了达到粗抛的目的,要求转盘转速较低,最好不要超过600r/min;抛光时间应当比去掉划痕所需的时间长些,因为还要去掉变形层。粗抛后磨面光滑,但黯淡无光,在显微镜下观察有均匀细致的磨痕,有待精抛消除。

精抛时转盘速度可适当提高,抛光时间以抛掉粗抛的损伤层为宜。精抛后磨面明亮如镜,在显微镜明视场条件下看不到划痕,但在相衬照明条件下则仍可见到磨痕。抛光机抛光质量的好坏严重影响试样的组织结构,已逐步引起有关专家的重视。近年来,国内外在抛光机的性能上作了大量的研究工作,研究出不少新机型、新一代的抛光设备,正由原来的手动操作发展成为各种各样的半自动及全自动抛光机。

四、铝的化学抛光

四、铝的化学抛光 为了取得表面光亮的铝和铝合金,除了进行机械抛光外,对于光亮度要求较高的零件还需进行化学抛光,化学抛光的特点是设备简单,节省电能,效率高和成本低,而且不受零件形状和尺寸的限制、特小,特薄和形状复杂的零件以及异型管。孔和槽的内腔均可加工。不过化学抛光也还存在不少问题,例:在多数情况下,其质量还不能完全赶上电化学抛光,而且还有大量氮氧化合物气体产生。 化学抛光的反应过程是金属在电介质溶液中的自溶过程。关于化学抛光的机理迄今尚无成熟理论。一般认为与电化学抛光相似,化学抛光时金属表面显微凸起部分的溶解速度比凹下部分快得多,因而使表面变得平坦光亮。 在工业上用于化学抛光的溶液主要是磷酸、硝酸、硫酸、醋酸或其它化合物。 下面介绍常用化学抛光配方: 1.适用高纯铝及铝镁合金化抛配方: 磷酸(H3PO4)70% (容量比) 硫酸(H2S04)20% (容量比) 硝酸(HNO3)10% (容量比) 温度90~115℃ 时间3~8分钟 新溶液温度控制为90℃,(因溶液粘度小,离子活动快)。老溶液温度控制为115℃,(因老溶液粘度大,离子活动慢) 铝化学抛光质量于溶液中硝酸的含量多少有着极为重要的关系。硝酸含量低于5%会引起铝件表面结晶腐蚀,大于12%,会引起点状腐蚀。 抛光溶液成份及工艺条件的影响: (1)磷酸含量的影响: 一般磷酸含量约在50~85%之间,最佳范围在70%,过低的磷酸含量光洁度较差,过高含量抛光速度缓慢。 (2)硫酸含量的影响: 在无硫酸条件下,同样可以得到光洁表面,但易产生点蚀,抛光速度慢,过多硫酸光亮度显著下降,表面易产生雾状,因此硫酸含量宜控制20%左右。 (3)硝酸含量的影响: 硝酸含量在5%~10%,过多硝酸不但使铝制件表面出现点腐蚀,而在温度条件下产生乳白色,低于5%光亮度显著下降。 (4)铝离子含量的影响: 铝离子含量有利于提高抛光整平性能,但不宜超过30克/升,否则抛光速度缓慢,使溶液的粘度增大,导致溶液的排泄困难,而洗涤后亦将引起表面斑渍。 (5)温度的影响: 温度最佳控制为105℃,气体的发生量也少,金属的溶解速度亦缓慢,温度过高后,不仅气体发生增加,制品腐蚀和产生雾状表面。 2.稀的化学抛光其含量: 硝酸(HNO3)30~70克/升 氟化氢铵(NH4HF2)4~12克/升 铝及铝合金的碱性化学抛光: 近来研究一种碱性化学抛光,它可克服酸性化学抛光成本高,腐蚀性强,污染空气严重的缺点,抛光质量基本上与酸性抛光相似,效果令人满意。

数控车床使用说明书

Y C K-6032/6036数控车床使用维修说明书

目录 前言 .......................................... 错误!未定义书签。第一章机床特点及性能参数. (2) 1.1机床特点 (2) 4.1 准备工作 4.2 上电试运行 (8) 第五章主轴系统 (9) 5.1 简介 (9) 5.2 主轴系统的机构及调整 (10)

5.2.1 皮带张紧 (10) 5.2.2 主轴调整 (11) 5.3 动力卡盘 (11) 第六章刀架系统 (11) 第十一章机床电气系统 (14) 11.1主要设备简要 (15) 11.2 操作过程: (15) 11.3 安全保护装置: (15)

11.4 维修: (15) 第十二章维护、保养及故障排除 (18)

前言 欢迎您购买我厂产品,成为我厂的用户。 本说明所描述的是您选用的我厂YCK-6032/6036标准型全功能数控车床。该车床结构紧凑,自动化程度高,是一种经济型自动化加工设备,主要用于批量加工各种轴类、套类及盘类零件的外圆、内孔、切槽,尤其适用轴承行业轴承套圈等多工序零件加工。

第一章机床特点及性能参数 1.1机床特点 YCK-6032/6036全功能数控车床是顺应市场要求向用户推荐的优秀产品,该机性能优异,各项指标均达国际水平,具有较高的性价比,可替代同类进口产品。 YCK-6032/6036整机布局紧凑合理,其高转速、高精度和高刚性,为用户在使用中提 本机标准配置为排刀架,刚性好,可靠性高,故障率低,重复定位精度为 0.007mm,相邻刀位移动时间为0.3秒,车、镗、钻、扩、铰等工具可同时安装使用。 另外,本机可选配八工位、十工位、十二工位液压转盘刀塔。 本机进给系统全部由伺服电机(可选配步进电机)直连驱动,刚性、动态特性好,系统的最小设定单位为0.001mm,快速移动速度为X轴15m/min,Z轴15m/min,

铝及铝合金的电解抛光和化学抛光

铝及铝合金的电解抛光和化学抛光 一、电解抛光 (一)酸性溶液 铝及其合金的电解抛光,广泛采用磷酸.硫酸.铬酸型的溶液。其工艺规范列于表2—4—6。 表2—4—6铝及其合金电解抛光的工艺规范 溶液配制方法,可参照钢铁零件电解抛光的相应部分。溶液在使用过程中,三价铬的含量将逐渐升高,过多的三价铬,可以用大面积的阳极通电处理,使之氧化为六价铬。当溶液中的铝含量超过5%时,溶液应部分或全部更换。氯离子对电解抛光有不利的影响,当氯离子含量超过1%时,零件极易出现点状腐蚀,配制溶液所用的水中,氯离子含量应少于80m g/L。 (二)碱性溶液 纯铝和LT66等铝合金,还可以在以下碱性溶液中进行抛光: 磷酸三钠(Na3P04·12H20) 130g/L~150g/L电压l2V~25V

碳酸钠(N a2C03)350g/L~380g/L阳极电流密度8A/d m2—12A/d m2 氢氧化钠(Na OH)3g/L~5g/L温度94℃~98℃ pH值11—12时间6min~10m in 阳极用不锈钢板或普通钢板。溶液需搅拌或阳极移动。 应该指出: (1)碱性电化学抛光溶液虽可用于抛光L1,L2,L3等纯铝和L T66铝镁合金零件,但易在抛光表面生成半透明氧化膜。因此,必须把抛光后的零件浸入磷酸和铬酸的混合溶液(Cr0310g/L,H3P0430mL/L)进行除膜,以降低其表面粗糙度。 (2)当抛光零件表面出现麻点、斑点、条纹或乳白色氧化膜时,可在下列(Na OH l00g/L~l50g/L,温度50℃~60℃,时间10s~30s)碱液中溶去全部蚀点和氧化膜,以便重新抛光和回用。 (3)当抛光制件表面出现少量接触铜时,可把零件浸入下列(浓HN032mL /L~5mL/L,Cr0310g/L~30g/L,室温,时间30s~120s)溶液中,溶解接触铜,以显出光亮表面。 二、化学抛光 铝及其合金的化学抛光工艺规范见表2—4—7。化学抛光溶液中,硝酸的浓度对抛光质量有重大的影响。、当硝酸浓度过低时,反应速度低,抛光后的表面光泽较差且往往沉积出较厚的接触铜。硝酸浓度过高时,则容易出现点状腐蚀。磷酸浓度低时,不能获得光亮的表面,为了防止溶液被稀释,抛光前的零件,表面应干燥。醋酸可以抑制点状腐蚀,使抛光表面均匀、细致。硫酸的作用与醋酸相似,但效果略低于醋酸。由于硫酸成本低,挥发性小,因此,在生产中仍然应用得比较广泛。硫酸铵和尿素可以减少氧化氮的析出,并有助于改善抛光质量。少量的铜离子可以防止过腐蚀,从而提高了抛光表面的均匀性,但含铜过高往往会降低抛光表面的反光能力。铬酐可以提高铝锌铜合金的抛光质量,含锌、铜较高的高强度铝合金,在不含铬酐的溶液中,难以获得光亮的表面。

车床数控系统 使用手册21

21 称程序零点。) 回程序零点:Z轴回程序参考点仅手动斜杠自动工作方式下有效。 回机床零点:X轴回机床参考点仅手动工作方 式下有效(本使用手册中,机床参考点又称机 床零点)。 回机床零点:Z轴回机床参考点仅手动工作方 式下有效。 空运行:空运行键在自动工作方式下选择空运 行方式,执行指令时,M、S、T是否有效由 参数设置(位参数P401-d7),退出空运行 状态以后,系统各轴的坐标自动恢复到空运行 之前的坐标值。 单段:单段/连续键在自动工作方式下选择单 段/连续的运行方式;在其他工作方式下,为 hp功能。 3.3.4 循环起动键及循环暂停键(进给保持 键) 在自动工作方式下,启动程序运行,及在运行 过程中暂停程序运行,各键符号含义如下: 循环起动:循环起动键在自动工作方式下,启

动程序,开始自动运行;在手动工作方式下,移动坐标轴。 循环暂停:循环暂停键(进给保持键)在手动或自动工作方式下,表示暂停运行;在其它工作方式下,为hp功能。 注意:有的键的右上角标有“hp”(help帮助),共7个帮助键hp0~hp6;在不同的工 作方式下,当主键无效时,hp有效。 3.3.5 手动轴控制键 在手动工作方式下,手动控制键符号含义如下: -X在手动工作方式下,X轴向负方向运动。 +X在手动工作方式下,X轴向正方向运动。-Z/-Y在手动工作方式下,Z轴向负方向运 动。 +Z/+Y在手动工作方式下,Z轴向正方向运动。 快速/进给:快速/进给键在手动工作方式下,进行快速移动速度与进给速度的相互切换。 步长调整在手动工作方式下,单步/手脉步长选择;在其它工作方式下,为hp功能。 手脉在手动工作方式下,手脉控制选择及轴

化学机械抛光工艺(CMP)全解

化学机械抛光液(CMP)氧化铝抛光液具体添加剂 摘要:本文首先定义并介绍CMP工艺的基本工作原理,然后,通过介绍CMP系统,从工艺设备角度定性分析了解CMP的工作过程,通过介绍分析CMP工艺参数,对CMP作定量了解。在文献精度中,介绍了一个SiO2的CMP平均磨除速率模型,其中考虑了磨粒尺寸,浓度,分布,研磨液流速,抛光势地形,材料性能。经过实验,得到的实验结果与模型比较吻合。MRR 模型可用于CMP模拟,CMP过程参数最佳化以及下一代CMP设备的研发。最后,通过对VLSI 制造技术的课程回顾,归纳了课程收获,总结了课程感悟。 关键词:CMP、研磨液、平均磨除速率、设备 Abstract:This article first defined and introduces the basic working principle of the CMP process, and then, by introducing the CMP system, from the perspective of process equipment qualitative analysis to understand the working process of the CMP, and by introducing the CMP process parameters, make quantitative understanding on CMP.In literature precision, introduce a CMP model of SiO2, which takes into account the particle size, concentration, distribution of grinding fluid velocity, polishing potential terrain, material performance.After test, the experiment result compared with the model.MRR model can be used in the CMP simulation, CMP process parameter optimization as well as the next generation of CMP equipment research and development.Through the review of VLSI manufacturing technology course, finally sums up the course, summed up the course. Key word: CMP、slumry、MRRs、device 1.前言 随着半导体工业飞速发展,电子器件尺寸缩小,要求晶片表面平整度达到纳米级。传统的平坦化技术,仅仅能够实现局部平坦化,但是当最小特征尺寸达到

化学机械抛光液(CMP)氧化铝抛光液具汇总

化学机械抛光液(CMP)氧化铝抛光液 一、行业的界定与分类 (2) (一)化学机械抛光 (2) 1、化学机械抛光概念 (2) 2、CMP工艺的基本原理 (2) 3、CMP技术所采用的设备及消耗品 (2) 4、CMP过程 (2) 5、CMP技术的优势 (2) (二)化学机械抛光液 (3) 1、化学机械抛光液概念 (3) 2、化学机械抛光液的组成 (3) 3、化学机械抛光液的分类 (3) 4、CMP过程中对抛光液性能的要求 (3) (三)化学机械抛光液的应用领域 (3) 二、原材料供应商 (4) 三、化学机械抛光液行业现状 (4) (一)抛光液行业现状 (4) 1、国际市场主要抛光液企业分析 (4) 2、我国抛光液行业运行环境分析 (4) 3、我国抛光液行业现状分析 (5) 4、我国抛光液行业重点企业竞争分析 (5) (二)抛光液行业发展趋势 (5) (三)抛光液行业发展的问题 (5) 四、需求商 (6) (一)半导体硅材料 (6) 1、电子信息产业介绍 (6) 2、半导体硅材料的简单介绍 (6) (二)分立器件行业 (7) (三)抛光片 (8)

化学机械抛光液行业研究 一、行业的界定与分类 (一)化学机械抛光 1、化学机械抛光概念 化学机械抛光(英语:Chemical-Mechanical Polishing,缩写CMP),又称化学机械平坦化(英语:Chemical-Mechanical Planarization),是半导体器件制造工艺中的一种技术,用来对正在加工中的硅片或其它衬底材料进行平坦化处理。 2、CMP工艺的基本原理 基本原理是将待抛光工件在一定的下压力及抛光液(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面的材料去除,并获得光洁表面。 3、CMP技术所采用的设备及消耗品 主要包括,抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等,其中抛光液和抛光垫为消耗品。 4、CMP过程 过程主要有抛光、后清洗和计量测量等部分组成,抛光机、抛光液和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平。 5、CMP技术的优势 最初半导体基片大多采用机械抛光的平整方法,但得到的表面损伤极其严重,基于淀积技术的选择淀积、溅射玻璃SOG(spin-on-glass)、低压CV D(chemicalvaporde-posit)、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC工艺中获得应用,但均属局部平面化技术,其平坦化能力从几微米到几十微米不等,不能满足特征尺寸在

车床说明书

金属切削机床 课程设计说明书 设计题目 设计一台加工直径最大范围320的普通车床的主传动系统

设计者:全昌善 指导教师:梁伟 设计日期:2014年6月评定成绩:

目录 第一章设计任务书- - - - - - - - - - - - - - - - - - - - 1 第二章主轴极限转速的确定- - - - - - - - - - - - - - - - -2 2.1 机床主参数- - - - - - - - - - - - - - - - - - - - - - 2 2.2主电机的选择- - - - - - - - - - - - - - - - - - - - - -3 第三章变速结构的设计- - - - - - - - - - - - - - - - - - -4 3.1确定变速组及各变速组中变速副的数目- - - - - - - - - - 4 3.2结构式的拟定- - - - - - - - - - - - - - - - - - - - - -4 第四章传动件的设计- - - - - - - - - - - - - - - - - - - -6 4.1带轮的设计- - - - - - - - - - - - - - - - - - - - - - - 6 4.2 带轮结构设计- - - - - - - - - - - - - - - - - - - - -8 4.3确定各轴的转速- - - - - - - - - - - - - - - - - - - - - 8 第五章各变速齿轮模数的确定和效定- - - - - - - - - - - - -10 5.1轴的计算- - - - - - - - - - - - - - - - - - - - - - - -10 5.2齿轮的设计- - - - - - - - - - - - - - - - - - - - - - 11 第六章齿轮的效验-- - - - - - - - - - - - - - - - - - - -13 6.1齿轮强度效验- - - - - - - - - - - - - - - - - - - - - 13 6.2效定齿轮- - - - - - - - - - - - - - - - - - - - - - - 13 第七章主轴基本尺寸确定- - - - - - - - - - - - - - - - - -14 心得体会- - - - - - - - - - - - - - - - - - - - - - - - - - 16 参考文献- - - - - - - - - - - - - - - - - - - - - - - - - 17

化学机械抛光CMP技术的发展应用及存在问题

化学机械抛光(CMP)技术的发展、应用及存在问题 雷红 雒建斌 马俊杰 (清华大学摩擦学国家重点实验室 北京 100084) 摘要:在亚微米半导体制造中,器件互连结构的平坦化正越来越广泛采用化学机械抛光(C MP)技术,这几乎是目前唯一的可以提供在整个硅圆晶片上全面平坦化的工艺技术。本文综述了化学机械抛光的基本工作原理、发展状况及存在问题。 关键词:C MP 设备 研浆 平面化技术 Advances and Problems on Chemical Mechanical Polishing Lei Hong Luo Jianbin Ma J unjie (T he S tate K ey Lab oratery of T rib ology,Tsinghua University100084) Abstract:Chemical mechanical polishing(C MP)has become widely accepted for the planarization of device interconnect structures in deep submicron semiconductor manu facturing1At present,it is the only technique kn own to provide global planarization within the wh ole wafers1The progress and problem of C MP are reviewed in the paper1 K eyw ords:CMP Equipment Slurry Planarization 1 C MP的发展、应用 随着半导体工业沿着摩尔定律的曲线急速下降,驱使加工工艺向着更高的电流密度、更高的时钟频率和更多的互联层转移。由于器件尺寸的缩小、光学光刻设备焦深的减小,要求片子表面可接受的分辨率的平整度达到纳米级[1]。传统的平面化技术如基于淀积技术的选择淀积、溅射玻璃S OG、低压C VD、等离子体增强C VD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积—腐蚀—淀积等,这些技术在IC工艺中都曾获得应用。但是,它们虽然也能提供“光滑”的表面,却都是局部平面化技术,不能做到全局平面化。目前,已被公认的是,对于最小特征尺寸在0135μm及以下的器件,必须进行全局平面化,为此必须发展新的全局平面化技术。 90年代兴起的新型化学机械抛光(Chem ical M echanical P olishing,简称C MP)技术则从加工性能和速度上同时满足了圆片图形加工的要求。C MP技术是机械削磨和化学腐蚀的组合技术,它借助超微粒子的研磨作用以及浆料的化学腐蚀作用在被研磨的介质表面上形成光洁平坦表面[2、3]。C MP技术对于器件制造具有以下优点[1]: (1)片子平面的总体平面度:C MP工艺可补偿亚微米光刻中步进机大像场的线焦深不足。 (2)改善金属台阶覆盖及其相关的可靠性:C MP 工艺显著地提高了芯片测试中的圆片成品率。 (3)使更小的芯片尺寸增加层数成为可能:C MP 技术允许所形成的器件具有更高的纵横比。 因而,自从1991年美国I BM公司首先将C MP工艺用于64Mb DRAM的生产中之后,该技术便顺利而迅速地在各种会议和研究报告中传播,并逐步进入工业化生产[4、5]。目前美国是C MP最大的市场,它偏重于多层器件,欧洲正在把C MP引入生产线,而日本和亚太地区将显著增长,绝大多数的半导体厂家采用了金属C MP,而且有能力发展第二代金属C MP工艺。据报道[6],1996年日本最大十家IC制造厂家中,有七家在生产0135μm器件时使用了C MP平坦化工艺,韩国和台湾也已开始C MP在内的亚微米技术。近年来,C MP发展迅猛,在过去三年中,化学机械抛光设备的需求量已增长了三倍,并且在今后的几年内,预计C MP设备市场仍将以60%的增长幅度上升。C MP 技术成为最好也是唯一的可以提供在整个硅圆晶片上全面平坦化的工艺技术,C MP技术的进步已直接影响着集成电路技术的发展。 C MP的研究开发工作已从以美国为主的联合体SE M ATECH发展到全球,如欧洲联合体J ESSI,法国研究公司LETI和C NET,德国Fraunhofer研究所等[7],日本和亚洲其它国家和地区如韩国、台湾等也在加速研究与开发,并呈现出高竞争势头。并且研究从居主导地位的半导体大公司厂家的工艺开发实验室正扩展到设备和材料供应厂家的生产发展实验室。 C MP技术的应用也将从半导体工业中的层间介质(I LD),绝缘体,导体,镶嵌金属W、Al、Cu、Au,多晶硅,硅氧化物沟道等的平面化[8],拓展到薄膜存贮磁盘,微电子机械系统(MFMS),陶瓷,磁头,机械磨具,精密阀门,光学玻璃,金属材料等表面加工领域。

广数928TE系统说明书

广数928TE系统说明书 默认分类2007-10-13 21:11:17 阅读3193 评论0 字号:大中小订阅 螺纹牙深=螺距*0。6495 窗体底端 广州数控GSK928TE 数控系统用户手册 GSK928TE/GSK928TC 车床数控系统 使用手册 广州数控GSK928TE 数控系统用户手册 前言 感谢您选用广州数控设备有限公司生产的GSK928TE/GSK928TC数控系统,本说明书提供了使 用本系统所需知识及注意事项. 操作不当可能引起意外事故.在使用本系统以前,务必仔细阅读本手册! 在系统开始使用之前请注意以下事项: 连接好系统的急停按钮.由于本系统的急停输入采用常闭触点,如不接好急停按钮或错 接为常开触点,系统通电后会产生急停报警而不能正常工作,此不属系统故障. 根据刀具的实际安装位置设置好程序参考点,如不设置好参考点就使用回程序参考点功 能,则可能发生意外. 此版本说明书适用GSK928TE/GSK928TC数控系统V3.20软件,用户 使用GSK928TC数控系统V2.13,V2.23,V3.01软件时,请参阅附录3, 附录4,附录5. 为方便表述,本手册中不区分928TE和928TC,以GSK928TE作为通 用名称. - 2 - 广州数控GSK928TE 数控系统用户手册 用户安全须知 在本系统连接使用之前,务必仔细阅读本节安全预防措施.用户必须遵守这些预 防措施以确保人身及设备安全. 用户操作时还必须遵守由本公司提供的说明书指明的相关安全措施.在完全熟悉本说明书内容后, 方可操作本系统. 用户还必须遵守由机床厂商提供的说明书中指明的与机床有关的安全预防措施.用户必须在完全熟悉本说明书以及由制造厂商提供的相关说明书的内容后才能操作机床或编制程序来控制机●数控系统安装必须牢固,避免振动. 4,接线 警告●参与接线或检查的人员都必须具有做此项工作的充分能力;连接电线不可 有破损,不可受挤压不可带电打开数控系统机箱. 小心●任何一个接线插头上的电压值和极性都必须符合说明书的规定.

铝及铝合金化学抛光体系简介一

铝及铝合金化学抛光体系简介 --三酸抛光体系 推荐理由:文章主要讲述了三酸体系化学抛光铝表面的作用机理,以及酸抛光技术的工艺要求等。从文章中可以看出三酸体系在化学抛光处理过程中一些弊端,即在三酸化学抛光体系中需要进行工艺优化的地方。从而能够让人发起思考:在铝及铝合金材料的抛光处理中,除了三酸处理体系,还能出现其他哪些处理体系呢? 一、化学抛光的作用 铝材阳极氧化前的预处理能够提供光亮外观。从铝材质来讲,纯铝的抛光性能最好,铝硅合金的抛光性最差。为了获得高标准光亮的精饰的表面,除了选择纯度高的铝材,常采用机械抛光、化学抛光和电化学抛光相结合的方式。 化学抛光使铝材表面平整光滑,能除去铝材表面较轻微的模具痕迹和擦伤条纹,能除去机械抛光中可能生成的摩擦条纹、热变形层、氧化膜层等,使粗糙的表面趋于光滑,同时可提高铝材的镜面反射性能,提高光亮度。而在早期化学抛光的抛光液体系中,三酸体系比较主流,但是随着碱性氧化铝抛光液的出现三酸体系逐渐失去主导地位。这里对三酸抛光体系作简单的介绍。 二、总机理 总机理是铝的酸性浸蚀过程—钝化过程—黏滞性扩散层的扩散过程。 三酸抛光:磷酸---硫酸---硝酸。 原理:铝浸到热的浓酸中时,发生强烈的酸性浸蚀反应,并溶解除去铝材表面的一层铝,此时抛光液中的某种成分遏制酸性浸蚀反应,发生氧化反应,形成一层几十个原子层厚度的氧化铝的钝化覆盖在铝表面上,产生钝化作用,铝表面暂时受保护。而氧化膜不断被酸溶解,然后又受钝化,又溶解这样的反复过程,凸处不断被整平和凹处达到同一个平面,此时达到抛光目的。 三、三酸抛光的优缺点: (一)装料要求高: 装料量应少,铝材间距大,倾斜度大,才能使气体尽快逸出。化学抛光液的比重很大,铝很轻,在抛光过程中还要防止铝材上浮,漂在面上,造成光亮度不均匀。应加重导电梁防止铝材上浮;对高光亮度要求的装饰面应该向外垂直装料,使气体尽快逸出;装料要稳固,采用夹具时安放在非装饰面上,避免留下痕迹。(二)表面清洗脱脂:

化学机械抛光液配方组成,抛光液成分分析及技术工艺

化学机械抛光液配方组成,抛光原理及工艺导读:本文详细介绍了化学机械抛光液的研究背景,机理,技术,配方等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 禾川化学专业从事化学机械抛光液成分分析,配方还原,研发外包服务,提供一站式化学机械抛光液配方技术解决方案。 1.背景 基于全球经济的快速发展,IC技术(Integrated circuit, 即集成电路)已经渗透到国防建设和国民经济发展的各个领域,成为世界第一大产业。IC 所用的材料主要是硅和砷化镓等,全球90%以上IC 都采用硅片。随着半导体工业的飞速发展,一方面,为了增大芯片产量,降低单元制造成本,要求硅片的直径不断增大;另一方面,为了提高IC 的集成度,要求硅片的刻线宽度越来越细。半导体硅片抛光工艺是衔接材料与器件制备的边沿工艺,它极大地影响着材料和器件的成品率,并肩负消除前加工表面损伤沾污以及控制诱生二次缺陷和杂质的双重任务。在特定的抛光设备条件下,硅片抛光效果取决于抛光剂及其抛光工艺技术。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川

化学技术团队,我们将为企业提供一站式配方技术解决方案! 2.硅片抛光技术的研究进展 20世纪60年代中期前,半导体抛光还大都沿用机械抛光,如氧化镁、氧化锆、氧化铬等方法,得到的镜面表面损伤极其严重。1965年Walsh和Herzog 提出SiO2溶胶-凝胶抛光后,以氢氧化钠为介质的碱性二氧化硅抛光技术就逐渐代替旧方法,国内外以二氧化硅溶胶为基础研究开发了品种繁多的抛光材料。 随着电子产品表面质量要求的不断提高, 表面平坦化加工技术也在不断发展,基于淀积技术的选择淀积、溅射玻璃SOG( spin-on-glass) 、低压CVD( chemical vapor deposit) 、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC艺中获得应用, 但均属局部平面化技术,其平坦化能力从几微米到几十微米不等, 不能满足特征尺寸在0. 35 μm 以下的全局平面化要求。 1991 年IBM 首次将化学机械抛光技术( chemical mechanical polishing , 简称CMP)成功应用到64 Mb DRAM 的生产中, 之后各种逻辑电路和存储器以不同的发展规模走向CMP, CMP 将纳米粒子的研磨作用与氧化剂的化学作用有机地结合起来, 满足了特征尺寸在0. 35微米以下的全局平面化要求。CMP 可以引人注目地得到用其他任何CMP 可以引人注目地得到用其他任何平面化加工不能得到的低的表面形貌变化。目前, 化学机械抛光技术已成为几乎公认为惟一的全局平面化技术,逐渐用于大规模集成电路(LSI) 和超大规模集成电路(ULSI) ,可进一步提高硅片表面质量,减少表面缺陷。

砂带抛光原理

砂带在磨削过程中容易出现的几种问题以及如何解决的方法 (1) 砂带太软 这个问题一般都发生在动物胶的砂带上特别是雨季,动物胶容易吸潮而发软发粘.因此,在雨季或潮湿的在地区应选用半树脂或全树脂粘结剂生产的砂带.对动物胶的砂带不宜过早折开砂带包装物,以避免过度吸潮.如有条件时,再受过潮动物胶再凉干或烘干亦可,但温度不宜过高,以免胶层起泡或焦化. (2) 磨料容易钝,但不脱落 砂带磨削时,若接触轮太软,则容易出现砂面的磨料虽不脱落但不锋利的状况.如有这种情况的发生,,应该增加磨削的压力或更换较硬的接触轮或更换齿轮较宽的接触轮或者更换小直径的接触轮,或者降低砂带的线速度等等,则可以解决砂面不锋利的状况. (3) 容易脱砂,基底外露 这主要是磨粒粘结不牢,应更换砂带.或者选用较软的接触轮或较大直径的接触轮,以增大砂带的曲率半径,减少磨削压力,或者选用较窄齿轮的接触轮,以提高砂带的线速度. (4) 磨料层堵塞 主要是砂带选择的不对路,若加工油漆,宜选用有特殊涂层的砂带,如加工铝合金、不锈钢、铜等软金属材料时,宜选用抗润滑,抗冷却剂的耐水砂带,以抗水抗潮,磨削木材及其制品时,宜选用黑碳化硅或棕刚玉的磨料. (5) 现以木材为例,在用砂带砂光过程中易出现的问题如下页表所叙 人造砂光板面容易出现的问题分析1/.某些企业板面砂光后出现有规则的横纹(指板面宽的方面)、直线纵纹(指板面长度方向)和“之”形纵纹(板面长度方向)等缺陷,其原因分析如下: a. 横纹产生的原因 引起横纹的原因无非是设备和砂带两个方面,判断的方法是采用快慢两种进给速度进行砂光,再根据横纹节距变化进行分析. 人造板出现的问题见下图: (1) 当横纹节距随进给速度改变而变化,且距呈较密状态时,应主要从接触轮上查找原因; (2) 当横纹节距不随进给速度的改变而变化时,应从砂光机进给传动系统中追查最终原因; (3)当横纹的切距随进给速度的改变而变化, 且节距呈较松状态时,基本上是由砂带引起的,并可从下述简单公式来推论: 横纹节距=进给速度(米/分)÷60÷砂带线速度(米/秒) ÷砂带周长(米) 如按上式所得的结果等于横纹相同的节距的数字,即可认国是砂带所致. b. 纵纹 所谓纵纹是指纹路方向与人造板进给方向一致,这些缺陷的原因也相对容易分析,均是来源于接触轮表面或石墨带表现个别的突出点.例如有时会因石墨粉成块脱落,随着砂带被挤压在接触辊表面,形成凸点,这时的纵纹是凹入板面的;又如接触辊表面被混入硬物、异物损坏,出现环状沟槽,则纵纹呈凸出状态。 c. “之”字形纵纹: 如下图。这种“之”字形缺陷,除了上述纵向特性外,带呈现有一定节距规律的“之”字形状与直纹相似。在连续砂光的同一批板内出现,而出现的位置又是一致的,且具体所在位置则是随机性的,产生的原因就在砂带上。

铝材的化学抛光及电化学抛光

铝材的化学抛光及电化学抛光 一般工程应用的变形铝合金材料或建筑铝型材,其加工成型后的半成品,一般是可以直接进入阳极氧化生产线进行阳极氧化的。 所获得的阳极氧化膜在许多工程应用上表现出了良好的防护性能,起表面基本上能够达到均匀一致的外观要求。机械抛光后的铝工件,若直接进行阳极氧化处理,只能获得平滑的阳极氧化膜,还不能得到高反射率的膜层。 化学抛光或电化学抛光作为高级精饰处理方法,能去除铝制品表面较轻微的模具痕和擦划伤条纹,去除机械抛光中可能形成的摩擦条纹、热变形层、氧化膜层等,使粗糙的表面趋于光滑而获得近似镜面光亮的表面,提高了铝制品的装饰效果(如反射性能、光亮度等),并可以赋予更高的商业附加值,极大地满足了消费市场对具有光亮表面的铝制品要求。 因此,对于需要表面平整、均匀又光亮等特殊外观要求的阳极氧化膜,则需要预先进行化学抛光或者电化学抛光。化学抛光和电化学抛光与机械抛光一样,是制备高精饰光亮铝制品表面处理过程中不可或缺的表面预处理技术,某些情形下可以作为最终的精饰手段。 化学抛光和电化学抛光可以使特殊铝材获得非常光亮的表面,但是从抛光原理上看,化学抛光(及电化学抛光)与机械抛光却有着本质的区别。

机械抛光是利用物理手段通过切削与研磨等作用使铝材表面发生塑性形变,使得表面的凸部向凹部填平,从而使铝材表面粗糙度减小、变得平滑,改善了铝材的表面粗糙度,从而使其表面平滑或光亮。但是机械抛光会引起金属表面结晶的破坏、变质而产生塑性变形层,以及因局部加热而产生组织变化层。 化学抛光是一种在特殊条件的化学腐蚀,它是通过控制铝材表面选择性的溶解,使铝材表面微观凸出部位较其他凹洼部位优先溶解,而达到表面平整和光亮的目的。 电化学抛光又称电解抛光,其原理与化学抛光相似,也是依靠选择性溶解铝材表面表面微小凸出部分而达到平整光滑。 铝材作为阳极浸入到配制好的电解溶液中,以耐腐蚀而且导电性能良好的材料作为阴极,根据电化学尖端放电原理,通电后铝材表面微小凸出部位优先溶解,与此同时溶解产物与表面的电解液形成高电阻的粘稠性液膜层,微小凸出部位膜层浇薄,其电阻较小,从而继续保持优先溶解。 同时表面凹洼部位的液膜层厚,电阻增大,凹洼部位的溶解速度相对缓慢,经过短时间电解处理后,凸出部位先被溶解整平至凹洼部位的位置,铝材表面粗糙度降低而达到平滑光亮。铝的电化学抛光在有的文献上称为电抛光或电解抛光。 在工业生产中,采用化学抛光或电化学抛光的主要目的,一是取代机械抛光而获得平滑的光亮铝材表面;二是在机械抛光后再进行化学抛光或电化学抛光,以获得非常高镜面反射率的铝材

化学机械抛光的主要要素

孔洞和Te原子在快速可逆相变过程中起重要作用 日前Gartner发布的2017年全球半导体市场初步统计显示,三星去年在全球半导体市场的份额达到14.6%,首次超越英特尔公司成为全球最大芯片制造商。去年全球半导体收入为4197亿美元,同比增长22.2%。供应不足局面推动存储芯片收入增长64%,它在半导体总收入中的占比达到31%。除了三星首度登上全球第一大半导体厂,SK海力士跃居全球第3,美光排名也跃升至第4位。供应不足引发的价格上涨成为了推动存储芯片收入增长的关键动力。 在半导体存储器中,市场主导的三种存储器技术为动态随机存储器(DRAM)、闪存(Flash)和静态随机存储器(SRAM)。随着工艺技术节点推进至45nm 以下,目前这三种存储器技术都已经接近各自的基本物理极限,DRAM的进一步发展对光刻精度提出了巨大挑战;Flash中电容变得异常的高和薄,为了延伸进一步提升密度,Flash 的栅介质必须选用高k值的材料;而SRAM 则随着工艺的演进开始面临信噪比和故障率方面的挑战。 相变存储器就是基于O v s h i n s k y效应的元件,被命名为O v s h i n s k y电效应统一存储器.(O v s h i n s k y [3]首次描述了基于相变理论的存储器,材料在非晶态—晶态—非晶态相变过程中,其非晶态和晶态呈现不同的光学和电学特性,因此可以用非晶态代表“0”,晶态代表“1”实现信息存储,这被称为O v s h i n s k y电子效应。) 相变存储器利用电能(热量)使相变材料在晶态(低阻)与非晶态(高阻)之间相互转换,实现信息的读取、写入和擦除,工作原理是将数据的写入和读取分为3个过程——分别是“设置(Set )”、“重置(Res et )”和“读取(Re ad)”。“Se t”过程就是施加一个宽而低的脉冲电流于相变材料上,使其温度升高到晶化温度T x以上、熔点温度T m以下,相变材料形核并结晶,此时相变材料的电阻较低,代表数据“1”。“R e s e t”过程就是施加一个窄而强的脉冲电流于相变材料上,使其温度升高到熔点温度T m以上,随后经过一个快速冷却的淬火过程(降温速率> 109K / s),相变材料从晶态转变成为非晶态,此时相变材料的电阻很高,代表数据“0”。“Re ad”过程则是在器件2端施加低电压,如果存储的数据是“0”,那么器件的电阻较高,因而产生的电流较小,所以系统检测到较小的电流回馈时就判断是数据“0”;如果存储的数据是“1”,那么器件的电阻较低,因而产生的电流较大,所以系统检测到较大的电流回馈时就判断是数据“1” 早期的相变存储材料由于结晶时会发生相变分离等原因,晶速率较慢(约微秒量级),如碲(T e)基合金,而到20世 纪80年代初,科研人员发现了一批具有高速相变能力、晶态和非晶态具有明显光学性质差异的相变材料,其中G e - S b - T e体系是最成熟的相变材料,G e -S b - T e合金结晶速度快,因此写入和擦除速度都非常快,能够满足高速存储性能的要求,由I n t e l和意法半导体(STMicroelectronics)组建的恒忆(Numo n yx)公司开发的相变存储器(图2)就基于Ge-Sb-Te合金 相变材料在非晶态和晶态之间的纳秒级相变导致的电阻巨大差异是相变存储器的进行数据储存的重要依据。虽然很多材料在固态时都具有多重相态,但并不是所有的这些材料都具备相变材料的特征。首先,材料在非晶态与晶态之间的电阻差异要大,才可以满足相变存储器的数据储存要求,比如王国祥[9]测量了Ge-Sb-Te薄膜的电阻,从GST薄膜的R-T曲线(图4)可以看到,非晶态- f c c - h e x的两个转变温度分别为168℃和约300℃,非晶与h e x结构的薄膜电阻率相差约为6个数量级,非晶与f c c结构则相差4个数量级,这样的电阻差异就能够满足存储要求;其次,材料的结晶速度要很快(纳秒级),且相变前后材料的体积变化要小,晶态和非晶态可循环次数高,以保证数据能够高速重复写入,这就意味着用作存储材料可以获得更快的操作速度;最后对材料的热稳定性也有一定要求,结晶温度足够高,材料的热稳定性会好,以保证相变存储器可以在较高的温度下工作,数据才能够保存足够长时间,但是结晶温度过高也会带来负面影响,比如需要更高的操作电压或电流等。 首先,在相变存储单元中,选通器件(MOS 晶体管或二极管)的驱动能力是有限的(0.5 mA/m),而器件RESET 操作固有的能耗决定了器件的能量效率,因此我们需要降低相变材料层中有效相变区域的非晶化电流,以降低器件操作驱动的难度,有效降低器件的操作功耗;其次,GST 材料本身的结晶温度过低,造成了材料的非晶态热稳定性较差的问题,使GST 材

FANUC0i Mate-TB数控车床VNUC4.0操作手册

FANUC0i Mate-TB数控车床

第一章数控系统面板 1.1 数控系统面板 1.2 键盘说明 名称功能说明 复位键按下这个键可以使CNC 复位或者取消报警等。 帮助键当对MDI键的操作不明白时,按下这个键可以获得帮 助。 软键根据不同的画面,软键有不同的功能。软键功能显示在

屏幕的底端。 地址和数字键 按下这些键可以输入字母,数字或者其它字符。 切换键 在键盘上的某些键具有两个功能。按下键可以 在这两个功能之间进行切换。 输入键 当按下一个字母键或者数字键时,再按该键数据被输入 到缓冲区,并且显示在屏幕上。要将输入缓冲区的数据 拷贝到偏置寄存器中等,请按下该键。这个键与软键中 的[INPUT]键是等效的。 取消键 取消键,用于删除最后一个进入输入缓存区的字符或符 号。 程序功能键 、、 :替换键 :插入键 :删除键 功能键按下这些键,切换不同功能的显示屏幕。 光标移动键有四种不同的光标移动键。 这个键用于将光标向右或者向前移动。 这个键用于将光标向左或者往回移动。 这个键用于将光标向下或者向前移动。 这个键用于将光标向上或者往回移动。 翻页键有两个翻页键。 该键用于将屏幕显示的页面往前翻页。 该键用于将屏幕显示的页面往后翻页。

1.3 功能键和软键 功能键用来选择将要显示的屏幕画面。 按下功能键之后再按下与屏幕文字相对的软键,就可以选择与所选功能相关的屏幕。 1.3.1 功能键 :按下这一键以显示位置屏幕。 :按下这一键以显示程序屏幕。 :按下这一键以显示偏置/设置(SETTING)屏幕。 :按下这一键以显示系统屏幕。 :按下这一键以显示信息屏幕 :按下这一键以显示用户宏屏幕。 1.3.2 软键 要显示一个更详细的屏幕,可以在按下功能键后按软键。 最左侧带有向左箭头的软键为菜单返回键,最右侧带有向右箭头的软键为菜单继续键。1.4 输入缓冲区 当按下一个地址或数字键时,与该键相应的字符就立即被送入输入缓冲区。输入缓冲区的内容显示在CRT屏幕的底部。 为了标明这是键盘输入的数据,在该字符前面会立即显示一个符号“>”。在输入数据的末尾显示一个符号“_”标明下一个输入字符的位置(如下图)。

化学机械抛光液行业研究

化学机械抛光液行业研究 一、行业的界定与分类 (2) (一)化学机械抛光 (2) 1、化学机械抛光概念 (2) 2、CMP工艺的基本原理 (2) 3、CMP技术所采用的设备及消耗品 (2) 4、CMP过程 (2) 5、CMP技术的优势 (2) (二)化学机械抛光液 (3) 1、化学机械抛光液概念 (3) 2、化学机械抛光液的组成 (3) 3、化学机械抛光液的分类 (3) 4、CMP过程中对抛光液性能的要求 (3) (三)化学机械抛光液的应用领域 (3) 二、原材料供应商 (4) 三、化学机械抛光液行业现状 (4) (一)抛光液行业现状 (4) 1、国际市场主要抛光液企业分析 (4) 2、我国抛光液行业运行环境分析 (4) 3、我国抛光液行业现状分析 (5) 4、我国抛光液行业重点企业竞争分析 (5) (二)抛光液行业发展趋势 (5) (三)抛光液行业发展的问题 (5) 四、需求商 (6) (一)半导体硅材料 (6) 1、电子信息产业介绍 (6) 2、半导体硅材料的简单介绍 (6) (二)分立器件行业 (7) (三)抛光片 (8)

化学机械抛光液行业研究 一、行业的界定与分类 (一)化学机械抛光 1、化学机械抛光概念 化学机械抛光(英语:Chemical-Mechanical Polishing,缩写CMP),又称化学机械平坦化(英语:Chemical-Mechanical Planarization),是半导体器件制造工艺中的一种技术,用来对正在加工中的硅片或其它衬底材料进行平坦化处理。 2、CMP工艺的基本原理 基本原理是将待抛光工件在一定的下压力及抛光液(由超细颗粒、化学氧化剂和液体介质组成的混合液)的存在下相对于一个抛光垫作旋转运动,借助磨粒的机械磨削及化学氧化剂的腐蚀作用来完成对工件表面的材料去除,并获得光洁表面。 3、CMP技术所采用的设备及消耗品 主要包括,抛光机、抛光液、抛光垫、后CMP清洗设备、抛光终点检测及工艺控制设备、废物处理和检测设备等,其中抛光液和抛光垫为消耗品。 4、CMP过程 过程主要有抛光、后清洗和计量测量等部分组成,抛光机、抛光液和抛光垫是CMP工艺的3大关键要素,其性能和相互匹配决定CMP能达到的表面平整水平。 5、CMP技术的优势 最初半导体基片大多采用机械抛光的平整方法,但得到的表面损伤极其严重,基于淀积技术的选择淀积、溅射玻璃SOG(spin-on-glass)、低压CV D(chemicalvaporde-posit)、等离子体增强CVD、偏压溅射和属于结构的溅射后回腐蚀、热回流、淀积-腐蚀-淀积等方法也曾在IC工艺中获得应用,但均属局部平面化技术,其平坦化能力从几微米到几十微米不等,不能满足特征尺寸在

相关文档
最新文档