利用气垫导轨验证牛顿第二定律

利用气垫导轨验证牛顿第二定律
利用气垫导轨验证牛顿第二定律

实验四利用气垫导轨验证牛顿第二定律

【实验目的】

1.熟悉气垫导轨和MUJ-ⅢA电脑式数字毫秒计的使用方法。

2.学会测量滑块速度和加速度的方法。

3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。

【实验原理】

(一)仪器使用原理

1.气垫导轨

如图4-1所示,气垫导轨是一种摩擦力很小的实验装置,它利用从导轨表面小孔喷出的压缩空气,在滑块与导轨之间形成很薄的空气膜,将滑块从导轨面上托起,使滑块与导轨不直接接触,滑块在滑动时只受空气层间的内摩擦力和周围空气的微弱影响,这样就极大地减少了力学实验中难于克服的摩擦力的影响,滑块的运动可以近似看成无摩擦运动,使实验结果的精确度大为提高。

图4-1 气垫导轨装置图

2.MUJ-ⅢA电脑式数字毫秒计

在用气垫导轨验证牛顿第二定律实验中,我们采用MUJ-ⅢA电脑式数字毫秒计测量时间。利用它的测加速度程序,可以同时测量出滑块通过两个光电门的时间及滑块通过两个光电门之间的时间间隔。

使用计数器时,首先将电源开关打开(后板面),连续按功能键。使得加速度功能旁的灯亮,气垫导轨通入压缩空气后,使装有两个挡光杆的滑块依次通过气垫导轨上的两个光电门计数器按下列顺序显示测量的时间:

显示字符含义 单位

1 通过第一个光电门的cm/s (亮)

××·××速度

2 通过第二个光电门的cm/s (亮)

××·××速度

1—2 在第一和第二个光电门之间运动的cm/s2 (亮)

××·××加速度

若不是要求的单位亮则按转换键即可显示要求的单位。

(二)验证牛顿第二定律实验原理

验证性实验是在已知某一理论的条件下进行的。所谓验证是指实验结果与理论结果的完全一致,这种一致实际上是实验装置、方法在误差范围内的一致。由于实验条件和实验水平的限制,有时可以使实验结果与理论结果之差超出了实验误差的范围,因此验证性实验是属于难度很大的一类实验,要求具备较高的实验条件和实验水平。本实验通过直接测量牛顿第二定律所涉及的各物理量的值,并研究它们之间的定量关系,进行直接验证。

1.速度的测量

悬浮在水平气垫导轨上的滑块,当它所受合外力为零时,滑块将在导轨上静止或作匀速直线运动。在滑块上装两个挡光杆如图4-2所示,当滑块通过某一个光电门时,第一个挡光杆挡住照在光电管上的光,计数器开始计时,当另一个挡光杆再次挡光时,计数器计时停止,这样计数器数字显示屏上就显示出两个挡光杆通过光电门的时间Δt 。

图4-2 滑块

如果两个挡光杆轴线之间的距离为ΔL ,可以计算出滑块通过光电门的平均速度v 为:

t

L v ??=

(4-1)

由于ΔL 比较小(1cm 左右),在ΔL 范围内滑块的速度变化很小,所以可把v 看做滑块经过光电门的瞬时速度。

2.加速度的测量

在气垫导轨上,设置两个光电门,其间距为S 。使受到水平恒力作用的滑块(做匀加速直线运动)依次通过这两个光电门,计数器可以显示出滑块分别通过这两个光电门的时间Δt 1、Δt 2及通过两光电门的时间间隔Δt 。滑块滑过第一个光电门的初速度为v 1=

1

t L ??,滑

块滑过第二个光电门的末速度为v 2=

2

t L ??,则滑块的加速度为:

t

v v a ?-=

1

2 或 S

v v a 22

1

22-=

(4-2)

3.验证牛顿第二定律

按照牛顿第二定律,对于一定质量M 的物体,其所受的合外力F

合和物体获得的加速

度a

之间的关系如下:

F

=M a

(4-3)

验证此定律可分为两步:(1)验证物体的质量M 一定时,其所受合外力F

合和物体的加速

度a

成正比;(2)验证合外力F

合一定时,物体的加速度a

的大小和其质量M 成反比。 若实验中所用滑块质量为m 1,砝码盘和砝码的质量为m 2,则该系统的总质量M =m 1+m 2,该系统所受的合外力的大小F =m 2g ,则有:

F =Ma (4-4)

【实验仪器】

气垫导轨,滑块,MUJ-ⅢA 电脑式数字毫秒计,砝码。 【实验步骤】

(一)调节光电计时系统

将气垫导轨上的两个光电门引线接入MUJ-ⅢA 电脑式数字毫秒计后面板的P 1及 P 2插口上,打开MUJ-ⅢA 电脑式数字毫秒计电源开关。将气垫导轨气源接通,用适当的力推动滑块一下,使它依次通过两个光电门,看MUJ-ⅢA 电脑式数字毫秒计是否能正常记录时间,若不正常请检查挡光杆是否挡光及检查光电管照明是否充分。

(二)调节气垫导轨水平

1.静态调平(粗调)

调节导轨底脚螺丝使滑块在导轨上无定向的自然运动,也就是滑块能静止在导轨上,可以认为导轨被初步调平。

2.动态调平(细调)

用适当的力推动滑块一下,使它依次通过两个光电门,要求滑块通过两个光电门的时间Δt 1和Δt 2相对差异小于1%。否则应继续调节导轨底脚螺丝,直至达到要求。

(三)验证牛顿第二定律

1.物体系的总质量M 一定,验证外力与加速度成正比

⑴ 在导轨上固定两个光电门,将线一端系在滑块上,另一端通过气垫滑轮与砝码盘相连。在滑块上放置两个砝码,砝码盘上放一个砝码,砝码盘自身质量为5g 。滑块置于远离气垫滑轮的导轨另一端,由静止释放,在砝码盘及一个砝码所受重力作用下,滑块作匀加速直线运动,由计数器测量出加速度a 1。重复测量三次(注意:滑块释放的初始位置必须一致,靠近气垫滑轮的光电门安放位置要合适,防止滑块尚未通过此光电门而砝码盘已落到地面上)。

⑵ 将一个砝码从滑块上取下,放入砝码盘中,重复上述实验步骤,测出滑块加速度a 2。 ⑶ 再将滑块上的另一个砝码取下,也放入砝码盘中(盘中砝码总数为3个),仍然重复上述实验步骤,测出滑块加速度a 3。

⑷ 记录m 1,m 2和M 的值,计算出作用力F 1、F 2和F 3(m 2指砝码盘及盘中砝码的质量之和,M 为滑块、砝码盘及盘中砝码的质量之和)。

将上述实验数据记录在表4-1中

2.物体系所受外力F 一定,验证物体系的质量与加速度成反比

⑴ 在砝码盘中放入一个砝码,测出在此作用力下,质量为m 1的滑块运动的加速度a 。 ⑵ 保持砝码盘中的砝码不变(外力一定),将一质量为m 1′的砝码放在质量为m 1的滑块上,测出在此作用力下,滑块组运动的加速度a ′。

⑶ 以上测量重复进行三次。记录m 2的值并求出物体系的总质量M 和M ′。

将上述实验数据记录在表4-2中。

表4-1 验证质量不变,外力和加速度成正比

表4-2 验证作用力一定时,质量和加速度成反比

【数据处理】

M = (g )

⑴ 计算出外力不同时加速度三个平均值1a 、2a 和3a 。

⑵ 由(5-4)式计算出不同外力作用下加速度的理论值并与测量值进行比较,以理论值为标准值,求出误差,并表达出测量结果。

⑶ 计算出F 1/1a ,F 2/2a ,F 3/3a 的值,并得出相应结论。 ⑴ 计算不同质量条件下,滑块各次运动的加速度的平均值。

⑵ 由公式(4-4)式计算出作用力一定、不同质量条件下加速度的理论值,并与测量值比较,求出误差。

⑶ 计算M /M '和a a /'的值,并得出相应结论。 【思考题】

1.验证物体质量不变,物体的加速度和所受作用力成正比时,为什么要在滑块上放置砝码? 不用滑块上面的砝码而用其他砝码加到砝码盘中改变作用力是否可以?

2.本实验对放置在气垫导轨上的光电门的位置有何要求? 3.MUJ-ⅢA 电脑式数字毫秒计不能够正常计时,一般由哪些因素引起的?如何进行检查排除?

利用气垫导轨验证牛顿第二定律

利用气垫导轨验证牛顿第二定律 ----医学院43210309 林敏 【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月0.1mm 厚的空气层,即气垫,由于气垫的形成,滑块被托起,使滑块在气垫上作近似无摩擦的运动。利用气垫导轨,再配以光电计时系统和其他辅助部件,可以对做直线运动的物体(即滑块)进行许多研究,如测定速度、加速度、验证牛顿第二定律,研究物体间的碰撞,研究简谐运动的规律等。 【Abstract】:Using the mattress guide, photoelectric timing system and other auxiliary parts. According to the object to do straight-line movement (i.e. the slider), we can do a lot of researches, such as measuring the velocity, acceleration and proving Newton's second law. In addition, it also can research object collisions, study the law of simple harmonic oscillator and so on. 【关键词】气垫导轨、通用计数器、测速的试验方法、牛顿第二定律、控制变量法、导轨调平 实验回顾 【实验目的】 1.熟悉气垫导轨和MUJ-613电脑式数字毫秒计的使用方法。 2.学会测量滑块速度和加速度的方法。 3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。

实验:验证牛顿第二定律习题及详解

实验:验证牛顿第二定律 1.“验证牛顿运动定律”的实验中,以下说法正确的是( ) A.平衡摩擦力时,小盘应用细线通过定滑轮系在小车上 B.实验中应始终保持小车和砝码的质量远远大于小盘和砝码的质量 C.实验中如果用纵坐标表示加速度,用横坐标表示小车和车内砝码的总质量,描出相应的点在一条直线上时,即可证明加速度与质量成反比 D.平衡摩擦力时,小车后面的纸带必须连好,因为运动过程中纸带也要受到阻力 解析:平衡摩擦力时,细线不能系在小车上,纸带必须连好,故A错D对;小车和砝码的总质量应远大于小盘和砝码的总质量,故B对;若横坐标表示小车和车内砝码的总质量,则a-M图象是双曲线,不是直线,故C错.答案: BD 2.(2011年三明模拟)用如图甲所示的装置做“验证牛顿第二定律”实验,甲同学根据实验数据画出的小车的加速度a和小车所受拉力F的图象为图中的直线Ⅰ,乙同学画出的a-F图象为下图中的直线Ⅱ.直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大,明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是( ) A.实验前甲同学没有平衡摩擦力 B.甲同学在平衡摩擦力时,把长木板的末端抬得过高了 C.实验前乙同学没有平衡摩擦力 D.乙同学在平衡摩擦力时,把长木板的末端抬得过高了 解析:由直线Ⅰ可知,甲同学在未对小车施加拉力F时小车就有了加速度,说明在平衡摩擦力时,把木板的末端抬得过高了,B正确,A错误;由直线Ⅱ可知,乙同学在对小车施加了一定的拉力时,小车的加速度仍等于零,故实验前乙同学

没有平衡摩擦力或平衡摩擦力不足,C正确,D错误. 答案:BC 3.在“探究加速度与物体质量、物体受力的关系”实验中,某小组设计了如图所示的实验装置.图中上下两层水平轨道表面光滑,两小车前端系上细线,细线跨过定滑轮并挂上砝码盘,两小车尾部细线连到控制装置上,实验时通过控制装置使两小车同时开始运动,然后同时停止. (1)在安装实验装置时,应调整滑轮的高度,使__________.在实验时,为减小系统误差,应使砝码盘和砝码的总质量________(选填“远大于”、“远小于”或“等于”)小车的质量. (2)本实验通过比较两小车的位移来比较小车加速度的大小,能这样比较,是因为________. 解析:(1)在安装实验装置时,应调整滑轮的高度,使细线与水平轨道平行,在实验时,为使砝码和盘的总重力近似等于细线的拉力,作为小车所受的合外力,必须满足砝码和盘的总质量远小于小车的质量. (2)因为两小车同时开始运动,同时停止,运动时间相同,由s=1 2 at2可知,a 与s成正比. 答案:(1)小车与滑轮之间的细线与轨道平行远小于 (2)两车从静止开始匀加速直线运动,且两车运动的时间相同,其加速度与位移成正比 4.如图为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置.

气垫导轨实验讲义word资料7页

实验三 气垫导轨上的实验 在物理实验中,由于摩擦的存在,导致误差往往很大,甚至使某些实验无法进行。若采用气垫导轨等装置,可使这一问题得以较好的解决,气垫技术还可以减少磨损、延长仪器寿命提高机械效率。在机械、电子、运输等领域已被广泛应用,如气垫船、空气轴承,气垫输送线等。使用气垫导轨做力学实验可以观察和研究在近似无阻力情况下物体的各种运动规律。 一、实验目的 1.熟悉气垫导轨的构造和调整使用方法; 2.掌握用光电计时装置测量速度、加速度; 3.验证动量守恒定律; 4.深入了解完全弹性碰撞与完全非弹性碰撞的特点。 二、仪器与用具 气垫导轨装置、数字毫秒计、砝码等 三、实验原理 如图3-1所示,气垫导轨处于水平,在滑块的一端系一条细线,绕过气轨一端的滑轮后系一重物,由滑块、托盘和砝码构成的运动系统在重力作用下作直线加速运动。 图3-1 气垫导轨示意图 1、速度、加速度的测量:在导轨上相距s 的两处放置二光电门,若测得此系统在重力mg 作用下,滑块通光电门时的速度分别为1v 、2v 则系统的加速度为 s a 22 1 22v v -= (3.1) 在滑块上放置一中间有方孔(或缺口)的挡光片,使方孔正好在光电管前通过,用数字毫秒计 S 2档测出滑块和挡光片在光电门中通过时,二次挡光的时间间隔t ?,则可得到该小间隔的平均速度 t x ??,x ?为挡光片二前沿间距离。因x ?较小,则可认为此平均速度为挡光片二前沿的中点通过光电门时,滑块M 的即时速度。只要测出了挡光片通过二光电门的时间间隔1t ?和2t ?,则可得对应的速度为 2 1,t x t x ??= ??= 21v v (3.2) 从(3.1)、(3.2)两式可解得运动系统的加速度为 )11(221 222t t s x a ?-??= (3.3) 动量守恒定律指出,如果一力学系统所受外力的矢量和为零,则系统的总动量保持不变, 若

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

验证牛顿第二定律

实验4:验证牛顿第二定律 一、实验目的 1.学会用控制变量法研究物理规律。 2.探究加速度与力、质量的关系。 3.掌握灵活运用图象处理问题的方法。 二、实验原理 控制变量法:在所研究的问题中,有两个以上的参量在发生牵连变化时,可以控制某个或某些量不变,只研究其中两个量之间的变化关系的方法,这也是物理学中研究问题时经常采用的方法。 本实验中,研究的参量为F、M和a,可以控制参量M 一定,研究a与F的关系,也可控制参量F一定,研究a 与M的关系。 三、实验器材 电磁打点计时器、复写纸片和纸带、一端有定滑轮的长木板、小车、小盘、低压交流电源、天平、砝码、刻度尺、导线。 四、实验步骤 1.用天平测量小盘的质量m和小车的质量M。 2.把一端附有滑轮的长木板放在实验桌上,并使滑 轮伸出桌面,把打点计时器固定在长木板上远离滑轮的 一端,连接好电路。 3.平衡摩擦力:小车的尾部挂上纸带,纸带穿过打 点计时器的限位孔,将木板无滑轮的一端稍微垫高一些,使小车在不挂小盘和砝码的情况下,能沿木板做匀速直线运动。这样小车所受重力沿木板的分力与小车所受摩擦力平衡。在保证小盘和砝码的质量远小于小车质量的条件下,可以近似认为小盘和砝码的总重力大小等于小车所受的合外力的大小。 4.把小车停在打点计时器处,挂上小盘和砝码,先接通电源,再让小车拖着纸带在木板上匀加速下滑,打出一条纸带。 5.改变小盘内砝码的个数,重复步骤4,并多做几次。 6.保持小盘内的砝码个数不变,在小车上放上砝码改变小车的质量,让小车在木板上滑动打出纸带。 7.改变小车上砝码的个数,重复步骤6。 五、实验数据的处理方法——图象法、化曲为直的方法 1.探究加速度与力的关系 以加速度a为纵坐标,以F为横坐标,根据测量的数据描点,然后作出图象,看图象是否是通过原点的直线,就能判断a与F是否成正比。 2.探究加速度与质量的关系 以a为纵坐标、M为横坐标,根据各组数据在坐标系中描点,将会得到如图甲所示的一条曲线。由图线只能看出M增大时a减小,但a与M具体是什么 关系,不能得出。若以a为纵坐标、1 M 为横坐标,将会得到如图乙所示的一条

气垫导轨上的实验

实验一 气垫导轨上的实验(二) 【实验简介】 气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms (十万分之一秒),这样, 就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。 【实验目的】 1、学习气垫导轨和电脑计数器的使用方法。 2、用气垫导轨装置验证机械能守恒定律 3、验证动量守恒定律。 【实验仪器】 气垫导轨(QG —1.5mm )、滑块、垫片、光电门、电脑计数器(MUJ —6B )、游标卡尺(0.02mm )、卷尺(2m )。配重块、一台电子天平及尼龙搭扣。 【实验原理】 1、研究动量守恒定律 动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。它不仅适用于宏观世界,同样也适用于微观世界。它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。 动量守恒定律告诉我们,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。 在水平的气垫导轨上,滑块运动时受到的粘滞阻力很小,若不计这一阻力,则滑块系统受到的合外力为零,两滑块作对心碰撞时前后的总动量守恒。 112211 22m v m v m v m v ''+=+ 1m 、2m 分别为两个滑块的质量,1v 、2v 分别为碰撞前两个滑块的速度,1v '、2 v '分别为碰撞后两个滑块的速度。应该注意的是,计算时必须选择一个方向为正,反方向为负。 牛顿在研究碰撞现象时曾提出恢复系数的概念,定义恢复系数2 112 v v e v v ''-= -。当1e =时为完全

大学物理实验报告范例(验证牛顿第二定律)

大学物理实验报告范例(验证牛顿第二定律)

怀化学院

1 、 速度测量 挡光片宽度Δs 已知,用计时测速仪测出挡光片通过光电门时的挡光时间Δt,即可测出平均速度,因Δs 很小,该平均速度近似为挡光片通过光电门时的瞬时速度,即: 瞬时速度:t s dt ds t s v t ??≈=??=→?lim MUJ-5B 计时仪能直接计算并显示速度。 2、 加速度测量

(1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。 2、由数据记录表4,可得a 与M 的关系如下:

《验证牛顿第二定律》实验

《验证牛顿第二定律》实验 【重点知识提示】 1.实验目的、原理 实验目的验证牛顿第二定律,即物体的质量一定时,加速度与作用力成正比;作用力一定时,加速度与 质量成反比.实验原理:利用砂及砂桶通过细线牵引小车做加速运动的方法,采用控制变量法研究上述两组 关系.如图4—6所示,通过适当的调节,使小车所受的阻力忽略,当M 和m 做加速运动时,可以得到 g m M m a += m M M mg T +?= 当M>>m 时,可近似认为小车所受的拉力T 等于mg . 2.平衡摩擦力..... :在长木板的不带滑轮的 一端下面垫上一块薄木板,反复移动其位置, 直至后面的纸带连好并不挂砂桶的小车刚好在斜面上保持匀速 运动为止. 3.注意事项 该实验原理中T=m M M mg +?,可见要在每次实验中均要求............M>>m ....,.只有这样,才能使牵引小车的牵引力近似等于砂及砂桶的重力. 在平衡摩擦力时,垫起的物体的位置要适当,长木板形成的倾角既不能太大也不能太小,同时每次改变M 时,不再重复平衡摩擦力. 【例1】 在《验证牛顿第二定律》的实验中,在研究作用力一定时加速度与质量成反比的结论时,下列说法中错误的是 ( ) A .平衡摩擦力时,应将装砂的小桶用细绳通过定滑轮系在小车上 B .每次改变小车质量时,不需要重新平衡摩擦力 C .实验时,先放开小车,再接通打点计时器电源 D .小车运动的加速度,可从天平测出装砂小桶和砂的质量m 及小车质量M ,直接用公式a=M mg 求出(m<

16 验证牛顿第二定律

验证牛顿第二定律 命题人:孙运平 编号:21 姓名 完成时间 【考点知识解读】 一、实验原理 1.如图3-3-1所示装置,保持小车质量M 不变,改变小桶内砂的质量m ,从而改变细线对小车的牵引力F (当m<

气垫导轨类实验

气垫导轨类实验 气垫导轨是一种阻力极小的力学实验装置。它利用气源将压缩空气打入导轨型腔,再由导轨表面上的小孔喷出气流,在导轨与滑行器之间形成很薄的气膜,将滑行器浮起,并使滑行器能在导轨上作近似无阻力的直线运动。 仪器介绍 气垫导轨实验装置由导轨、滑块和光电测量系统组成。 1.导轨(图3.2-1) 导轨的主体是一根长约1.5米的截面为三角形的金属空腔管,在空腔管的侧面钻有两排等间距并错开排列的喷气小孔。空腔管一端密封,另一端装有进气嘴与气泵相连。气泵将压缩空气送入空腔管后,再由小孔高速喷出。在导轨上安放滑块,在导轨下装有调节水平用的底脚螺丝和用于测量光电门位置的标尺。整个导轨通过一系列直立的螺杆安装在口字形铸铝梁上。 进气嘴弹簧片挡光板滑块 底脚螺丝导轨 图 3.2-1 2.滑块 滑块是由长约0.100—0.300米的角铝做成的。其角度经过校准,内表面经过细磨,与导轨的两个上表面很好吻合。当导轨的喷气小孔喷气时,在滑块和导轨这两个相对运动的物体之间,形成一层厚约0.05-0.20mm流动的空气薄膜—气垫。由于空气的粘滞阻力几乎可以忽略不计,这层薄膜就成为极好的润滑剂,这时虽然还存在气垫对滑块的粘滞阻力和周围空气对滑块的阻力,但这些阻力和通常接触摩擦力相比,是微不足道的,它消除了导轨对运动物体(滑块)的直接摩擦,因此滑块可以在导轨上作近似无摩擦的直线运动。滑块中部的上方水平安装着挡光片,与光电门和计时器相配合,测量滑块经过光电门的时间或速度。滑块上还可以安装配重块(即金属片,用以改变滑块的质量)、接合器及弹簧片等附件,用于完成不同的实验。滑块必须保持其纵向及横向的对称性,使其质心位于导轨的中心线且越低越好,至少不宜高于碰撞点。 3.光电测量系统 光电测量系统由光电门和光电计时器组成,其结构和测量原理如图3.2-2所示。当滑块

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

大学物理实验教案5-牛顿第二定律的验证

大学物理实验教案

实验名称:牛顿第二定律的验证 实验目的: 1.熟悉气垫导轨的构造,掌握正确的使用方法。 2.熟悉光电计时系统的工作原理,学会用光电计时系统测量短暂时间的方法。 3.学会测量物体的速度和加速度。 4.学习在气垫导轨上验证牛顿第二定律。 实验仪器: 气垫导轨(L-QG-T-1500/5.8) 滑块 电脑通用计数器(MUJ-ⅡB ) 电子天平 游标卡尺 气源 砝码 实验原理: 力学实验最困难的问题就是摩擦力对测量的影响。气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表面的摩擦,让物体只受到几乎可以忽略的摩擦阻力。利用气垫导轨可以进行许多力学实验,如测定速度、加速度、验证牛顿第二定律、动量守恒定律、研究简谐振动等。 根据牛顿第二定律,对于一定质量m 的物体,其所受的合外力F 和物体所获得的加速度a 之间存在如下关系: ma F = (1) 此实验就是测量在不同的F 作用下,运动系统的加速度a ,检验二者之间是否符合上述关系。 在调平导轨的基础上,测出阻尼系数b 后,如下图所示,将细线的一端结在滑块上,另一端绕过滑轮挂上砝码0m 。此时运动系统(将滑块、滑轮和砝码作为运动系统)所受到的合外力为: c a g m v b g m F )(00-?--= (2) 式中平均速度v (单位用s m /)与粘性阻尼常量b 之积为滑块与导轨间的粘性阻力, c a g m )(0-为滑轮的摩擦阻力,暂时不考虑这项。 在此方法中运动系统的质量m ,应是滑块质量1m ,全部砝码质量(包括砝码托)∑m 以

实验二 气垫导轨上的实验上课讲义

实验二气垫导轨上 的实验

实验二 气垫导轨上的实验 气垫导轨是为消除摩擦而设计的力学实验的装置,来自气源的气在开有密集小孔的导轨表面产生一层气垫。物体运动在气垫上,避免物体与导轨的直接接触,很大程度上减少了物体与导轨表面的摩擦。利用气垫导轨可以进行许多力学实验,如测定速度、加速度,验证牛顿第二定律,动量守恒定律,研究简谐振动等。 【实验目的】 1、利用碰撞特例验证动量守恒定律。 2、学习使用气垫导轨和数字毫秒计。 【实验仪器】 实验装置如图1所示,主要由气源、气垫导轨、滑块(上面装有档光 片)、光电计时系统(光电门、数字毫秒计)组成。 图1 气垫导轨实验示意图 实验室用“吹尘器”作气源。 气垫导轨简称气轨,是一条横截面为三角形的空芯轨道,轨道表面分布着许多小气孔。气轨一头封闭,另一头装有进气嘴,气流从进气嘴流入,通过小气孔喷出,当滑块置于气垫之上时,滑块与轨道之间形成气垫,将滑块浮起,滑块的运动可视为是无摩擦的(气垫的两端装有缓冲弹簧,以免滑块冲出)。整个导轨安置在矩形梁上,梁下有三个用来调节水平的底脚螺丝。 (3)滑块1m 、2m (1m ~22m )是实验中相互碰撞的两物体,1m 、2m 滑块的内表面可与气轨密切配合;上部装有“凹”字形的档光片,1m 一端装有缓冲弹簧,另一端粘有尼龙搭扣,2m 一端粘有尼龙搭扣,另一端为光滑端。 (4)光电计时测速系统由光电门、数字毫秒计(包括滑块上的档光片)组成。 光电门是计时系统的信号接收装置,主要由安装在支架上的小聚光灯和光敏管组成,也有使用红外发光二极管和红外光敏三极管组成的光电门。聚光灯

和光敏管对置于轨道两侧,工作时聚光灯发光,光敏管接收光电信号。利用光敏管所接收的光照变化来控制毫秒计的“计”和“停”,实现计时。 光电计时器在本实验的工作特点是:光敏管第一次被遮光,开始计时,第二次被遮光,计时停止,故计时器记录的是两次遮光的时间间隔。 固连于滑块上的挡光片的有效部分为“凹”字形铝片,当挡光片随同滑块通过光电门时,就使光敏管受到两次遮光,从而使计时器记下一段时间t 与此段 图2 档光片运动示意图 于是滑块通过光电门的平均速度为 t x =υ (1) x 不大,可将v 近似地视为瞬时速度。本实验中,1m 、2m 上的挡光片的有效宽度分别为00.31=x cm 、00.12=x cm. 毫秒计的用法此处不再详述。 【实验原理】 二、速度与加速度 物体作直线运动时,如果在t ?时间间隔内,通过的位移为x ?,则物体在t ?的时间间隔内的平均速度V 为: t x V ??= (8) 当t ?趋近于零时,平均速度的极限值就是该时刻(或是该位置)的瞬时速度。当滑块在气垫导轨上运动时,通过测量滑块上的档光片经过光电门的档光时间t ?与档光片的宽度x ?(见图2),即可求出滑块在t ?时间内的平均速度v 。由于档光片宽度比较窄,可以把平均速度近似地看成滑块通过光电门的瞬时速度。档光片愈窄,相应的t ?就愈小,平均速度就更为准确地反映滑块在经过光电门位置时的瞬时速度。本实验中,滑块上的U 型挡光片的宽度为 00.31=x cm ,条形挡光片的宽度为00.12=x cm 在水平气轨上的滑块,如果受到水平方向的恒力作用(这个恒力由加上质量为m 的重物来提供),则滑块在气轨上作匀加速度运动。分别测量滑块通过两个光电门时的初速度V 1和末速度V 2,并测出两个光电门的间距S ,则滑块的加速度a 为:

关于验证牛顿第二定律实验的典型例题

关于验证牛顿第二定律实验的典型例题 2013.11 典型例题1——在“验证牛顿第二定律”实验中,研究加速度与力的关系时得到如图所示的图像,试分析其原因. 分析:在做关系实验时,用砂和砂桶重力mg代替了小车所受的拉力F,如图所示: 事实上,砂和砂桶的重力mg与小车所受的拉力F是不相等的.这是产生实验系统误差的原因,为此,必须根据牛顿第二定律分析mg和F在产生加速度问题上存在的差别.由图像经过原点知,小车所受的摩擦力已被平衡.设小车实际加速度为a,由牛顿第二定律可得: 即 若视,设这种情况下小车的加速度为,则.在本实验中,M保持不变,与mg(F)成正比,而实际加速度a与mg成非线性关系,且m越大,图像斜率越小。理想情况下,加速度a与实际加速度a差值为 上式可见,m取不同值,不同,m越大,越大,当时,,,这就是 要求该实验必须满足的原因所在. 本题误差是由于砂及砂桶质量较大,不能很好满足造成的. 点评:本实验的误差来源:因原理不完善引起的误差,本实验用砂和砂桶的总重力mg代替小车的拉力,而实际小车所受的拉力要小于砂和砂桶的总重力,这个砂和砂桶的总质量越接近小车和砝码的总质量,误差越大,反之砂和砂桶的总质量越小于小车和砝码的总质量,由此引起的误差就越小.因此满足砂和砂桶的总质量m远小于小车和砝码的总质量M的目的就是为了减小因实验原理不完善而引起的误差.此误差可因 为而减小,但不可能消去此误差. 典型例题2——在利用打点计时器和小车做“验证牛顿第二定律”的实验时,实验前为什么要平衡摩擦力?应当如何平衡摩擦力?

分析:牛顿第二定律表达式中的F,是物体所受的合外力,在本实验中,如果不采用一定的办法平衡小车及纸带所受的摩擦力,小车所受的合外力就不只是细绳的拉力,而应是细绳的拉力和系统所受的摩擦力的合力.因此,在研究加速度a和外力F的关系时,若不计摩擦力,误差较大,若计摩擦力,其大小的测量又很困难;在研究加速度a和质量m的关系时,由于随着小车上的砝码增加,小车与木板间的摩擦力会增大,小车所受的合外力就会变化(此时长板是水平放置的),不满足合外力恒定的实验条件,因此实验前必须平衡摩擦力. 应如何平衡摩擦力?怎样检查平衡的效果?有人是这样操作的;把如图所示装置中的长木板的右端垫高一些,使之形成一个斜面,然后把实验用小车放在长木板上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动情况,看其是否做匀速直线运动.如果基本可看作匀速直线运动,就认为平衡效果较好.这样操作有两个问题,一是在实验开始以后,阻碍小车运动的阻力不只是小车受到的摩擦力,还有打点计时器限位孔对纸带的摩擦力及打点时振针对纸带的阻力.在上面的做法中没有考虑后两个阻力,二是检验平衡效果的方法不当,靠眼睛的直接观察判断小车是否做匀速直线运动是很不可靠的.正确的做法是。将长木板的末端(如图中的右端)垫高一些,把小车放在斜面上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动,当用眼睛直接观察可认为小车做加速度很小的直线运动以后,保持长木板和水平桌面的夹角不动,并装上打点计时器及纸带,在小车后拖纸带,打点计时器开始打点的情况下,给小车一个沿斜面向下的初速度,使小车沿斜面向下运动.取下纸带后,如果在纸带上打出的点子的间隔基本上均匀,就表明小车受到的阻力跟它的重力沿斜面的分力平衡. 点评:(1)打点计时器工作时,振针对纸带的阻力是周期性变化的,所以,难以做到重力沿斜面方向的分力与阻力始终完全平衡,小车的运动也不是严格的匀速直线运动,纸带上的点子间隔也不可能完全均匀,所以上面提到要求基本均匀. (2)在实验前对摩擦力进行了平衡以后,实验中需在小车上增加或减少砝码,因此为改变小车对木板的压力,从而使摩擦力出现变化,有没有必要重新平衡摩擦力?我们说没有必要,因为由此引起的摩擦力变化 是极其微小的,从理论上讲,在小车及其砝码质量变化时,由力的分解可知,重力沿斜面向下的分力和 垂直斜面方向的分力(大小等于对斜面的压力),在斜面倾角不变的情况下是成比例增大或减小的,进 而重力沿斜面方向的分力和摩擦力f成比例变化,仍能平衡.但实际情况是,纸带所受阻力,在平 衡时有,而当和f成比例变化后,前式不再相等,因而略有变化,另外,小车的轴与轮的摩擦力也会略有变化,在我们的实验中,质量变化较小,所引起的误差可忽略不计. 典型例题3——用如图甲所示的装置研究质量一定时加速度与作用力的关系.实验中认为细绳对小车的作用力F等于砂和桶的总重力,用改变砂的质量的办法来改变对小车的作用力F,用打点计时器测出小车的加速度a,得出若干组F和a的数值,然后根据测得的数据作a—F图线.一学生作出如图乙所示的图线,发现横轴上的截距OA较大,明显地超出了偶然误差的范围,这是由于实验中没有进行什么步骤?

气垫导轨测重力加速度 大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中 得: 2as=L2(1/t22-1/t12) (1-3) 其原理如图1. 气垫导轨与水平面的夹角为α 则 a=g*ginα. (1-4) 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。 一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示:

用气垫导轨验证动量守恒

用气垫导轨验证动量守恒 环境工程061 沈皇洁 1.引言 机械运动是物质最基本、最普遍的运动形式,机械能守恒定律和动量守恒定律是机械运动遵从的基本定律。但是,在通常情况下,物体总是受摩擦阻力和其它物体的作用,其能量在运动过程将逐渐减少,动量会有相应的变化。碰撞是一个很重要的力学过程,通过研究在水平气垫导轨上运动的两个滑块的碰撞情况,了解弹性碰撞和非弹性碰撞的特点;在实际力学系统中,验证动量守恒定律。 2.理论依据 在一力学系统中,如果系统所受外力的矢量和为0,则系统的总动量保持不变,这就是动量守恒定理。将两滑块放在气垫导轨上,让他们相互碰撞。由于气垫的浮托作用,滑块与导轨间的摩擦阻力可忽略不计。因此,由两个滑块组成的系统在水平方向上不受外力作用,在水平方向上总动量保持不变。设两物块质量分别为m1和m2 ,碰撞前,速度分别为V1和V2,碰撞后的速度为V3和V4。则: m1V1+ m2V2= m1V3+ m2V4(1) 3.物理过程设计 碰撞分下面弹性碰撞和非弹性碰撞,分两种情况讨论: 3.1弹性碰撞下的动量守恒 两个物体相互碰撞,碰撞过程中动量没有损失,这种碰撞称为弹性碰撞。用公式表示为: 1/2 m1V12+ 1/2 m2V22= 1/2 m1V32+ 1/2 m1V42(2)实验时的两滑块装有缓冲弹簧,滑块相碰,由于缓冲弹簧发生形变后恢复,系统的机械能计划不损失,动量守恒,动能也守恒。为了测量方便,可令静止m2静止(即V2 =0),则:m1V1 = m1V3+ m2V4 m1V12= m1V32 + m1V42 联立可解得: V3 =(m1- m2)·V1/(m1+ m2) V4 = 2 m2V1/(m1+ m2)(3) 3.2完全非弹性碰撞下的动量守恒 相互碰撞的两个物体,碰撞后以同一速度运动而不分开,就称为完全非弹性碰撞。由于发生了永久形变,所以机械能不守恒,但动量守恒。设碰撞后两物体共同速度V1= V4= V,动量守恒定律可写为: m1V1+ m3V=(m1+ m3)V(4) 当V2= 0时,有: V= m1V1/(m1+ m3)(5) 仪器介绍:L-QG-T-1200/5.8型气垫导轨气垫导轨是一种现代化的力学实验仪器。它利用小型气源将压缩空气送入导轨内腔。空气再由导轨表面上的小孔中喷出,在导轨表面与滑行器内表面之间形成很薄的气垫层。滑行器就浮在气垫层上,与轨面脱离接触,因而能在轨面上做近似无阻力的直线运动,极大地减小了以往在力学实验中由于摩擦力引起的

验证牛顿第二定律—气垫导轨实验(一)

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(一) 实验名称:验证牛顿第二定律――气垫导轨 实验(一) 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生:学号: 年级专业层次: 学习中心:

提交时间:年月日 一、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5.掌握验证物理规律的基本实验方法。 二、实验原理 1.速度的测量 一个作直线运动的物体,如果在t~t+Δt时间通过的位移为Δx(x~x+Δx),则该物 体在Δt时间的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 (1) 实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差围,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为 (2) 根据式(2)即可计算出滑块的加速度。 (2)由测量加速度 设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为

验证牛顿第二定律实验

实验:验证牛顿第二定律 一、实验原理 1.如图所示装置,保持小车质量M 不变,改变小桶内砂的质量m ,从而改变细线对小车的牵引力F (当..m .<<..M .时,..F=mg ....近似成立).....,用打点计时器测出小车的对应加速度a ,由多组a 、F 数据作出加速度和力的关系a — F 图线,验证加速度是否与外力成正比。 2.保持小桶和砂的质量不变,在小车上加减砝码, 改变小车的质量M ,测出小车的对应加速度a , 由多组a 、M 数据作出加速度和质量倒数的关系m a 1 -图线, 验证加速度是否与质量成反比。 ▲平衡摩擦力.....的原理:(在长木板的不带定滑轮的一端下面垫上垫块,使长木板倾斜,便用重力的分力来平衡摩擦力。) 对小车受力分析,小车受到G 、N 和摩擦力f 三力作用,处于平衡状态时, f G x =,y G N =。故当木板倾斜一定角度时,可以用重力的分力x G 来平衡摩擦 力。故验证牛二时,小车受到的拉力F 即为小车的合力。 二、实验器材 小车,砝码,小桶,砂, 细线,附有定滑轮的长木板,垫块,电火花打点计时器,220V 交流电源, 导线两根, 纸带,托盘天平及砝码,米尺。 三、实验步骤 1.用调整好的天平测出小车和小桶的质量M 和m ,把数据记录下来。 2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。........................... 3.平衡摩擦力.....:在长木板的不带定滑轮的一端下面垫上垫块,反复移动垫块的位置,直至轻轻推一推小车,小车在斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。 4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量M'和m'记录下来。把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。 5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。 6.用逐差法... 算出每条纸带对应的加速度的值。 7.用纵坐标表示加速度a ,横坐标表示作用力F ,即砂和桶的总重力(m+m')g ,根据实验结果在坐标平面上描出相应的点,作图线。若图线为一条过原点的直线,就证明了研究对象质量不变时其加速度与它所受作用力成正比。 8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a ,横坐标表示小车和车内砝码总质量的倒数 M M ' +1 ,在坐标平面上根据实验结果描出相应的点并作图线,若图线为一条过原点的直线,就 证明了研究对象所受作用力不变时其加速度与它的质量成反比。 四、注意事项 1.砂和小桶的总质量不要超过小车和砝码的总质量的1/10,为什么? 设,小车和砝码总质量为M ,而M 和m 连接在一起运动, 有相同的加速度为a ,求绳子对小车的拉力F 。 解:对M 和m 组成的整体受力分析(只分析外力)如图1,则mg =合 F , 由牛二得:m )a (M +=合 F ,即m mg m M F a += += M 合 对小车受力分析(忽略摩擦力)如图2,则F =合F 由牛二得:m Mmg F += ==M Ma F 合 1 图m M 2 图G N f x y Gx Gy

相关文档
最新文档