演示模板铝合金表面处理原理.doc

演示模板铝合金表面处理原理.doc
演示模板铝合金表面处理原理.doc

铝合金表面处理原理

第一章概述

一、铝及铝合金表面处理的目的:(主要指阳极氧化)

1、防腐蚀

天然氧化膜→薄,

阳极氧化膜→厚≥10μm

漆膜→耐磨、耐蚀、耐光、耐候

2、防护—装饰

形成微孔人工氧化膜后,可染成各种颜色和图案。

3、功能作用

绝缘性≥100μm

微孔渗渍硫化钼润滑剂→摩擦系数↓

电沉积磁性金属→磁性录音盘、记忆元件等等。

二、铝及其合金表面处理的分类

机械法、化学法、电化学法、阳极化膜后处理(见后面附录)三、铝型材表面处理产品种类

目前市场上常见的有:

1)阳极氧化(银白、砂白料)

2)阳极氧化+ 电解着色(浅古铜、古铜、黑色等)

3)电泳涂漆

4)静电喷漆、氟碳喷漆

5)静电粉末喷涂

第二章铝材阳极氧化前的处理

铝合金建筑型材生产工艺流程:

铝材装架→脱脂→水洗→碱蚀→水洗(二道)

→中和(出光)→水洗→阳极氧化(DC法)→水洗→封孔水洗→着色(AC法)→水洗

→水洗→卸架

第一节装架

一、方式:横吊式、竖吊式

纵吊式特点:

1、适合大批量生产:每批可装载大量铝材

2、减少装卸工人:减轻了装卸时的劳动力

3、降低生产成本:溶液带出量少,减少化学品消耗量,夹具不

浸入处理液中,减少夹具消耗量。

4、减少用水量:带出水量减少,耗水量及废水处理量减少。

适于生产能力在600吨/月以上。

目前,一般采用横吊式为多。

二、注意事项:(横吊式)

1)铝材要有一定倾角(3o~ 5o)→便于氧化时气泡逸出。

2)扎料要紧,导电杆脱模要干净→保证导电良好。

3)每根料之间间距应保证→防止色差。

4)避免不同型号、长度的料扎在一起着色→防止色差。

5)每次上料面积要一定,最好是对极面积的80%,最大100%。

第二节脱脂处理

一、目的:

除去制品表面的工艺润滑油、防锈油及其他污物,以保证在碱洗工序中,制品表面腐蚀均匀和碱洗槽的清洁,从面提高氧化制品质量。

二、油脂种类:

动物油、植物油→属皂化油,可与苛性碱发生皂化反应

矿物油→属非皂化油,不与苛性碱发生皂化反应

锯切液

三、脱脂方法与原理

1)有机溶剂:酒精、煤油、汽油、丙酮、甲苯、三氯乙烯、四氯化碳等。利用溶剂对油污很强的溶解能力将油除去。对

Al基体无腐蚀性。

2)表面活性剂:合成洗涤剂、金属清洗剂等。利用有效成份对油污的优良的皂化、乳化、分散、渗透能力将油污除去,对

铝基体无腐蚀作用。

3)碱性溶液:NaoH + 添加剂(乳化剂)

利用溶液中的某些碱性物质与油污发生皂化或乳化作用来达到除油污之目的。

皂化作用—→除去动、植物油

乳化作用—→除去矿物油

皂化反应:

C3H5(C17H35COO)3 +3NaOH→3C17H35COONa+3C3H5(OH)3 硬脂酸苛性钠肥皂甘油

乳化作用:略

成份及其作用:

①NaOH:皂化反应,除油作用。

②Na2CO3(碳酸钠)、Na3PO4(磷酸三钠):缓冲剂,保持溶液

PH=10~11。

③硅酸钠(水玻璃):湿润剂、乳化剂、分散剂,不易水洗去掉

4)酸性溶液

H2SO4、HNO3等

Al + H2SO4 = Al2(SO4)3 + H2↑

利用H2小泡包围油珠,离开铝表面层达到除油目的。

5)电解脱脂

即将制品放在碱性溶液中作为阴极而进行电解处理除去油污。

四、脱脂工艺制度

轻油级:

1)H2SO4150 ~ 250g/l 常温3 ~ 5分钟

2)HNO3150 ~ 200g/l 常温2 ~ 3分钟

3)HNO3120 ~ 150g/l

H2SO4120 ~80g/l 常温2 ~ 5分钟

重油级:

1)Na3PO440 ~ 60g/l (弱碱性)

NaOH 8 ~ 12g/l

Na2SiO320 ~ 30g/l 50 ~ 60℃ 2 ~ 3分钟

2)Na3PO430g/l

Na2CO320g/l 40℃ 2 ~ 3分钟

3)金属清洗剂

20 ~ 30g/l 常温 5 ~ 8分钟(根据说明书要求)

碱性除油工艺:

NaOH 10 ~ 15g/l ,添加剂20 ~ 30g/l ,45 ~ 60℃,3 ~ 7分钟

第三节碱蚀

一、目的:

1)除去铝材表面的自然氧化膜,使金属基体暴露出来,活化表面,有利于氧化着色。

2)整平基体表面,使其均匀一致。

3)调整金属光泽。

4)进一步除去铝材表面污物。

二、方法:

碱法、磷酸钠法、硫酸铬酸法等。

一般采用强碱热溶液。

三、碱蚀原理:

碱蚀过程主要有以下三步化学反应:

Al2O3 +2NaOH → 2NaAlO2 +H2O

2Al +2NaOH +2H2O → 2NaAlO2 +3H2↑

2NaAlO2 +4H2O →OH)3↓+2NaOH

O3↓+3H2O

2

第一步反应是除去铝材表面的天然氧化膜;

第二步是铝基体与碱反应,起整平表面的作用;

第三步是前二步反应所生成的偏铝酸钠不断水解,生成胶状的氢

氧化铝和苛性钠,氢氧化铝进而脱水变成Al2O3硬水铝石。

现在工业上普遍使用长寿命碱蚀添加剂。

四、添加剂的作用:

具有防止产生铝石、增光、整平、缓蚀等多种作用。

特点:

1)允许溶存Al3+铝量达100g/l(甚至120g/l)以上,而不会产生硬水铝石,即使偶有发生水解也不结块,易于清除。

2)具有缓蚀整平功能,碱蚀效果更好。

3)铝腐蚀率能保持在1 ~ 2%之间,减少铝溶蚀量及氢氧化钠消耗量。

成份:

一般有葡萄糖酸钠、酒石酸盐、柠檬酸盐、羧甲基纤维素等多元多组份的混合物。

五、碱蚀工艺:

NaOH:50 ~ 60 g/l,碱蚀添加剂:视说明书要求,温度:50 ~ 70℃

时间:视工艺要求

第四节中和(出光)

一、目的:①中和残碱,防止污染氧化槽。②洗去残留在表面的Cu、

Fe、Zn、Si、Mn等元素的氧化物(挂灰),光亮表面。

二、方法:

1)硝酸法:HNO3 150 ~ 250g/l,温度室温,时间:1 ~ 3分钟为氧化性酸,出光效果较好,但成本高,易污染氧化槽,烟雾大。

2)硫酸法:H2SO4 150 ~ 250g/l,温度:室温,时间:3 ~ 5 分钟。出光效果不甚理想,可加入少量氧化剂(HNO3、H2O2),以增强其氧化性,或加入添加剂。不污染氧化槽,成本低。

3)硝酸+ 氢氟酸(3 :1体积比)

用于高硅铝合金、铸造铝合金。

第五节特殊要求预处理

一、消光处理

1、化学方法:

1)NaOH溶液(全面均匀腐蚀)

浓度:5~25%,温度:50~70℃,时间:1~10min

2)NH4HF +(NH4)2SO4溶液(斑点腐蚀)

3)NH4F溶液(斑点腐蚀)

浓度:3~5%,温度:20~40℃,时间:1~5min

2、电化学方法(电解消光处理法):

1)HCl溶液

浓度:5 ~ 20%,温度:20~60℃,时间:1~2min,

电流密度:10~30A/dm2

2)HCl + H2SO4溶液

HCl浓度:0.3%,H2SO4浓度:1~2%,温度:75~80℃,时间:0.5~1min,电流密度:70A/dm2

3)HCl + NH4Cl溶液

3、机械方法:喷砂处理等等

第三章阳极氧化

一、目的:人为在制品表面生成(或加厚)氧化膜。

二、方法:化学氧化、阳极氧化

第一节化学氧化

化学氧化是在一定的温度下,使清洁的铝表面与氧化溶液中的氧发生反应而生成氧化膜的方法。

化学氧化膜与自然氧化膜相比,厚度要大100一200倍。与阳极氧化膜相比,具有以下特点:

(1)膜的生成速度快;

(2)处理设备简单,生产成本低;

(3)涂料附着性良好,耐蚀性优良;

(4)膜薄(0.5~3μm)而软,耐磨性和着色性较差。

因此,—般只用作防蚀涂漆膜的底层。在工业上,化学氧化常用于形状复杂的零件、室内装饰品以及屋面材料的氧化处理。

一、化学氧化原理

在一定温度下,在含有氧化剂(常用铬酸盐)和活化剂(常用碳酸盐)的溶液中,通过化学作用使铝离子和氧化溶液中的氧相互作用在制品表面生成一层致密氧化膜的方法。

溶液一方面应具有氧化能力,能使铝表面产生氧化膜,另一方面也应具有使氧化膜部分溶解而产生针孔的作用,促进氧化膜成长和厚度增加。但要使氧化膜在溶液中的生长速度必须大于溶解速度。

一般所采用的酸有HF、Na 2SiF4十酸、铬酸、酒石酸、磷酸等;采用的碱性盐为铬酸盐、磷酸盐等。

化学氧化所采用的溶液的种类是很多的,最常用的是含有碳酸钠作为活化剂的溶液中进行化学氧化处理。

二、化学氧化处理法

现代一般广泛使用的铝及铝合金的化学氧化膜的处理方法有:饱尔—福格耳法(BV法)、MBV法、E.W法、派卢明法、阿尔罗克法、阿洛克罗姆法等。

按溶液的组成可分为:

(1)以碳酸钠为主体;‘

(2)以铬酪或重铬酸盐为主体;

(3)以氟化物为主体

(4)以磷酸为主体。

作为铝合金建筑型材粉末喷涂前的预处理,常用的化学氧化膜有铬酸膜、磷酸膜和新开发的无铬膜。

第二节阳极氧化

所谓阳极氧化——即把铝型材人为阳极置于电解液中,利用电解作用在制品表面形成多孔性的氧化薄膜。

一、阳极氧化的种类

按电流形式分有:直流电阳极氧化、交流电阳极氧化、脉冲电流阳极氧化。

按电解液分:硫酸、草酸、磷酸、铬酸、混合酸及以磺基有机酸为主的自然着色阳极氧化。

按膜层性质分:普通膜、硬质膜、瓷质膜、光干涉膜

二、阳极氧化原理

铝氧极氧化的原理实际上就是水电解的原理。

阳极:Al-3e →Al3+

6OH-→3H2O +3O2+

2Al3++3O2-→Al2O3+热量(399卡)阴极:2H++2e →H2

氧化膜的生成规律,可通过氧化过程的电压一时间曲线来详细说明。

条件:20%H2SO4水溶液,阳极电流密度D A=1A/dm2,

温度22℃.

第一段(曲线ab段):

在通电十几秒内电压急剧上升,这是由于铝表面形成了连续的、无孔的氧化膜,叫做活性层。由于它具有半导体整流作用,所以又叫阻挡层。

第二段(曲线bc段):

当电压达到一定数值后,开始下降,一般比最高值下降10 ~ 15%,这是由于电解液对氧化膜的溶解作用所致,使铝表面产生无数微观孔穴,从而保证电流能够顺利通过。

第三段(曲线cd):

阳极氧化经过20秒以后,电压下降至一定数值就趋于稳定,然后以缓慢的速度上升。这时无孔层的生成速度和溶解速度达到平衡,其厚度不再增加。但氧化反应并未停止,在每个孔穴底部,活性层通过溶解、再生,随时间延长而向纵深发展最后形成了六梭体蜂窝状氧

化膜结构,即多孔质层。

活性层厚度约为15×10-9m ,针孔内径为10~15×10-9m ,壁厚12~15×10-9m ,针孔密度大约为4~5亿个/m 2,硫酸阳极氧化膜的孔隙率为20 ~ 30%。

三、 氧化膜厚度

t I K ??=δ

δ—氧化膜厚度,μm

I —电流密度,A/dm 2

t —氧化时间,min

K 为常数,与电流效率和某一工艺条件下生成膜的密度或孔隙度有关。我国采取K = 0.25~0.26

例:某厂,20% H 2SO 4溶液,18~20℃,DC 法

D A =1.4A/dm 2 , t =30min , δ=12~13μm.

由δ=K ·I ·t →K =30

4.112?≈0.286 四、 直流硫酸阳极氧化工艺规范

电 流——直流电DC

电解液——硫 酸

铝及铝合金阳极氧化膜的优点:

1、可大大提高铝材表面的耐磨、耐蚀、耐光、耐候及着色性能。

2、由于氧化膜是由基体金属直接生成的,所以与基体结合牢固,很难用机械的方法从基体金属上分离去掉。

3、氧化膜有良好的绝缘性。

直流电硫酸阳极氧化工艺:

五、影响阳极氧化膜质量的因素:

1、硫酸浓度

浓度↓膜亮度↓从无色透明→灰色;溶液电阻↑→槽电压↑浪费电能;成膜速度↓(膜溶解速度↑)。

浓度↓膜质量软;电解质粘度↑→水洗困难。

工业实际使用范围150~200g/l.

2、电流密度

由δ=K·I·t可知:膜厚δ由I及t决定,I↑、t↓→生产率↑。

I大小对膜质量有影响:I↓膜结构致密、硬;I↑膜易“烧焦”,膜厚不均匀性↑(大面料、复杂料)。一般采用1.2~1.5A/dm2。

3、槽液温度

槽液温度↓(如0~5℃)氧化膜发脆, 膜层透明度与染色性能↓(即吸附性能)。

槽液温度↑(如≥25℃)氧化膜疏松,(呈蜂窝状晶体,壁厚减薄),甚至起白粉。理想的温度为20±2℃。

恒温方式:加热——蒸汽,冷却——冷冻机或加添加剂。

4、电解电压

由于采用定电压阳极氧化则很难控制膜厚,铝合金硫酸阳极氧化采用定电流工作方式。电解电压根据设定电流密度来确定,一般在10~22伏范围内,最佳范围15~17V。

5、氧化时间

在恒电流的条件下,由δ= K·I·t可知成膜时间和膜厚成正比。6、杂质的影响

(1)合金成份:Mg > 2% 膜变暗浊色。Si > 0.8% 膜光泽↓>2%呈灰黑色,出现斑点。Cu%↑膜色调深暗或灰黑色。Zn↑膜呈灰暗色。Mn即便<0.1% 膜也带色与无光。

(2)槽液杂质:Cl-、F-(氟冷却液)→出现孔蚀现象。Fe3+→暗花纹和黑色斑点。Cu2+→正弦曲线状暗条纹。最好使用纯水配电解液(3)Al3+离子:Al3+↓↓(≤0.1g/l时), 电解液溶解能力过强,膜厚↓生成困难,耐蚀、耐磨、染色等性能↓∴配槽时, 添加硫酸铝或部分老溶液。Al3+↑电解液电阻↑,槽电压↑,易产生白斑点,膜的耐磨、耐蚀性↓,透明性↓∴要求Al3+<20g/l。

7、搅拌(循环)

为了降温,采用槽内排管进行热交换、槽外热交换器进行热交换、压缩空气搅拌。

膜层“烧焦”、“起粉”。

影响因素:

电流密度——电流密度过高,将引起电解液温升加快,膜层溶解速度增加,对复杂工件还会造成电流分布不均,使膜层厚度不均,甚至有烧毁工件的危险。

电解液温度——温度升高,溶液粘度降低,电流密度升高(电解电压一定时)或电解电压降低(电流密度一定时)。这有利于氧化膜溶解的加剧。若同时电流密度也低,则出现粉状膜层(即起粉)。

常规的硫酸法,在低温和高电流密度时,膜层易被“烧焦”,而在高温和低电流密度时,膜层易“起粉”。

原因分析:

一般而言,阻挡层中氧化物/铝基体金属界面上总是粗糙的,即铝金属一侧存在许多凸出部位,电流往往就集中在这些部位上,造成这些部位孔的底部电流密度大,因而孔底温度受焦耳热大的影响又升高,这样又引起电流密度加大,如此恶性循环,造成氧化膜仅在工件局部位置上增厚,出现膜层“烧焦”现象,低温高电流密度时更为突出。

而“起粉”现象则是由于膜层过度化学溶解所致。

第三节高速阳极氧化

方法:①脉冲阳极氧化②加添加剂③混合法

一、脉冲阳极氧化

该技术电压为矩形波,有两个工作电压,即高电压V1和低电压V2。当用V1电压进行阳极氧化时,稳定电流I1通过铝阳极,阳极氧化膜形成。当电压突然从V1降至V2后,则出现短时内无电流通过而随之电流又逐渐增大的现象,经T分钟后才出现对应于电压V2的稳定电流I2通过铝阳极。电流随时间发生了畸变,这种现象叫“阳极氧化的电流恢复现象”(或称电流的回复现象),T称为电流恢复时间。

采用脉冲电流后,利用短时间的高电流密度使膜层迅速成长,在“烧焦”现象出现前,骤然将电压降至V2,在电流恢复时间内,膜层成长中止,这样降低了氧化物/铝基体金属界面上的粗糙度。同时膜孔内积聚的焦耳热也得到散失,使制品各部件上温差缩小。因此,采用脉冲电流后,能较好避免“烧焦”现象的出现。由于膜孔内热量能及时得到散失,高电流密度氧化又是短时间的所以避免了膜层的过度化学溶解,于是又克服了膜层的“起粉”现象。

由此可见,脉冲电流具有许多优点:膜层性能提高,温度电流密度等操作条件范围扩大,电流效率高等。

工艺条件:

18% H2SO4, I = 2~3.5 A/dm2, V = 15~17v,

t = 20~30分钟, δ= 10~15μm, T = 25~30℃。

二、加入添加剂

加入添加剂NiSO4,使电解液导热性↑.

工艺条件:NiSO4 10g/l, I = 2A/dm2, t = 25分钟。

三、混合法①+②

第四节其它阳极氧化工艺

一、硬质阳极氧化

生成硬度高、耐磨性好的厚氧化膜。

纯Al上的氧化膜硬度H B = 1200~1500kgf/mm2

(超过了淬火工具钢和铬镀层的硬度)

Al合金上的氧化膜硬度H B = 250~500kgf/mm2

膜层最大厚度可达250~300μm

工艺条件:

二、瓷质阳极氧化(膜灰白色)

配方及工艺条件:(略)

三、硫酸交流电阳极氧化

交流电阳极氧化膜层薄(<10μm)、发黄、硬度↓,工业上几乎不采用。可加入草酸、甘油及添加剂。

第四章铝及铝合金电解着色根据其显色色素体所在的位置不同,着色方法有:化学染色法、自然发色法、电解着色法、有机涂层着色法和复合着色法。

第一节化学染色法

化学染色法是最早用于铝阳极氧化膜着色的方法。

一、特点:工艺简单,作业性好,效率高,成本低,色域宽,色泽

鲜艳。

二、方法:

分两大类

一液法

无机染料染色法

二液法

化学着色酸性有机染料

水溶性染料

有机染料染色法碱性有机染料

油性染料

三、化学染色的机理

化学染色是色素体靠氧化膜多孔层的物理和化学作用吸附于表面层内侧。铝阳极化膜具有30%的孔隙率,有巨大的比表面积和化学活性。

靠染料分子或离子的静电力进行的吸附叫物理吸附,吸附力取决于氧化膜的表面电位和染料性质。

所谓化学吸附指氧化膜与色素体以化学键、共价键或形成络合物等形式结合。

与化学吸附相比,物理吸附较弱,且受染色液温度的影响较大,所以化学着色的色牢度取决于化学吸附作用。

四、无机染料染色

1、一液法:将阳极氧化膜浸入一种溶液中,这种金属盐在膜孔内水化生成色淀而使膜层显色。

2、二液法:将阳极氧化膜先浸入一种盐溶液中,取出经清洗后再浸入另一种盐溶液中,两次浸渍吸附的盐发生反应生成不可溶的沉淀色素,使制品显色。

五、有机染料染色

用于铝阳极氧化膜染色的水溶性酸性染料主要有蒽醌系偶氮基以及三苯甲烷类。

六、工艺流程

基本上是:

预处理(同常规)→硫酸阳极氧化→水和纯水洗→染色→水和纯水洗→沸水封孔→烘干

第二节自然发色法

自然发色法指铝材在有机酸水溶液中经阳极氧化的同时而着色的方法。由于氧化和着色一步完成,所以也叫一步法。

自然发色法(又称电解整体着色法)按着色原因不同,又可分为:合金发色法(次地位)、电解发色法(占主导)、电源发色法(开发中)

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 ②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性, 消除材料内

部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。 自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。 人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个阶段进行。 可分为二阶段、三阶段时效

铝合金热处理原理

铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的

铝合金的热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。

二、热处理方法1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

铝合金热处理基础概念

一、鋁合金熱處理基礎概念 1.分類 純鋁─1000系 非熱處理合金鋁錳系合金─3000系 鋁矽系合金─4000系展伸材料鋁鎂系合金─5000系 鋁銅鎂系合金─2000系 熱處理合金鋁鎂矽系合金─6000系 鋁鋅鎂系合金─7000系 2.合金編號 目前通用的是美國鋁業協會〈Aluminium Association〉的編號。 茲舉例說明如下: 2.1第一位數:表示主要添加合金元素 1:純鋁 2:主要添加合金元素為銅 3:主要添加合金元素為錳或錳與鎂 4:主要添加合金元素為矽 5:主要添加合金元素為鎂 6:主要添加合金元素為矽與鎂 7:主要添加合金元素為鋅與鎂 8:不屬於上列合金系的新合金,如鋰元素 2.2第二位數:表示原合金中主要添加合金元素含量或雜質成分含量 經修改的合金 0:表原合金 1:表原合金經第一次修改 2:表原合金經第二次修改 2.3第三及四位數: 純鋁:表示原材料99.5 % 或99.7更高純度。 合金:表示個別合金的代號 〝-〞:後面的Hx或Tx表示加工硬化的狀態或熱處理狀態的煉度 符號 -Hx :表示非熱處理合金的煉度符號 -Tx :表示熱處理合金的煉度符號

二、鋁合金的熱處理 2.1煉度符號 若添加合金元素尚不足於完全符合要求,尚須藉冷加工、淬水、時效處理及軟化退火等熱處理,以獲取所需要的強度及性能。這些處理的過程稱之為調質,調質的結果便是煉度。

2.2退火軟化處理 2.2.1目的: 展伸用材料包括壓延用材料,擠壓用材料及鍛造用材料,通常其製程序為: 熔鑄→熱加工→冷加工→材料成品 在熱加工或冷加工的過程中,材料發生加工硬化的情況,使強度變大或導致加工硬化加工性減低的情況。為消除這些加工硬化,於冷加工前,中或後所施的熱處理即為退火軟化處理,其目的在使材料具有使用上所需要的加工程度。 部分軟化:僅消除部份加工硬化,處理溫度在再結晶溫度以下,實際溫度則視強度而定,處理溫度越高則強度越低。

铝合金热处理状态定义

铝合金T状态含义如下: T1-----铝材从高温热加工冷却下来,经自然时效所处的充分稳定的状态。适用于热挤压的不进行冷加工的材料,或矫直等冷加工对其标定力学性能无影响的产品。 T2-----铝材从高温热加工冷却后冷加工,然后再进行自然时效的状态。如为了提高强度,对热挤压产品进行冷加工,在通过自然时效可达到充分稳定的状态,也适用于矫直加工会影响其标定力学性能的产品。 T3-----固溶处理后进行冷加工,然后通过自然时效所达到的一种状态。适用于固溶处理后通过冷加工能提高其自然时效状态的强度性能的产品,或矫直能影响其标定力学性能的产品; T31-----固溶热处理,冷加工月1%变形量,然后自然时效; T351-----固溶热处理,通过可控的拉伸量消除应力(薄板的永久变形量0.5%~3.0%,厚板的1.5%~3%,棒材的冷精轧量即冷精整变形量1%~3%,手锻件或环锻件及轧制环的永久变形量1%~5%),然后自然时效。拉伸后不再进行矫直;T3510-----固溶热处理,通过可控的拉伸量对挤压材消除应力(挤压管、棒、型材的永久变形量1%~3%,拉伸管的永久变形量0.5%~3%),然后自然时效。拉伸后不再进行矫直; T3511-----同T3510状态,但拉伸后作了镜面矫直,以达到标准规定的尺寸偏差精度; T352-----固溶热处理,压缩永久变形量1%~5%以消除应力,然后自然时效;T354-----固溶热处理,在精整模内冷整形以消除应力,然后自然时效,适用于模锻件; T36-----固溶热处理,冷加工约6%变形量,然后自然时效; T37-----固溶热处理,冷加工约7%变形量,然后自然时效; T39-----固溶热处理,适量的冷加工变形以满足既定的力学性能要求,冷加工可在自然时效前进行,也可在其后进行。 T4-----固溶热处理与自然时效。 T41-----在热水中淬火的状态,以防止变形与产生较大的热应力,此状态用于锻件; T42-----固溶热处理与自然时效,适用于自退火状态或F状态固溶热处理的实验材料,也适用于用户将任何状态的材料固溶热处理与自然时效; T451-----固溶热处理,通过一定量的拉伸以消除应力(薄板的永久变形量0.5%~3.0%,厚板的1.5%~3%,棒材轧制永久变形量或冷精整相等的变形量,自由锻件、环锻件和轧制环的1%~5%),然后自然时效。拉伸后不得作进一步的矫直; T4510-----固溶热处理,一定量的拉伸以消除应力(挤压管、棒、型材的永久变形量1%~3%,拉拔管的永久变形量0.5%~3%),然后自然时效,拉伸后不得作进一步的矫直; T4511-----同T4510状态,但拉伸后作了镜面矫直,以达到标准规定的尺寸偏差精度; T452-----固溶热处理,压缩永久变形量1%~5%以消除应力,然后自然时效;T454-----固溶热处理,在精整模内冷整形以消除应力,然后自然时效,适用于模锻件; T5-----从热加工温度冷却后再进行人工时效。

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。

铝合金热处理

T651铝板?-T651是铝合金的主要合金,是经热处理预拉伸工艺生产的高品质铝合金产品,其强度虽不能与2XXX系或7XXX系相比,但其镁、硅合金特性多,具有加工性能极佳、优良的焊接特点及电镀性、良好。? -T651是铝合金的主要合金,是经热处理预拉伸工艺生产的高品质铝合金产品,其强度虽不能与2XXX系或7XXX系相比,但其镁、硅合金特性多,具有加工性能极佳、优良的焊接特点及电镀性、良好的抗腐蚀性、韧性高及加工后不变形、材料致密无缺陷及易于抛光、上色膜容易、氧化效果极佳等优良特点。 -T651代表用途包括航天固定装置、电器固定装置、通讯领域,也广泛应用于自动化机械零件、精密加工、模具制造、电子及精密仪器、SMT、PC板焊锡载具等等。 轻有色金属指密度小于/cm3 的有色金属材料,包括铝、镁、钠钾钙锶钡等纯金属及其台金。这类金属的共同特点是:密度小? /cm3) ,化学活性大,与氧、硫、碳和卤素的化合物都相当稳定。其中在工业上应用最为广泛的是铝及铝合金,目前它的产量已超过有色金属材料总产量的1/3 。以铝位代表的系列铝合金中的主要合金元素为镁与硅,具有中等强度、良好的抗腐蚀性、可焊接性,氧化效果较好。广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如制造卡车、塔式建筑、船舶、电车、铁道车辆、家具等。?T651铝板其主要化学成分为:铜Cu :锰Mn : 镁Mg :~锌Zn : 铬Cr :~钛Ti : 硅Si :~铁Fe : 铝Al :余量他们是四位数字表示的以镁和硅为主要合金元素并以Mg2Si相为强化相的铝合金。第一位是数字,用以区分组别。后两位用于区分同一组别系列内的材料牌号,没有特殊意义。 铝合金基本状态代号: F 自由加工状态 适用于在成型过程中,对于加工硬化和热处理条件特殊要求的产品,该状态产品的力学性能不作 规定(不常见) O 退火状态 适用于经完全退火获得最低强度的加工产品(偶尔会出现) H 加工硬化状态 适用于通过加工硬化提高强度的产品,产品在加工硬化后可经过(也可不经过)使强度有所降低的附加热处理(一般为非热处理强化型材料) W 固熔热处理状态 一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效的合金,该状态代号仅表示产品处 于自然时效阶段(不常见) T 热处理状态 (不同于F、O、H状态)

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

铝合金基本状态代号

铝合金基本状态代号: F 自由加工状态适用于在成型过程中,对于加工硬化和热处理条件特殊要求的产品,该状态产品的力学性能不作规定(不常见) O 退火状态适用于经完全退火获得最低强度的加工产品(偶尔会出现) H 加工硬化状态适用于通过加工硬化提高强度的产品,产品在加工硬化后可经过(也可不经过)使强度有所降低的附加热处理(一般为非热处理强化型材料) W 固熔热处理状态一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效的合金,该状态代号仅表示产品处于自然时效阶段(不常见) T 热处理状态(不同于F、O、H状态) 适用于热处理后,经过(或不经过)加工硬化达到稳定的产品。T代号后面必须跟有一位或多位阿拉伯数字(一般为热处理强化型材料)我们常见的非热处理强化型铝合金后面的状态代号一般是字母H加两位数字。 如1100 H14。下面简单介绍以下状态代号的含义内容。 字母H后面一般跟两位数字:第一位数字表示的就是加工硬化处理的方法。H后面的第一位数字有:1,2,3,4 即H1* H1*表示单纯加工硬化处理 H2* H2*表示加工硬化及不完全退火 H3* H3*表示加工硬化及稳定化处理 H4* H4*表示加工硬化及涂漆处理 第二位数字表示的就是材料所达到的硬化程度。 H后面的第二位数字有:1,2,3,4,5,6,7,8,9 既H*1 0与2之间的硬度 H*2 1/4硬 H*3 2与4之间的硬度 H*4 1/2硬H*5 4与6之间的硬度 H*6 3/4硬H*7 6与8之间的硬度

H*8 全硬状态H*9 超硬状态 (H后面跟三个数字的情况不多,只有几个。H111表示最终退火后又进行了适量的加工硬化。H112表示适用于热加工成型的产品。H116表示含镁量≥4.0%的5***系合金制成的产品.) 我们常见的热处理强化型铝合金后面的状态代号一般是字母T加添加一位或多位阿拉伯数字表示T的细分状态在T后面添加0—10的阿拉伯数字,表示细分状态(称作TX状态)。T后面的数字表示对产品的热处理程序。T0 固溶热处理后,经自然时效再通过冷加工的状态。 适用于经冷加工提高强度的产品。 T1 由高温成型过程冷却,然后自然时效至基本稳定的状态。适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。 T2 由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态。适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产品。 T3 固溶热处理后进行冷加工,再,经自然时效至基本稳定的状态。适用于在固溶热处理后,进行冷加工、或矫直、矫平以提高强度的产品。 T4 固溶热处理后自然时效至基本稳定的状态。适用于固溶热处理后,不在进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。 T5 由高温成型过程冷却,然后进行人工时效的状态。适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品。 T6 由固溶热处理后进行人工时效的状态。适用于由固溶热处理后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品。 T7 由固溶热处理后进行人工时效的状态。适用于由固溶热处理后,为获取某些重要特性,在人工时效时,强度在时效曲线上越过了最高峰点的产品。 T8 固溶热处理后经冷加工,然后进行人工时效的状态。适用于经冷加工、或矫直、矫平以提高产品强度的产。 T9 固溶热处理后人工时效,然后进行冷加工的状态。适用于经冷加工提高产品强度的产品。

铝型材及热处理

分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。 1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminum Association〉的编号。兹举 例说明如下:1070-H14(纯铝) 2017-T4(热处理合金) 3004-H32(非热处理合金) 2.1第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁 7:主要添加合金元素为锌与镁 8:不属於上列合金系的新合金 2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。 0:表原合金 1:表原合金经第一次修改 2:表原合金经第二次修改 2.3第三及四位数: 纯铝:表示原合金 合金:表示个别合金的代号 "-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号 -Hn :表示非热处理合金的鍊度符号 -Tn :表示热处理合金的鍊度符号 2 铝及铝合金的热处理 一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效 处理及软烧等处理,以获取所需要的强度及性能。这些处理的过程称 之为调质,调质的结果便是鍊度。 鍊度符号定义 F 制造状态的鍊度 无特定鍊度下制造的成品,如挤压、热轧、锻造品等。 H112 未刻意控制加工硬化程度的制造状态成品,但须保证机械性质。 O 软烧鍊度 完全再结晶而且最软状态。如系热处理合金,则须从软烧温度缓慢冷却,完全防止淬水效果。 H 加工硬化的鍊度 H1n:施以冷加工而加工硬化者 H2n:经加工硬化后再施以适度的软烧处理 H3n:经加工硬化后再施以安定化处理 n以1~9的数字表示加工硬化的程度 n=2 表示1/4硬质

常用变形铝合金退火热处理工艺规范标准

常用变形铝合金退火热处理工艺规 1 主题容与适用围 本规规定了公司变形铝合金零件退火热处理的设备、种类、准备工作、工艺控制、技术要求、质量检验、技术安全。 2 引用文件 GJB1694变形铝合金热处理规 YST 591-2006变形铝及铝合金热处理规 《热处理手册》91版 3 概念、种类 3.1 概念:将变形铝合金材料放在一定的介质加热、保温、冷却,通过改变材料表面或部晶相组织结构,来改变其性能的一种金属热加工工艺。 3.2 种类 车间铝合金零件热处理种类:去应力退火、不完全退火、完全退火、时效处理。 4 准备工作 4.1 检查设备、仪表是否正常,接地是否良好,并应事先将炉膛清理干净; 4.2 抽检零件的加工余量,其数值应大于允许的变形量; 4.3工艺文件及工装夹具齐全,选择好合适的工夹具,并考虑好装炉、出炉的方法; 4.4 核对材料与图样是否相符,了解零件的技术要求和工艺规定; 4.5在零件的尖角、锐边、孔眼等易开裂的部位,应采用防护措施,如包扎铁皮、石棉绳、堵塞螺钉等; 5 一般要求 5.1 人员: 热处理操作工及相关检验人员必须经过专业知识考核和操作培训,成绩合格后持证上岗5.2 设备 5.2.1 设备应按标准规要求进行检查和鉴定,并挂有合格标记,各类加热炉的指示记录的仪表刻度应能正确的反映出温度波动围; 5.2.2 热电温度测定仪表的读数总偏差不应超过如下指标: 当给定温度t≤400℃时,温度总偏差为±5℃; 当给定温度t>400℃时,温度总偏差为±(t/10)℃。 5.2.3 加热炉的热电偶和仪表选配、温度测量、检测周期及炉温均匀性均应符合QJ 1428的Ⅲ类及Ⅲ类以上炉的规定。 5.3 装炉 5.3.1 装炉量一般以装炉零件体积计算,每炉零件装炉的有效体积不超过炉体积一半为准。 5.3.2 零件装炉时,必须轻拿轻放,防止零件划伤及变形。 5.3.3堆放要求: a.厚板零件允许结合零件结构特点,允许装箱入炉进行热处理,叠放时允许点及较少的线接触,避免面接触,叠放间隙不小于10mm. b.厚度t≤3mm的板料以夹板装夹,叠放厚度≤25mm,零件及夹板面无污垢、凸点,零件间、零件与夹板间应垫一层雪花纸,以防止零件夹伤。 5.3.4 装炉后需检查零件与电热原件,确定无接触时,方可送电升温,在操作过程中,不得随意打开炉门; 5.3.5 加热速度:变形铝合金退火的加热速度约13℃~15℃/秒,例如加热到410℃设定时间为0.5小时。

铝合金的热处理及硬度

铝合金的硬度 一、分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。 1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。兹举 例说明如下:1070-H14(纯铝) 2017-T4(热处理合金) 3004-H32(非热处理合金) 2.1第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁 7:主要添加合金元素为锌与镁 8:不属於上列合金系的新合金 2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。 0:表原合金 1:表原合金经第一次修改 2:表原合金经第二次修改 2.3第三及四位数: 纯铝:表示原合金 合金:表示个别合金的代号 "-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号 -Hn :表示非热处理合金的鍊度符号 -Tn :表示热处理合金的鍊度符号

2 铝及铝合金的热处理 一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效 处理及软烧等处理,以获取所需要的强度及性能。这些处理的过程称 之为调质,调质的结果便是鍊度。 鍊度符号定义 F 制造状态的鍊度 无特定鍊度下制造的成品,如挤压、热轧、锻造品等。 H112 未刻意控制加工硬化程度的制造状态成品,但须保证机械性质。 O 软烧鍊度 完全再结晶而且最软状态。如系热处理合金,则须从软烧温度缓慢冷却,完全防止淬水效果。 H 加工硬化的鍊度 H1n:施以冷加工而加工硬化者 H2n:经加工硬化后再施以适度的软烧处理 H3n:经加工硬化后再施以安定化处理 n以1~9的数字表示加工硬化的程度 n=2 表示1/4硬质 n=4 表示1/2硬质 n=6 表示3/4硬质 n=8 表示硬质 n=9 表示超硬质 T T1:高温加工冷却后自然时效。挤型从热加工后急速冷却,再经常温十效硬化处理。亦可施以不影响强度的矫正加工,这种调质适合於热加工后冷却便有淬水效果的合金如:6063。 T3:溶体化处理后经冷加工的目的在提高强度、平整度及尺寸精度。 T36:T3经6%冷加工者。 T361:冷加工度较T3大者。 T4:溶体化处理后经自然时效处理。 T5:热加工后急冷再施以人工时效处理。 人工时效处理的目的在提高材料的机械性质及尺寸的安定性适用於热加工冷却便有淬水效

铝合金热处理代号详解

-- 铝合金热处理代号详解 铝合金热处理技术 1. 热处理铝合金加工代号 F:As fabricated表示冷加工,热加工或铸造成形后不在施以特别处理。 O:Annealed表示退火至最低强度水平之锻制品,及经退火增加延展性及尺寸安定性之铸造品。 H:Strain Hardened表示经加工变形之锻制品。 W:Solut heat treated:表示仅固溶体处理后自然时效W1/2 hr。 T:Heat treated to produce stable tempers other than F . O . or H . 2. 热处理代号 H1:仅加工硬化者 H2:加工硬化且未完全退火(部分退火) H3:加工硬化作低温加热以便稍微降低强度以增进延展性及安定性 H1X,H2X,H3X X由1~8 8:50℃以下将完全退火之合金施以75%冷滚所的之强度 0:为完全退火之强度 4→8+ 0/2 H 112 制造成形时加工硬化但加工量为加以控制 H 321 制造成形时加工硬化,加工量特定 3. T代号之细分 T 1 从较高温之成形加铸造、挤形等过程中冷却下来并自然时效。 T 2 从较高温之成形施以冷加工并自然时效。 T 3 固溶体处理后,冷加工并自然时效 T 4 固溶体处理后,直接自然时效 T 5 轻较高温度成形施以人工时效 T 6 固溶处理后人工时效 T 7 固溶处理后人工时效至过时效状态 T 8 固溶体处理后,冷加工并人工时效 T 9 固溶体处理后人工时效并冷加工 T 10 较高温之成形施以冷加工并人工时效 TX 51 固溶体处理后用伸张的方法消除内部应力 TX 52 固溶体处理后用压缩的方法消除内部应力 TX 53 用伸张及压缩的方法消除内部应力

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

相关文档
最新文档