随钻测量

第六部分

随钻测量技术

随钻测量与地质导向工具

是一项钻井技术的“地下革命”

盐丘

定向钻井技术在勘探、开发中的功用

海上或陆地丛式井

工程救险井

因事故复杂进行侧钻

多目标勘探与开发

控制断层钻探

水平井进行开发

地面条件限制

大位移定向井侧钻分支井

6.1 随钻测量信息系统概述

随钻测量系统

MWD EM ˙MWD FM ˙MWD

实时动态数据测量储存系统井下动态信息测储设备

近钻头测量系统LWD 空间姿态测量系统

钻头前方探测系统

SWD

地面监测录井系统综合录井仪八参数仪地面模拟器

地面与井下数据储存、分析与显示系统

地面或远方决策与总控系统

微电脑一

微电脑二微电脑三

(上行测量信息通道)

6.1.1 随钻信息测量-控制-通讯流程图

地面控制设备

环空/钻柱

井下控制机构

井下执行机构

钻头/工具

6.1.2 随钻测量系统发展

?MWD ——measure while drilling

?EM.MWD ——eleetronic measure MWD

?FE.MWD ——formtion Evaluation MWD ?DWD ——Diagnostic-While-Drilling

?LWD——logging while drilling

?SWD——seismic while drilling

?GST ——Geosteering Tool

6.1.3 随钻测量参数

?井斜、方位、工具面、井下钻压、井下扭矩、马达转速?井下振动、伽马射线、地层电阻率、密度

?方位中子密度、中子孔隙度、环室温度

?探测各种异常地层压力、预测钻头磨损状况

?探测井下异常情况及故障分析

?通过井下存储可实现测井的全井图像分析

6.1.4 随钻测量数据传输系统

泥浆脉冲传输方法

●涡轮发电机给系统供电

●接收系统、接收各部分传感器采集的数据

●连续脉冲波发生器

由转子和定子组成,转子与定子之间切割泥浆产生不同的泥浆压力差。利用钻杆传播应力波(声波)方法

Burne和Kirkwood(1972)、Drumheller(1989)奠定了理论基础;

Lee和Ramarao(1995)分析了充液钻杆中声波传输问题;

哈里伯顿(2000)开发了声波遥传系统AST(Acoustic Telemetry System)

最有潜力的高速传输方式

●电磁波(EM)遥传系统载波频率一般在30Hz以下

●泥浆脉冲遥传系统载波频率一般在100Hz以下

●声波遥传系统(ATS)载波频段在400~2000Hz

6.2 MWD 随钻测量系统

井下传感器组装工具

A/D 转换板

温度校正

换算,标定

钻压校正

加速度X,Y,Z

钻压,钻头扭矩

环空压力井眼压力

温度

磁力仪X 、Y

1000赫兹16位

为研究用的仪表面板储存器

1000赫兹16位

1000赫兹16位

0.2赫兹

0.2赫兹

0.2赫兹

格式变换数字低频滤波付立叶变换处理

集成平均值计算转换

诊断处理

记录速度200,100,40赫

钻压扭矩弯矩转速环定压力井眼压力加速度静态矩

(平方根、立方根)温度1跳钻2 粘/滑

3涡动、反转4扭振

5轴向加速度6横向加速度7弯矩

8钻头切削效率

传输到地面

0.2赫兹

诊断标志静态的数据检测

数字信号处理

数据监测和处理框图

Sandia National Laboratories

Measurement Sub:

?Three-axis acceleration

?High-frequency axial acceleration

?Angular acceleration

?Magnetometer (rotary speed)

?Weight on bit, torque on bit, bending moment

?Drill pipe and annulus pressure

?Drill pipe and annulus temperature

Sandia National Laboratories Data-transmission format

A stream of digital, bi-phase encoded frames

Data link

Digital data rate = 200,000 bits per second

A commercially available data link called Wet-connect wireline is chosed Surface display

6.3 LWD 随钻测井系统

6.3.1 与电缆测井的比较

?使测井在地层被破坏或被污染之前完成

?部分信息能实时测量,可使钻井过程更有效

?使测井更安全保险(某些井环境恶劣、下电缆困难)

?避免了仪器落入井中又无法回收等事故

?几乎能完成所有电缆测井工作,且有相同的测量精度

?成本高、尺寸大

?海上钻井作业中,使用LWD的比例高达95%

?每年随钻测井服务产值已占整个测井行业产值的25%

6.3.2 系统组成及性能

CDN——补偿中子密度

CDR——补偿双电阻率

指向性

6.3.3 随钻测井工具

(1)补偿双电阻率CDR (Compensated Dual Resistivity)

?高频感应能在各种泥浆中工作

?补偿井眼的影响

?伽马射线能谱分析

?探测两种深度:(中深RPS(?)是相位测量,深RAD(放射的)是通过

衰感测量,使用目的是对比所钻地层,对地层进行评估)

Integrated Drilling Evaluation and Logging (IDEAL)

——ARC5 Array Resistivity Compensated

The ARC5 Array Resistivity Compensated tool provides 2-MHz borehole-compensated phase and attenuation(衰减) resistivity measurements with multiple depths of investigation in slimholes.

Benefits of the ARC5 tool

?Formation evaluation measurements while drilling in slimholes.

?Accurate Rt up to 200 ohm-m with wide range of borehole fluids.

?Invasion profiling to identify permeable zones.

?High-quality real-time measurements available for correlation and geosteering.

Integrated Drilling Evaluation and Logging (IDEAL)

——ARC5 Array Resistivity Compensated

Features of the ARC5 tool

?Five transmitters and two receivers

combine to give 10 vertically matched,

borehole-compensated, 2-MHz

resistivities.

?Total gamma ray sensor for lithology

estimation and correlation.

?Downhole memory and batteries allow

tool to be run while drilling or while

tripping.

?Real-time data transmission with Slim

1* MWD system

?Data processing provides horizontal

and vertical resistivities (R h, R v), mud

resistivity (R m), phase caliper(井径仪)and

invasion profile.

随钻测量

第七章随钻测量 随钻测量(Measurement While Drilling)简称MWD,是定向钻进中一种先进的技术手段,可以不间断定向钻进而测量近钻头孔底某些信息,并将信息即刻传送到地表的过程。随着技术的进步,现代随钻测量已发展为随钻测井(Logging While Drilling),简称LWD,不仅可以监控定向钻进,还可以进行综合测井,获取信息的种类有: (1)定向数据(井斜角,方位角,工具面角); (2)地层特性(伽马射线,电阻率测井记录); (3)钻井参数(井底钻压,扭矩,每分钟转数)。 传感器是装在作为下部钻具组合整体的一部分的特殊井下仪器中。井下仪器中还有一个发射器,通过某种遥测信道将信号发送到地面。目前使用的最普通的遥测信道是钻柱内的钻井液柱。信号在地面上被检测到后,经过译码和处理,就按方便和可用的方式提供所需的信息。图7-1示出了MWD系统的主要部分。MWD的最大优点是它使司钻和地质工作者实时地“看”到井下正在发生的情况,从井底测量参数到地面接收到数据只延误几分钟,所以可以改善决策过程。 图7-1 MWD系统概况 尽管MWD的概念不是新的,但只是在近几年钻井技术的进步才使之成为现实。30年代出现的电测技术对鉴别和评价地层起了很大作用。但是,它的主要缺点是必须在起出钻柱后才能使用电缆下井。等到实际测井时,由于钻井液浸入的影响,妨碍了地层真实特性的测量。当钻头钻穿不同地层时,由于没有确定的方法辨别出岩性的变化,—些重要的层位可能没有检测到。有时,后来的电测显示出错过了油层段顶部的取心点,或是钻头钻得过深钻到了产油层下部的水层中。钻井液测井和监测钻速虽可指供一些井底情况,但由于要等到岩屑循环到地面的时间延误使这一过程效率太低。所以,需要一种能够在钻井时瞬时而连续地监测地层的系统。对这一系统有如下要求: (1)坚固可靠的传感器,可在钻进动态条件下在钻头处或钻头附近测量需要的数据; (2)将资料传送到地面的方法简单有效; (3)可以方便地在任何钻机上安装并操作的系统,对正常钻进作业影响不大;

随钻测量系统设计

134 收稿日期:2010-11-04 作者简介:詹世玉(1981-),硕士研究生,主要研究方向为瓦斯抽采与利用、测控技术。 *基金项目:煤炭科学研究总院重庆研究院自立项目(CQ 1103) 随钻测量系统设计* 詹世玉 (煤炭科学研究总院重庆研究院 重庆,400037) 摘 要:针对随钻测量设备需求日益增大,本文在分析随钻测量系统工作原理的基础上,设计一套由三轴加 速度计、三轴磁阻传感器与三轴陀螺仪组成的随钻测量系统。以DSP为控制核心,采用先进的MEMS芯片,同时采取相应的抗干扰、误差修正、温度补偿等改善性能措施。结果表明,系统具有测量精度高、稳定性好、适应能力强等优点。 关键词:随钻测量;姿态参数;MEMS;改善性能 Abstract: According to MWD equipment needs growing, based on analyzing MWD system works,the paper designed a MWD system ,which consists of three-axis accelerometer,three-axis and three-axis gyroscope.On the control core of DSP, a advanced MENS chip and some anti-jamming , error correction and temperature compensation measures of improve performance are adopted for design.The results show that the system has high accuracy, good stability, strong ability to adapt. Key words: Measurement--while--drilling ; Posture parameters ; MEMS; Improve performance 中图分类号:TH763.5 文献标识码:B 文章编号:1001-9227(2011)02-0134-03 0 引 言 所谓随钻测量技术,就是在钻进过程中,利用钻井液或电磁波作传输媒介,连续传输测量信号的测量技术[1]。其主要获取方位角、倾斜角、工具面角、深度等参数,为安全、高效钻进提供可靠的策略依据。近年来随着非开挖技术发展,地下钻进技术得到越来越广泛的应用。为了实现水平定向钻进中的轨迹监控和精确导向,必须实时获取地下钻头的姿态参数和钻头的空间位置,因而随钻测量和定位技术作为关键测量问题正受到广泛关注和大力研究[2]。1 随钻测量系统 随钻测量系统主要包括两大部分,近钻头测量装置和监视器,核心为近钻头测量装置。如图1所示,近钻头监测装置一般安装在无磁性的测量探管进行近钻头监测,获取的信息再通过无线传送给监视器。其中近钻头测量装置中的三轴加速度计、三轴磁阻传感器、三轴陀螺仪等传感器组成的探测单元将检测到空间姿态角等信息传给信号处理单元进行滤波、累积等处理后,将数据传给数据发送单元调制在一定的载波上进行无线发射,由监视器上的数据接收模块进行接收解调,送给数据处理中心处理后将相应的信息显示给司钻人员,进而调整施工策略。2 随钻测量系统的基本原理 2.1 基于三轴加速度计和三轴磁阻传感器的随钻测量系统 根据导航学旋转变换中的欧拉定理,载体在空间中的姿态可用相对于地理坐标系有限次的转动来表示,每次 转动的角度即为航向角、俯仰角和横滚角[3] ,即是钻进工 程的方位角、倾角和工具面角,如图2所示。 图1 随钻监测系统 图2 姿态角度在地理坐标系中的定义 具体数学关系如下:  (1) (2) 随钻测量系统设计 詹世玉

一种新型的MWD无线随钻测量系统

?仪器设备? 一种新型的MWD 无线随钻测量系统 李 军 马 哲 杨锦舟 韩建来 (胜利油田钻井工艺研究院 山东东营) 摘 要:文章介绍了一种新型的MWD 无线随钻测量系统(APS 旋转阀定向测量系统)的结构组成与工作原理,阐述了该系统中旋转阀脉冲发生器的功能特点,分析了该系统在现场应用中出现的问题,提出阀系结构的技术改进及软件升级的具体方法,通过现场实践,该系统能够满足应用需求,具有广泛的应用前景。关键词:MWD ;工作原理;旋转阀脉冲发生器;控制模块 中图法分类号:TE271,TP393 文献标识码:B 文章编号:100429134(2006)022******* 0 引 言 随着国内钻井技术的不断发展,随钻测量 (MWD ———Measurement While Drilling )仪器的需求也不断增加。目前,国内无线随钻测量仪器的种类多种多样,市场竞争对无线随钻测量仪器的要求也越来越高。我们针对MWD 仪器现场使用中出现的各种问题,提出了一种新的设计思路,通过引进美国APS 公司的旋转阀式脉冲发生器,与我们自行研制出来的电子测量短节配套,由锂电池组供电,组成了一种新型的MWD 无线随钻测量系统(APS 旋转阀定向测量系统),通过现场应用,取得了一定的应用经验。针对现场出现的问题,对该系统进行了技术改进,并在现场应用中取得了较好的效果。 1 结构组成及工作原理 新型MWD 无线随钻测量系统由井下测量系统和 地面处理系统两部分组成,系统框图如图1所示 。 图1 系统框图 该系统通过无磁钻铤中井下仪器测量短节的传感 器感受定向数据,包括井斜角、方位角、工具面等井下 信息,由测量短节计算储存并传输至APS 旋转阀脉冲发生器电路控制模块,这些井下信息转化成泥浆脉冲信号,以编码的形式传输到地面接收系统。地面系统中的压力传感器将泥浆脉冲信号转换成4mA ~20mA 的电信号,通过电缆传输到地面接口系统,信号处理电路接收到此信号后,自动地进行数模转换,降躁,滤波等处理。然后,将信号传输给图形记录仪,可以图形方式记录下来;同时,将信号传输给上位机译码系统,译码系统根据译码规则将信号转换成井斜、方位、工具面等数据,并在上位机及钻台司钻阅读器上显示出来,给定向井工程师提供实时可靠的井下情况。1.1 井下测量系统 井下测量系统由旋转阀脉冲发生器、供电系统、电子测量短节三部分组成。 (1)旋转阀脉冲发生器[1] 旋转阀脉冲发生器是目前钻井行业中唯一的一种电子式脉冲发生器,通过电子软件控制,具有多种输出方式,其工作原理为:阀系中的转子在受控驱动下产生与定子的相对运动,实现对通道内流体的阻流作用而产生正压力脉冲。 该脉冲发生器组成框图如图2所示 。 图2 旋转阀脉冲发生器系统组成框图 该脉冲发生器采用自适应反馈控制系统,当外界 原因使被控量偏离期望值而出现偏差时,会产生一个  第一作者简介:李 军,男,1968生,工程师,1996年毕业于石油大学计算机应用技术专业,现在胜利油田钻井工艺研究院自动化所工作,主要从事 MWD ΠLWD 随钻测量仪器的研究开发和现场应用工作。邮编:257017 ? 03? 石 油 仪 器 PETROLEUM INSTRUMENTS 2006年04月

随钻测量系统软件说明书

DRILLNAVI 使用说明书 北京海蓝科技开发有限公司

目 录 第一章综述 (1) 第一节主要功能 (1) 第二节人机界面 (1) 第三节操作流程 (3) 第四节运行环境 (4) 第二章安装与卸载 (5) 第一节安装 (5) 第二节卸载 (5) 第三章操作说明 (6) 第一节启动 (6) 第二节文件管理 (7) 第三节测试与校准 (7) 第四节自动测量弯头方向 (8) 第五节定向测量 (8) 第六节系统设置 (8) 第七节统计信息 (8) 第八节数据处理 (8) 第九节通讯管理 (9) 第十节报警管理 (9) 第十一节运行日志 (11) 附录A:建议的工作流程 (12) A.1测量前的准备工作: (12) A.2测量中的工作: (12) 附录B:需要注意的问题 (12)

第一章综述 第一节主要功能 本软件可以配合ZXC1000(A)测斜系统完成测斜、轨迹计算、数据存储及仪器状态管理等诸多功能。在下井前,可以使用软件提供的功能对整套系统作现场检查,并复位弯头方向(工具面角)。在施工过程中,系统可以连续提供弯头方向和测斜数据,并可从中计算出钻孔轨迹的三维坐标,分别以水平和垂直投影图的方式显示出来,作为钻孔施工的辅助。如果有某项指标超限,软件会提出相应的警告,以避免错误或事故的发生。 仪器标定不在本软件提供的功能之列,该功能由专用的软件实现。 钻孔设计数据的录入及修改由专用的软件实现,亦不在本软件提供功能之列。 第二节人机界面 图 1-1 主窗口布局 一、主窗口 主窗口的内容由以下几部分构成: 1. 标题栏

程序中使用的标题栏随系统的界面主题风格变化。一般情况下,其最左侧是软件图标,单击它可以弹出系统菜单。紧随图标右侧是软件标题及当前正在使用的数据文件路径及名称。最右侧是“最小化”、“最大化”和“关闭”按钮。 2. 工具栏 [<]按钮:为了兼顾功能多样性和充分利用可视面积,主窗口中的度盘被设计成可隐藏的。单击该按钮可以显示或隐藏度盘。当度盘被隐藏时,数据表窗口占据主窗口上半部分,便于观察数据;当度盘显示时,方便观察连续的弯头方向变化。 连续工具面开关:这是一个复选按钮。当仪器未连接时,它是灰色的禁用状态;而仪器已连接时,是正常的可操作状态。当其处于选中状态(复选框内显示“√”)时,其右侧的自动测量间隔时间也将显示出来;否则间隔时间是隐藏的。在测量过程中修改间隔时间会立即生效,但不保存(退出软件后即丢失)。如果要永久改变测量间隔,请在数据表右键菜单中的“选项”中完成。 测量:每单击一次此按钮,软件从系统中获取一组测量数据。数据获取成功后,会弹出“新测点”对话框,用于输入测量间距及备注。如果操作者在此对话框中选择了“确认”,软件将在数据库中保存此测点,并同时完成所有的相关数据处理和计算。当仪器未连接时,此按钮是禁用的。 测量间距:从这里可以临时修改测量段长。修改的值会在下次测量中生效,但不保存。如果要永久改变测量间距,请在数据表右键菜单中的“选项”中完成。 弯头方向:以数值方式显示弯头方向角度。当度盘隐藏时,可以通过它读取弯头方向。 仪器连接状态:位于工具栏最右侧的图标用于显示仪器的连接状态。当仪器成功连接时,它显示绿色的“√”;否则显示红色的“×”。 3. 度盘 度盘提供了组合式的角度显示功能:它可以同时显示倾角、方位和最近五次的弯头方向,以及期望的倾角、方位和弯头方向。度盘中心显示的是最新的弯头方向数值,数据上方的文字表示弯头方向的性质:“重”表示由重力高边表示的弯头方向;“磁”表示由磁性高边表示的弯头方向。 4. 数据表 数据表用于集中显示各种数据,它还提供了一组鼠标右键菜单,通该菜单可以执行软件提供的各种功能。操作者可以通过“查看”菜单中的四个选项使数据表显示“原始数据”、“实钻轨迹数据”、“设计轨迹数据”、以及“顶板和底板数据”。 5. 轨迹图 轨迹图以直观的曲线图方式向操作者展示钻孔的轨迹。它可以显示两种投影视图:左右视图(水平投影)和上下视图(设计方位面上的垂直投影)。轨迹图支持任意多个分支。其中主孔用黑色表示,分支孔用除黑色之外的各种不同的颜色表示,并在分支末尾标记分支名称。主孔的测点以实心点标记;分支孔的测点以45°“×”标记。 通过轨迹图左侧的控制栏,可以设定它的显示方式。左上方的缩方工具可以缩放图形。每次以鼠标单击“+”按钮,图形放大一档;单击“-”按钮图形缩小一档。“”按钮用于

五大工具培训考试(有答案)

五大工具培训考试题 部门: 姓名: 工卡号: 得分: 选择题(每题2分,共100分) 1设计FMEA应在下列阶段实施( b ) a)设计确认完成后; b) 设计确认完成前; c) 任何时候 2设计FMEA中,潜在失效模式是指( b ) a)顾客所见到的现象; b) 系统/子系统/零部件未能达到设计意图 3设计FMEA中,潜在失效后果是指( a ) a)失效模式对系统功能的影响,如同顾客所见到的现象; b) 系统/子系统/零部件未能达到设计意 图 4严重度是指( b ) a)失效模式的严重程度; b) 失效后果的严重程度 5严重度的评估分为( c ) a)0-9级; b) 0-10级; c) 1-10级 6严重度的评价准则是:( a ) a)后果越严重,分数越高; b) 后果越严重,分数越低 7设计FMEA中,潜在失效起因/机理是指( a ) a)设计中薄弱部分的迹象; b) 过程中引起失效的操作方法; c) 以上均是;d) 以上均不是 8设计FMEA中,频度数与下列因素有关( a ) a)设计寿命的可能失效率; b) 过程实施中预计发生的失效率; c) 以上均是;d) 以上均不是 9要降低设计FMEA中的频度数,可以通过下列方法实现( b) a)改进过程,减少Cpk; b) 通过设计更改来消除或控制一个或更多的失效起因/机理; c) 以上均 是;d) 以上均不是 10探测度的评价准则是:( b ) a)越易发现,分数越高; b) 越易发现,分数越低 11设计FMEA中的风险顺序数排除次序后,应先对下列情况采取纠正措施( b ) a)RPN较低; b) 严重度(S)较高;c) 以上均是 12过程FMEA中,“顾客”是( d ) a)最终使用者; b) 后续的或下游制造工序; c) 服务工作 d) 以上均是 13过程FMEA中,潜在失效模式是指( c ) a)顾客所见到的现象; b) 系统/子系统/零部件未能达到设计意图 c) 过程可能发生的不满足过程 要求和/或设计意图的形式 14过程FMEA中,潜在失效起因/机理是指( b ) a)设计中薄弱部分的迹象; b) 过程中引起失效的操作方法; c) 以上均是;d) 以上均不是 15要降低过程设计FMEA中的频度数,可以通过下列方法实现( a ) a)改进过程,包括工装夹具; b) 通过设计更改来消除或控制一个或更多的失效起因/机理; c) 以 上均是;d) 以上均不是 16要减少严重度数,可以通过下列方法实现( a ) a)修改设计和过程; b) 提高探测能力; c) 以上均是;d) 以上均不是

随钻测量

第六部分 随钻测量技术 随钻测量与地质导向工具 是一项钻井技术的“地下革命”

盐丘 定向钻井技术在勘探、开发中的功用 海上或陆地丛式井 工程救险井 因事故复杂进行侧钻 多目标勘探与开发 控制断层钻探 水平井进行开发 地面条件限制 大位移定向井侧钻分支井

6.1 随钻测量信息系统概述

随钻测量系统 MWD EM ˙MWD FM ˙MWD 实时动态数据测量储存系统井下动态信息测储设备 近钻头测量系统LWD 空间姿态测量系统 钻头前方探测系统 SWD 地面监测录井系统综合录井仪八参数仪地面模拟器 地面与井下数据储存、分析与显示系统 地面或远方决策与总控系统 微电脑一 微电脑二微电脑三 (上行测量信息通道) 6.1.1 随钻信息测量-控制-通讯流程图 地面控制设备 环空/钻柱 井下控制机构 井下执行机构 钻头/工具

6.1.2 随钻测量系统发展 ?MWD ——measure while drilling ?EM.MWD ——eleetronic measure MWD ?FE.MWD ——formtion Evaluation MWD ?DWD ——Diagnostic-While-Drilling ?LWD——logging while drilling ?SWD——seismic while drilling ?GST ——Geosteering Tool

6.1.3 随钻测量参数 ?井斜、方位、工具面、井下钻压、井下扭矩、马达转速?井下振动、伽马射线、地层电阻率、密度 ?方位中子密度、中子孔隙度、环室温度 ?探测各种异常地层压力、预测钻头磨损状况 ?探测井下异常情况及故障分析 ?通过井下存储可实现测井的全井图像分析

随钻测井技术

随钻测井技术发展水平 引言 据统计,近十年来,世界上有关随钻测井(LWD)技术和应用的文献呈现出迅速增多的趋势。这反映了西方国家开始越来越多地重视LWD/MWD。这是两个方面的原因产生的结果。一方面石油工业界强烈需要勘探和开发业降低成本,减少风险,增加投资回报率。另一方面,MWD/LWD有许多迎合石油工业需要的优势,如随钻测井时,钻机不必停钻就能获得大量地层评价信息,节省了宝贵的钻井时间,从而降低了钻井成本。MWD提供的实时信息可即时使用,如可用于预测钻头前方地层的超常压力、预测复杂危险的构造,给钻井工程师警报提示,迅速采取措施,减少事故发生率。近几年里,大斜度井和水平井迅速发展,海上石油的开发受到重视。在这样的井中测井,常规电缆测井难以进行,挠性管输送测井和钻杆传送测井成本十分高,现场操作困难。LWD是在这类井中获取地层评价测井资料的最佳方法,此外,LWD信息还能指导钻头钻进的方向,引导钻井井迹进入最佳的目标地层。 随钻测井(LWD)技术是在钻井的同时用安装在钻铤上的测井仪器测量地层电、声、核等物理性质,并将测量结果实时地传送到地面或部分存储在井下存储器中的一种技术。该技术要求测井仪器应能够安装在钻铤内较小的空间里,并能够承受高温高压和钻井震动;安装仪器的专用钻铤应具有同实际钻井所用的钻铤同样的强度;还应具有用于深井的足够功率和使用时间的电源。 LWD是随钻测量技术的重要组成部分。MWD除了提供LWD信息外,还提供井下方位信息(井斜、方位、仪器面方向)和钻井动态和钻头机械的监测信息。MWD探头组合了LWD探头、方位探头、电子/遥测探头,一般放在钻头后50-100英尺的范围内,一般来说,MWD探头越靠近钻头越好。LWD探头提供地层评价信息,用于识别层面、地层对比、评价地层岩石和流体性质,确实取心和下的点。方位数据用于精确引导井迹向最理想的储层目标。钻井效率和安全性通过连续监测钻井而达到最佳。 目前的随钻测井技术已达到比较成熟的阶段,能进行电、声、核随钻测量的探头系列十分丰富,各种型号的、适用于各种环境的随钻电阻率、密度、中子测井仪器进入MWD 市场。哈里伯顿的PathFinder随钻测井系统包括自然伽马、电磁波电阻率、密度、中子孔隙度、井径和声波等。斯仑贝谢公司的VISION475测井系统包括声波(SI)、电阻率(RAB)、阵列电磁波电阻率(ARC5)及密度中子(ADN)等。Sperry Sun公司的三组合测井系统包括SLIM PHASE4电阻率仪、SLIM稳定岩性密度仪及补偿热中子仪,还测量伽马射线。在地层评价的许多方面LWD已经可以取代常规电缆测井。世界各地的MWD作业实践已经表明,随钻测井对于经济有效的测井评价,相对于常规电缆地层评价有明显优势。 发展MWD/LWD技术,应用MWD/LWD成果已是西方钻井/测井相关公司的热点研究领域。必须承认我国自行研究和开发随钻测井技术是一片空白。本报告将深入地调查国外随钻测井技术的发展历程,技术水平现状,应用情况,预测发展趋势,分析LWD市场,分析LWD风险,供管理决策和研究人员参考。

随钻电阻率测量的方案分析与实现

随钻电阻率测量的方法的研究与试验 一、课题的背景 本课题来源于胜利石油管理局,胜利石油管理局与我校钻井测控研究中心已合作多年,涉及石油生产的测井、钻井等多个领域,本课题就是在双方进一步合作的基础上,为了满足胜利石油管理局定向井开发的需要而建立的研究课题。 随钻测量(MWD—Measurement While Drilling),是一项在钻井过程中,实时对井底的各种参数进行测量的技术,MWD的最大优点在于它使得司钻和地质工作者实时的看到井下正在发生的情况,可以极大的改善决策过程。最早的随钻测量研究工作始于本世纪30年代,随着钻井技术的发展,1930年出现了最早的井场人工检测法。我国1970曾开始研制MWD系统,但由于种种原因而中断,1981年继续开展这项研究。目前有线随钻测量系统已经通过技术鉴定,井下存储MWD系统正在现场实验,该系统可以测量的参数只有方向、自然伽马和温度,已经完成电磁波传输信道可行性研究。 随钻测量技术极大的推动了钻井技术的发展,为地层评价提供了新的手段,由于可以直接观测井下工程参数,这就为钻井的进一步科学化提供了有利的条件,及时获得地层资料对于准确评价地层和进行地层对比以及油藏描述也具有重要的意义。目前随钻测量技术的研究和应用正向纵深发展。 MWD系统测量的一个十分重要的方面就是电阻率地层评价测井和地质追踪(所谓地质追踪就是用随钻地层评价数据对水平井或大角度斜井进行实时的、交互式的顺层追踪,把非垂直井眼引导到最优化的地质目的层)。1MHz和2MHz 传播工具是目前尖端的MWD电阻率测井仪器,目前Sperry-Sun Drilling Service 服务公司的多空间1~2MHz“电磁波电阻率相位测井”是工业上唯一商业化的、真正的多探测深度的电阻率测井工具。 石油需求量的不断增加和海洋钻井的发展导致了定向井技术的广泛应用,降低钻井成本的持续需求促使提高效益的新工具和新技术的产生,随钻测量技术因此备受关注,在短短的20年里,飞速发展,取得了巨大的进步。目前我国国内对于随钻电阻率测量和导向钻井方面与国外的先进技术相比,还存在着较大的差距。而我国的大型石油生产基地(如大庆油田和胜利油田)以先后将科技引入生产,定向井和大位移井的数量与日俱增,对随钻电阻率测量和导向钻井技术的发展有着迫切的需求,MWD系统具有十分广阔的应用前景。 本课题将在随钻电阻率测量的方法、理论及试验方案上作一些探讨。在随钻测量研究之前常规电阻率测量已有较大的发展,其中有许多电阻率测量方法。最早使用的电阻率测井方法叫作普通电阻率测井,经改进后,发展成为目前广泛使用的聚焦式电阻率测井(或称侧向测井),它包括三侧向、七侧向、双侧向、邻近侧向、球形聚焦等测量方法,一般用于探测深度较深的场合。对于测量深度浅的情况,通常采用微电阻率测井,其电极尺寸小,电极间的距离较近,探测深度浅,主要用于测量井眼泥浆或冲洗带的电阻率。这些都属于直流电测井的范畴。直流电测井要求井内必须充满导电的泥浆或水等井筒液体,这样才能使得测量电流进入地层,达到测量地层的目的。但是对于有些情况,为了准确的了解地层的原始含油饱和度或保持地层的原始渗透性,往往采用油基泥浆或进行空气钻井,

常用长度尺寸测量工具介绍

测量长度尺寸的常用量具

以下是测量长度尺寸的常用量具: 一、游标量具的种类 1、游标卡尺结构

2、游标卡尺的刻线原理 如图所示,主尺每小格1mm,当两爪合并时,游标上的50格刚好等于主尺上的49mm, 则游标每格间距=49mm÷50=0.98mm 主尺每格间距与游标每格间距相差=1-0.98=0.02(mm) 0.02mm即为此种游标卡尺的最小读数值 3、卡尺的使用方法 1)使用前先把量爪和被测零件表面擦净。 2)检查各部件的相互作用,拉动尺框沿尺身移动,检查其移动是否灵活,有 无阻滞或卡死现象,紧固螺钉是能否起作用。 3)校对零位,使卡尺两量爪紧密贴合,检查主尺零线与游标尺零线应对齐, 数显卡尺是否归零,带表卡尺指针是否处于“0”位置。 4)用三用卡尺测量深度时,卡尺的深度尺应垂直放好,不要前后左右倾斜, 卡尺端面应与被测零件的顶面贴合,测深尺应与被测底面接触。 5)读数时,视线应与刻线相垂直。 6)不能用卡尺测量运动着的工件。 7)卡尺不要放在强磁场附近。 8)卡尺使用完后,应擦净放在量具盒内。 4、游标卡尺的读数 1)以游标零刻线位置为准,在主尺上读取整毫米数. 2)看游标上哪条刻线与主尺上的某一刻线(不用管是第几条刻线)对齐,由游

标上读出毫米以下的小数. 3)总的读数为毫米整数加上毫米小数. 用游标卡尺测量两孔的中心距有两种方法: 一种是先用游标卡尺分别量出两孔的内径D1和D2,再量出两孔内表面之间的最 大距离A,如图2-13所示,则两孔的中心距: 另一种测量方法,也是先分别量出两孔的内径D1和D2,然后用刀口形量爪量出两孔内表面之间的最小距离B,则两孔的中心距: 二、测微螺旋量具 1、定义:应用螺旋测微原理制成的量具,称为螺旋测微量具。 它们的测量精度比游标卡尺高,并且测量比较灵活,因此,当加工精度要求较高时多被应用。 常用的螺旋读数量具有百分尺和千分尺。百分尺的读数值为0.01mm 千分尺的读数值为0.001mm,工厂习惯上把百分尺和千分尺统称为百分尺 或分厘卡,目前车间里大量用的是读数值为0.01mm的百分尺。百分尺的种类很

测量工具的使用培训

测量工具的使用培训 一、游标式量具 2、卡尺(普通型和带表型) 卡尺是一种常用的量具,具有结构简单、使用方便、精度中等和测量的尺寸范围大等特点,可以用它来测量零件的外径、内径、长度、宽度、厚度、深度和孔距等,应用范围很广。 零对零后,主尺示值49mm , 游标共50格。每格49/50=0.98mm 读数步骤: a)先读零刻线左边主尺上的毫米整数; b)再找游标尺和主尺刻度重合线,数左边的游标格数,用格数乘卡尺的分度值,即为游标尺刻度值; c)将毫米的整数与小数部分相加,即得被测尺寸读数。 小技巧: a)比对法测量(受条件限制,如受测量位置限制,其他精密量具用不上,必须用游标卡尺测量较精密 的零件尺寸时,又该怎么办呢?)。 b)多点测量(防椭圆、验证)。 游标卡尺的使用: 量爪贴合无间隙,主尺游标两对零。 尺框活动能自如,不松不紧不摇晃。 测力松紧细调整,不当卡规用力卡。 量轴防歪斜,量孔防偏歪, 测量内尺寸,爪厚勿忘加。 面对光亮处,读数垂直看。 在游标卡尺上读数时,应把卡尺水平的拿着,朝着亮光的方向,使人的视线尽可能和卡尺的刻线表面垂直,以免由于视线的歪斜造成读数误差。 2、高度尺(普通型和数显型) 用于测量零件的高度和精密划线。普通型精度0.02mm /数显型(带公英制转换)精度0.01mm。 测量粗糙表面和划线用普通型,测量机加零件和模具用数显型。 高度尺的使用: a)使用前,保证高度尺的清洁和上下滑动顺畅; b)确认测量前端量爪无磨损或破损; c)放在平台上,移动游尺接触平台,检查是否对零,或用块规校对高度尺准确性; d)用划线针测定物品高度时,用力要适当,避免用力过大损伤量爪,用力过小未紧密接触测定面产 生误差; e)目视读取读数时,为避免产生视觉误差,视线要与读数面垂直平齐。 3、深度尺(普通型) 用于测量零件的深度尺寸或台阶高低和槽的深度,它的读数方法和游标卡尺完全一样。 测量内孔深度时应把基座的端面紧靠在被测孔的端面上,使尺身与被测孔的中心线平行,伸入尺身,则尺身端面至基座端面之间的距离,就是被测零件的深度尺寸。 4、万能角度(普通型) a)用来测量零件内外角度(0~320度); b)主尺尺座上的刻度线每格1o;

常用的测量工具有哪些

https://www.360docs.net/doc/7912928666.html, 常用的测量工具有哪些 测量工具:是具有固定形态,可直接复现或提供给定量的一个或多个已知量值的计量器具。量具可分为:(1)单值量具(2)多值量具(3)成套量具。如:直尺、线纹尺、砝码、量块等。 常用测量工具介绍 1 钢直尺、内外卡钳及塞尺 钢直尺是基本的长度量具,它的长度有 150,300,500 和1000mm 内外卡钳是基本的比较量具,外卡钳是用来测量外径和平面的,内卡钳是 用来测量内径和凹槽的。测量零件直径或孔的尺寸,可以利用钢直尺和内外卡 钳配合起来进行。 塞尺测量时,根据结合面间隙的大小,用一片或数片重迭在一起塞进间隙内。例如用0.03mm的一片能插入间隙,而0.04mm的一片不能插入间隙,这说 明间隙在0.03~0.04mm之间,所以塞尺也是一种界限量规。 2 游标卡尺 (1)握尺方法:用手握住主尺,四个手指抓紧,大姆指按在游标尺的右下侧半圆轮上,并用大姆指轻轻移动游标使活动量爪能卡紧被测物体,略旋紧固定螺钉,再进行读数。 (2)游标卡尺--读数规则及读数公式 从游标尺的零刻度线对准的主尺位置,读出主尺毫米刻度值(取整毫米为 整数X) 找出游标尺的第几(n)刻线和主尺上某一刻线对齐,则游标读数为:n×精 度(精度由游标尺的分度决定) 精密量仪测量工具传感器游标卡尺

https://www.360docs.net/doc/7912928666.html, 总测量长度为:L=X+n×精度 3 螺旋测微量具 应用螺旋测微原理制成的量具,称为螺旋测微量具。它们的测量精度比游 标卡尺高,并且测量比较灵活,常用的螺旋读数量具有百分尺和千分尺。百分 尺的读数值为0.01mm,千分尺的读数值为0.001mm。习惯上把百分尺和千分尺 统称为百分尺或分厘卡。 4 百分表 百分表和千分表,都是用来校正零件或夹具的安装位置,检验零件的形状 精度或相互位置精度的。它们的结构原理没有什么大的不同,就是千分表的读 数精度比较高,即千分表的读数值为0.001mm,而百分表的读数值为0.01mm。 本节主要是介绍百分表。 5 水平仪 水平仪是测量角度变化的一种常用量具,主要用于测量机件相互位置的水 平位置和设备安装时的平面度、直线度和垂直度,也可测量零件的微小倾角。 常用的水平仪有条式水平仪、框式水平仪和数字式光学合象水平仪等。 6 牙规 牙规即内外螺纹大小的标准测量工具,分为螺纹塞规(栓规)及螺纹环规。 (1)螺纹塞规 1、检测前先戴手套 2、以大姆指及食指紧握住牙规握柄 3、另一手持待牙孔的产品? 4、待测的牙孔向上 精密量仪测量工具传感器游标卡尺

LWD 无线随钻测量系统及现场应用

LWD 无线随钻测量系统及现场应用 一、概述 LWD是九十年代以来,在钻井专业方面发展起来的一种代表钻井新技术的新型测量、测井仪器。该仪器的主要特点是,在钻进的同时,能够及时获得有关井眼轨迹的参数和地层的特性,因而具有常规MWD和有线测井仪器难以具备的优点。设计多上采用模块化的设计原理,允许将各个传感器的位置,按照作业需要或用户的要求进行改变。信号传输系统主要由正脉冲或负脉冲脉冲信号发生器组成,在钻井作业的同时,井下传感器测得的地质参数数据,由脉冲发生器以正脉冲或负脉冲信号的形式通过泥浆介质,实时的传递至地面计算机处理系统。地面计算机处理系统主要包括脉冲信号接受器和计算机处理系统,传输至地面的脉冲信号,由该系统接受并处理成数字信号,现场人员可根据需要和用户要求,绘制出各种类型的测井曲线,对地质参数的变化情况进行随时的监控,并作出相应的判断。同时,井下记录模块,也将这些地质参数储存下来,供仪器起出地面后进行调用。 目前,LWD仪器和测量技术正广泛的应用于定向探井、水平井和大位移定向井的钻井施工过程中,为现场施工提供诸如随钻地质测井、地质导向、风险回避、提高钻井效率等多方面的应用。 随钻地质测井 LWD可以在钻进作业进行的同时,实时的测取地质参数,并按照用户的需要,绘制出各种类型的测井曲线,提供给地质人员作为进行地质分析的依据。由于是实时测量,地层暴露时间短,在钻时较快的情况下,暴露时间可以忽略不计。因此,测井曲线是在地层液体有轻微入侵甚至没有入侵的环境下获得的,与电缆测井相比,更接近地层的真实情况。可以使我们获得刚刚打开储层的油藏物性的最早期资料。同时,由于是在钻进速度下进行测量,因而与电缆测井相比,具有更高的精度。在必要的情况下,还可以将LWD测井曲线与电缆测井曲线进行对比,获得地层被流体侵入的实际资料,为进行地层液体的特性分析提供帮助。(见图-1) 地质导向 LWD提供的实时地质参数数据,可以帮助现场人员随时监控地质参数的变化情况,对将要出现的地层变化作出准确的判断。因此,配合定向参数测量传感器,在水平井钻井中,可以采用LWD进行地质导向,准确的控制井眼轨迹穿行于储层中有利于产油的最佳位置,有效的回避油/气和油/水界面。利用这一技术可以大幅度的提高单井产量和储层采收率。

常用测量工具测评试题卷

常用测量工具测评试题 卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

常用测量工具测评试题卷 姓名: ________ 测试成绩:________ 一、填空题 1. 列举几种常用的四种测量工具:________ ________ ________ ________ 2.车间常用的卡尺的精度是________ mm。 3. 用卡尺测量产品时,用力不能________,否则会使测量不准确,并容易损坏卡尺。卡尺测量不宜在工件上________,防止量爪面磨损。 4. 百分表主要用于绝对或________测量工件的长度尺寸、几何形状和位置偏差,也可用于检验机床几何精度或调整加工工件装夹位置偏差等。 5. 百分表分度值:________、千分表的分度值是________。 6. 卡尺的使用方法有________、________、深度测量和台阶测量四种。 7.游标卡尺在使用前必须先进行________,否则数据不能被采纳。 二、选择题 1、测量直径为Φ25±0.015的轴颈,应选用的量具是() A、游标卡尺 B、杠杆表分表 C、内径千分尺 D、外径千分尺 2、测量轴直线度偏差的常用量具是() A、外径千分尺 B、千分表 C、钢板尺 D、游标卡尺 3、游标卡尺属于()测量器具。 A、游标类 B、螺旋测微 C、机械量仪 D、光学量仪 4、用量具测量读数时,目光应()量具的刻度。 A、垂直于 B、倾斜于 C、平行于 D、任意 5.测量外尺寸时,应先使游标卡尺量爪间距略大于被测工件的尺寸,再使工件与固定量爪贴合,然后使活动量爪与被测工件表面接触,稍微游动一下活动量爪,找出()尺寸。 A.平均 B.合适 C.最小 D.最大 6.测量内孔尺寸时,应使卡尺量爪间距略小于被测工件尺寸,将量爪沿着孔的中心线放入,使固定量爪与孔边接触,然后使活动量爪在被测工件孔内表面稍微游动一下,找出( )尺寸 A.最大 B.合适 C.最小 D.平均 7.读数时,应把游标卡尺水平地拿者朝亮光的方向,使视线尽可能地和表盘垂直,以免由于视线歪斜而引起( )误差。 A.测量 B.视觉 C.读数 D.估读 8.测量前,对好“0”位,正确的零位是:当千分尺两测量面接触时,微分筒棱边接触固定套管零刻线,固定套管上的( )对准微分筒上零刻线。 A.纵刻线 B.零位 C.横刻线 D.刻线 9.外径千分尺的测量力为5-10N由测力装置决定,使用时最多转动( )圈即可。 A.1 B.2 C.3 D.4 10.百分表应怎样使用才能测试数据准确()

机械加工常用测量器具和使用知识

机械加工常用测量器具和使用知识

机械加工常用测量器具和使用知识 根据“测量器具的选择原则”,选用适当的测量器具进行测量。测量器具的计量工作应遵循测量器具的保养、检修、鉴定计划,确保所用量检具精度、灵敏度、准确度。测量器具的正确使用方法,请参照使用说明书或相关参考资料,轻拿轻放、保持清洁、防锈、防振,合理存放保管。 一、平板 1、钢制平板一般用于冷作放样或样板修整;铸铁平板除具有钢制平板用途外,经压砂后可作研磨工具;大理石平板不须涂防锈油脂,且受温度影响较小,但湿度高时易变形。 2、0、1、2级平板一般作检验用,3级平板一般作划线用。 3、平板安放平稳,一般用三个支承点调整水平面。大平板增加的支承点须垫平垫稳,但不可破坏水平,且受力须均匀,以减少自重受形。 4、平板应避免因局部使用过频繁而磨损过多,使用中避免热源的影响和酸碱的腐蚀。 5、平板不宜承受冲击、重压、或长时间堆放物品。 二、样板直尺和平尺 1、样板直尺使用时不得碰撞,应确保棱边的完整性,手握持绝热板部分,避免温度影响响精度和产生锈蚀。 2、测量前,应检查尺的测量面不得有划痕、碰伤、锈蚀等缺陷。表面应清洁光亮。 3、平尺工作面不应有蚀蚀、斑痕、鳞片、凹坑、裂缝以及其他缺陷。平尺应无磁性。

4、一般应按不同要求选用不同精度的平尺。 三、直角尺 1、00级和0级直度角尺一般用于检验精密量具;1级用于检验精密工件;2级用于检验一般工件。 2、使用前,应先检查各工作面和边缘是否被碰伤。角尺的长边的左、右面和短边的上、下面都是工件面(即内外直角)。将直尺工作面和被检工作面擦净。 3、使用时,将直度角尺靠放在被测工件的工作面上,用光隙法鉴别工件的角度是否正确。注意轻拿、轻靠、轻放,防止变曲变形。 4、为求精确测量结果,可将直度角尺翻转180度再测量一次,取二次读数算术平均值为其测量结果,可消除角尺本身的偏差。 四、万能角度尺 1、使用前,先将万能角度尺擦拭干净,再检查各部件的相互作用是否移动平稳可靠、止动后的读数是否不动,然后对零位。 2、测量时,放松制动器上的螺帽,移动主尺座作粗调整,再转动游标背面的手把作精细调整,直到使角度尺的两测量面与被测工件的工作面密切接触为止。然后拧紧制动器上的螺帽加以固定,即可进行读数。 3、测量完毕后,应用汽油把万能角度尺洗净,用干净纱布仔细擦干,涂以防锈油,然后装入匣内。 五、游标卡尺 1、使用前,应先把量爪和被测工件表面的灰尘、油污等擦干净,以免碰伤游标卡尺量爪面和影响测量精度,同时检查各部位的相互作用。如尺框和微动装置移动是否灵活,紧固螺钉是否能起作用等。

测量工具使用培训素材

测量工具使用培训素材 1. 游标卡尺(数字显示、表盘显示、刻线显示) A .使用范围及规格: 不同规格的卡尺,具有不同的量程范围,常用的量程范围为0?150mm 0~ 200mm 0?500mm 0?600mn等,我们根据工件的大小,选择相应的卡尺。卡尺用于测量长度(宽度、高度)、深度、台阶、内径、外径等。 B. 精确度: a. 数字显示游标卡尺精确度一般为0.01mm简称为C(丝、条、道…),本公司统一为丝。 1mm=100 丝=1000卩 b. 表盘显示游标卡尺精确度一般为0.02mm。 c. 刻线尺因读数困难,现已很少使用,一般精确度为0.01 或0.02 。 C. 使用方法: a. 取出卡尺,明确精确度,查看是否在有效期限内,是否有合格标签, 上述项目明确后,方可使用。 b. 用外量爪测量长度(宽、高)或圆柱外径,用内量爪测量圆孔内径,槽的宽度,用深度尺测 量槽、盲孔深度,用阶梯尺测量阶梯、台阶尺寸。 c. 测量时用用软布、软纸轻轻擦去测量面污物,并归零,用手推、拉动游标尺,滑动轻 快,无阻滞感,无误时方可使用。 d. 用上述方法测量,一般测量3 次,取平均值。 D. 读数方法: 数字显示的卡尺直接读取数据,表盘显示为主尺值加表盘数据,每小格表示 0.02 。 E. 注意事项: a. 使用前检查准用证(标签),使用有效期。 b. 调零,是否在零位,测量面清洁,光滑无异物、锈蚀。 c. 滑道顺畅,无异物。 d. 使用后清洁、润滑、防锈(加油),归位保管。 e. 不可用于其它用途(如画圆等)。 f. 卡尺与包装盒一一对应,携带过程中必须放在盒内,避免摔伤、碰伤。 2. 千分尺(数字显示、刻线显示) A .规格及使用范围:

相关文档
最新文档