大学物理作业(1-5)

大学物理作业(1-5)
大学物理作业(1-5)

1—4 一质点的运动学方程为2t x =,()2

1-=t y (S1)。试求: (1)质点的轨迹方程:(2)

在2=t s 时,质点的速度和加速度。

[解] (1) 由质点的运动方程 2t x = (1)

()2

1-=t y (2)

消去参数t ,可得质点的轨迹方程

2

1)y =

(2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t dt dx v x 2==

()12-==t dt

dy

v y 所以 ()221x y v v t t =+=+-v i j i j r r r r r

(3)

222==dt x

d a x 222==dt

y d a y

所以

22=+a i j r r r

(4) 把t =2s 代入式(3)、(4),可得该时刻质点的速度和加速度。

42=+v i j r r r

22=+a i j r r r

1—6 质点的运动学方程为()2

22t t =++r i j r r r (S1),试求:(1)质点的轨道方程;(2)t

=2s 时质点的速度和加速度。

[解] (1) 由质点的运动方程,可得

2

2,2x t y t ==+

消去参数t ,可得轨道方程

2124

y x =+

(2) 由速度、加速度定义式,有

d /d 22t t ==+v r i j r r r r

22

d /d 2t ==a r j r r r

将t=2s 代入上两式,得

24=+v i j r r r ,

2=a j r r 1—10 在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,g 为重力加速度,B 为与物体的质量、形状及媒质有关的常数。设t =0时物体的初速度为零。(1)试求物体

的速度随时间变化的关系式;(2)当加速度为零时的速度(称为收尾速度)值为多大?

[解] (1) 由dt dv a /=得

dt Bv

g dv

=-

两边积分,得

v

t dv

dt g Bv =-?

?

)1(Bt e B

g

v --=

(2) 当a=0时 有 a=g-Bv=0 由此得收尾速率 v=g/B

1—12 一艘正以速率0v 匀速行驶的舰艇,在发动机关闭之后匀减速行驶。其加速度的大小与速度的平方成正比,即2kv a -=, k 为正常数。试求舰艇在关闭发动机后行驶了x 距离时速度的大小。

[解] dx dv v dt dx dx dv dt dv a ===

dv a

v

dx =

对上式两边积分

??

?-==v v v

v x kv dv dv a

v

dx 0

化简得 0

ln 1v v

k x -=

所以 kx e v v -=0

1—17 火车在曲率半径R =400m 的圆弧轨道上行驶。已知火车的切向加速度

2.0a t =2s m ,求火车的瞬时速率为m 10时的法向加速度和加速度。

[解] 火车的法向加速度 22

2m 25.0400

10===R v a n

方向指向曲率中心

火车的总加速度 ()

22222

m 32.02.025.0=-+=+=t n a a a

设加速度a 与速度v 之间的夹角为θ,则

041282

.025

.0arctg arctg

0'=-==t n a a θ 1—18一质点沿半径为0.10m 的圆周运动,其角位置342t +=θ。(1)在t =2s 时,它的法向加速度和切向加速度各是多少?(2)切向加速度的大小恰是总加速度大小的一半时,θ值为

多少?(3)何时切向加速度与法向加速度大小相等?

[解] 质点的角速度 212d /d t t ==θω

质点的线速度 222.11210.0t t R v =?==ω 质点的法向加速度a n ,切向加速度a t 为

42224.1410.0)12(t t R a n =?==ω (1)

t dt dv a t 4.2/== (2) (1)把t=2s 代入(1)式和(2)式,得此时

)

m/s (8.424.2)m/s (103.224.142224=?=?=?=t n a a

(2)质点的总加速度 2/1622

)136(4.2+=+=t t a a a t n

由 a a t 2

1

=

得 1364.25.04.26+?=t t t

解得 3

3

t =

,t=0.66s 所以 )rad (15.3423=+=t θ

(3) 当t n a a =即 t t 4.24.144=时 有 3

1

6

t =

, t=0.55(s)

附加题目:湖中一小船,岸边的人用跨过高处的定滑轮的绳子拉船靠岸(如图所示)。当收绳速度为v 时,试问:(1)船的运动速度u 比v 大还是小?(2)若v =常量。船能否作匀速运动?如果不能,其加速度为何值?

[解] (1) 由图知 222h s L +=

两边对t 求导数,并注意到h 为常数,得

dt

ds s dt dL L

22= 又dt ds u dt dL v /,/-=-= 所以 Lv=su (1) 即 u/v=L/s>1

因此船的速率u 大于收绳速率v 。

(2) 将(1)式两边对t 求导,并考虑到v 是常量

dt

du

s

dt ds u dt dL v

+= 所以 sa v u =-22

即 32222//)(s v h s v u a =-=

2—3 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,

求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。

[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv

(1) 由牛顿第二定律 t v m ma f d d == 即 : t

v m kv d d ==- 所以

t m k

v v d d -= 对等式两边积分 ??-=t

v v t m k v v 0

d d 0

得 t m

k

v v -=0ln

因此 t m

k

e

v v -=0

(2) 由牛顿第二定律 x v mv t x x v m t v m

ma f d d d d d d d d ==== 即 x v

mv kv d d =-

所以 v x m

k

d d =-

对上式两边积分 ??=-00

d d v s

v x m k

得到 0v s m

k

-=-

即 k

mv s 0

=

2—3 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为

???

? ??

--=-m kt e k F mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方

向,开始沉降处为坐标原点

由牛顿第二定律 t v m

ma f F mg d d ==-- 即 t

v

m ma kv F mg d d ==--

整理得

m

t

kv F mg v d d =--

对上式两边积分

??

=

--t v

m

t kv F mg v

00

d d 得 m

kt

F mg kv F mg -=---ln

即 ???

? ??--=-m kt e k F mg v 1 2—5 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v , 有牛顿第二定律 t

v

m kv mg d d 2=- 整理得 m

t

kv mg v d d 2

=- 对上式两边积分

2

00d d v

t

v

t

m

mg kv =-?? 得 m

t

v

k mg v k mg =

+-ln

整理得 T kg

m t kg m t

kg

m t kg m t

v e

e

k mg e

e v 1

1112222+-=+-=

设极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。

此时 2

T kv mg =

即 k

mg

v T =

3—6 一质量为1m 与另一质量为2m 的质点间有万有引力作用。试求使两质点间的距离由1x 增加到d x x +=1时所需要作的功。

[解] 万有引力122

?m m G r

=-F r r r

两质点间的距离由x 增加到d x x +=1

时,万有引力所作的功为

111

1

121221111x d

x d x x m m A d G dr Gm m r x d x ++??=?=-=- ?+??

?

?F r r r

故外力所作的功:121111A A Gm m x x d ??

'=-=- ?+??

3—7 设两粒子之间的相互作用力为排斥力,其变化规律为3f k r =,k 为常数。若取无穷远处为零势能参考位置,试求两粒子相距为r 时的势能。

[解]由势能的定义知r 处的势能E p 为:

???

∞∞∞

==?=r r r

p dr r k fdr r d f E 3ρρ2

2

221r k

r

k r

=

-=∞

3—8 设地球的质量为M ,万有引力恒量为0G ,一质量为m 的宇宙飞船返回地球时,可认为它是在地球引力场中运动(此时飞船的发动机已关闭)。求它从距地心1R 下降到2R 处时所增加的动能。

[解] 由动能定理(或者根据机械能守恒定律),宇宙飞船动能的增量等于万有引力对飞船所作的功,即:

2

1

02

21

120

12

()[()]()R k R Mm

Mm Mm

E A G dr G G R R r Mm R R G R R ?==-=-----=?

4-5.如图所示,质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今

有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小;

(2) 子弹在穿透过程中所受的冲量.

解 (1) 由于穿透时间极短,可认为穿透过程在瞬间完成。此过程系统在水平方向满足动量守恒。

0mv MV mv =+

30()1010(50030)

3.13/1.5

m v v V m s M --?-=

== 对M 进行受力分析有

22

3.131.59.8 1.526.51.25

V T Mg M N l =+=?+?= (2) 子弹在穿透过程中所受的冲量:

301010(30500) 4.7I p mv mv Ns -=?=-=?-=-

上式中负号表示冲量方向与0v ?

方向相反。

4-8 如图所示,砂子从h =0.8m 处下落到以=0v 3s m 的速率沿水平向右运动的传输带上,若每秒钟落下100kg 的砂子,求传输带对砂子作用力的大小和方向。

[解] 如图所示,设t ?时间内落下的砂子的质量为m ?,则m ?的动量改变

水平方向:0x x F t p mv ?=?=?

0300x m

F v N t

?=

=? 竖直方向:

()0y y x F mg t p mv -??=?=-?=-?

0y y x F t p mv ?=?=-?=-?

396y F N ==-或者 400(10)y F N g ==-= 300396F i j =-r r r

497F N = 方法二:

()01m ?=?-p v v r r r

显然有 gh v 21=

()()20

212

021v v m mv mv p +?=?+?=

? 根据动量定理 t ?=?F p r r

所以

2

20212v gh t

m v v t m t p F +??=+??=??=

N 49738.08.921002=+???=

4—14 6月22日,地球处于远日点,到太阳的距离为111052.1?m ,轨道速度为

m 1093.24?。6个月后,地球处于近日点,到太阳的距离为111047.1?m 。求:(1)在近日

点地球的轨道速度; (2)在近日点和远日点时地球的角速度。

[解] 设在近日点附近地球的轨道速度为1v ,轨道半径为1r ,角速度为1ω;在远日点地球的轨道速度为2v ,轨道半径为2r ,角速度为2ω。

(1) 取地球为研究对象,其对太阳中心的角动量守恒。

2211v r m v r m 地地=

所以 s m 1003.31047.11093.21052.14

114111221?=????==r v r v (2) s rad 1006.21047.11003.3711

4

111-?=??==r v ω s rad 1093.110

53.11093.27

114222-?=??==r v ω 4—17 有两个质量都等于50kg 的滑冰运动员,沿着相距1.5m 的两条平行线相向运动,速率皆为10s m 。当两人相距为1.5m 时,恰好伸直手臂相互握住手。求:(1)两人握住手以后绕中心旋转的角速度; (2)若两人通过弯曲手臂而靠近到相距为1.0m 时,角速度变为多大? [解] 取两人组成的系统为研究对象,系统对两人距离中点的角动量守恒

(1) 设两人质量均为m ,到转轴的距离为1r ,握住手以后绕中心角速度为1ω,则有: 22111111r mv r mv r m r m ωω+=+

)rad/s (3.1375.0/10/11===r v ω

(2) 设两人相距1.0米时,角速度为2ω,此时系统对转轴的转动惯量为2J ,两人到转轴的

距离为2r ,则

222211112222r m r m r m r m ωωωω+=+

)rad/s (9.295.0/3.1375.0/22221212=?==r r ωω

4—21 如图所示,在水平光滑平面上有一轻弹簧,一端固定,另一端系一质量为m 的滑块。弹簧原长为0L ,倔强系数为k 。当t =0时,弹簧长度为0L 。滑块得一水平速度0v ,方向与弹簧轴线垂直。t 时刻弹簧长度为L 。求t 时刻滑块的速度v 的大小和方向(用θ角表示)。 [解] 因为弹簧和小球在光滑水平面上运动,所以若把弹簧和小球作为一个系统,则系统的机械能守恒,即

20220)(2

1

2121L L k mv mv -+= (1) 小球在水平面上所受弹簧拉力通过固定点,则小球对固定点角动量守恒,即

=?=v m r L ρ

ρρ恒量

θsin 00Lmv mv L =

(2)

由(1)式得 2020

)(L L m

k

v v --=代入(2)式得

202

00

0)(sin

arg L L m

k

v L v L --

5-5 有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相撞,设碰撞时间极短,已知小滑块在碰撞前后的速度分别为v 1和v 2,如图所示. 求碰撞后从细棒开始转动到停止转动的过程所需的时间 (已知棒绕O 点的转动惯量J=m 1l 2/3).

解:由角动量守恒可以得到 )(212v v l m J +=ω

碰后,由于摩擦产生的阻力矩为:

l

gm dr gr gdm r M rdF

M l

???====0121

μρμμ 由角动量定理,ωJ Mt =

得到,碰撞后从细棒开始转动到停止转动的过程所需的时间

g

m v v m t 1212)

(2μ+=

5—6 一砂轮直径为1m ,质量为50kg ,以900min r 的转速转动,一工件以200 N 的正压力作用于轮子的边缘上,使砂轮在11.8s 内停止转动。求砂轮与工件间的摩擦系数(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为

22

1

mR ,其中,m 和R 分别为砂轮的质量和半径)。 [解] 根据动量矩定理, 21Mt J J ωω=- NR M μ-=

21

2J mR =

0=ω 联立得: 5.08

.112002602900215020

=?????

==πωμNt

mR

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,

供参考,感谢您的配合和支持)

l

v 2

□m 1

m O

v 1 A

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2

t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 3 2 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+=

大物作业标准答案

大物作业答案

————————————————————————————————作者:————————————————————————————————日期: 2

本习题版权归物理与科学技术学院物理系所有,不得用于商业目的 《大学物理》作业 No.5 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题: 1. 在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小。若使单缝宽度a 变为原来的 23,同时使入射的单色光的波长λ 变为原来的3 / 4,则屏幕E 上单缝衍射条纹中央明纹的 宽度?x 将变为原来的 [ ] (A) 3 / 4倍 (B) 2 / 3倍 (C) 9 / 8倍 (D) 1 / 2倍 (E) 2倍 解:单缝衍射中央明纹两侧第一暗纹中心间距离为中央明纹线宽度: θtg 2f x =? 由第一暗纹中心条件: λθ=sin a 即 a λ θ= sin 当θ 小时,有 θθsin tg ≈ ∴ a f x λ 2≈? 已知题意:122 3 a a = , 4/312λλ= ,可得 ()()1112 2 2 2 12212x a f a f x ?=???? ??= =?λλ ∴ a 、λ 改变后的中央明纹宽度(?x )2变为原来宽度(?x )1的1/2 故选D 2. 波长 λ=500nm(1nm=10- 9m)的单色光垂直照射到宽度a =0.25 mm 的单缝上,单缝后面 放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d =12 mm ,则凸透镜的焦距f 为 [ ] (A) 2 m (B) 1 m (C) 0.5 m (D) 0.2 m (E) 0.1 m 解:由单缝衍射第一暗纹中心条件: λθ±=sin a 可得中央明纹线宽度a f x λ 2=? 而其余明纹线宽度a f x λ ='? 故中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离应是其余明纹线宽度 单缝 λa L E f O x y

大学物理 1章作业 answers

第一章质点运动学 一. 选择题 1.某质点作直线运动的运动方程为(SI),则该质点做 (A) 匀加速直线运动,加速度沿x轴正方向 (B) 匀加速直线运动,加速度沿x轴负方向 (C) 变加速直线运动,加速度沿x轴正方向 (D) 变加速直线运动,加速度沿x轴负方向 2.小球沿斜面向上运动,运动方程为(SI),则小球运动到最高点的时刻是 (A) (B) (C) (D) 3.质点沿x轴作变速运动,加速度,已知时质点位于坐标原点且速度为零,则其运动方程为 (A) (B) (C) (D) 4.运动质点某瞬时位于位矢的端点处,其速度大小为 (A) (B) (C)(D) 5.一质点沿直径为 d 的圆周运动一周,运动过程中,位移的最大值和所走路程的最大值分别为 (A), (B), (C),(D),

6.质点做半径为R的变速圆周运动,v表示任一时刻的速率,其加速度大小为 (A) (B) (C)(D) 7. 下列说法正确的是 (A) 质点作圆周运动时加速度指向圆心 (B) 匀速率圆周运动的加速度为恒量 (C) 只有切向加速度的运动一定是直线运动 (D) 只有法向加速度的运动一定是圆周运动 二.填空题 8. 描述质点运动状态和运动状态变化的物理量是_______________和__________,二者关系的数学表示式为_________________.(速度,加速度,) 9.已知质点运动方程为,则速度随时间t变化的函数关系为 ________________,时的加速度为____________.(,) 10.质点以加速度做直线运动,k为常数,设初速度为,则质点速度与时间的 关系是__________________________.() 11.质点做半径为R的圆周运动,运动方程为(SI),则t时刻质点法向加速度 a n=_______________,角加速度=______________.(,2 rad/s2 )

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理5章作业

第五章热力学基础 答案在最后 一.选择题 1.下列说法正确的是 (A) 热传递可以使系统内能发生变化,而做功不能 (B)做功与热传递都可以使系统内能发生变化 (C) 做功与热传递微观本质是一样的 (D) 做功与热传递均与具体过程无关 2. 一系统从外界吸收一定热量,则 (A) 系统的内能一定增加 (B) 系统的内能一定减少 (C) 系统的内能一定保持不变 (D) 系统的内能可能增加,也可能减少或保持不变 3. 用公式(式中为定体摩尔热容,视为常量,为气体摩尔数)计算理想气体内能增量时,此式 (A) 只适用于准静态的等体过程 (B) 只适用于一切等体过程 (C) 只适用于一切准静态过程 (D) 适用于一切始末态为平衡态的过程 4.一定量氧气经历等压膨胀过程,其对外做的功与从外界吸收的热量之比为 (A) (B) (C) (D) 5. 一定量理想气体从同一状态出发体积由V1膨胀至V2,经历的过程分别是:等压过程,

等温过程,绝热过程,其中吸热最多的过程是 (A) 等压过程 (B) 等温过程 (C) 绝热过程 (D) 几个过程吸热一样多 6. 两个卡诺热机共同使用同一低温热源,但高温热源的温度不同,在V p 图上,它们的循环曲线所包围的面积相等,则 (A) 两热机的效率一定相等 (B) 两热机从高温热源吸收的热量一定相等 (C) 两热机向低温热源放出的热量一定相等 (D) 两热机吸收的热量与放出的热量(绝对值)的差值一定相等 7. 在温度为427℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 (A) 28.6% (B) 93.7% (C) 57.1% (D) 46.9% 8. 由热力学第二定律可知 (1)对任何热力学过程,功可以完全变为热,而热不能完全变为功 (2)一切热机的效率不可能为100% (3)热不能从低温物体向高温物体传递 (4)气体能自由膨胀,但不能自动收缩 以上说法正确的是 (A) (1)(2) (B) (2)(3)(4) (C) (2)(4) (D) 全正确 二. 填空题

大学物理大作业

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在 空中的技术 迈纳斯效应—完全抗磁性 零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否 转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的 表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场, 使超导体内部的磁场为零。根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。 内部B=0,故 m 超导体与理想导体在抗磁性上是不同的。若在临界温度以上把超导样品放 入磁场中,这时样品处于正常态,样品中有磁场存在。当维持磁场不变而降低 温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产 生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。超导体内部的磁 场总为零,这一现象称为迈纳斯效应。 超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的, 由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。 下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。

零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。 超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。

大学物理作业(1-5)

1—4 一质点的运动学方程为2t x =,()2 1-=t y (S1)。试求: (1)质点的轨迹方程:(2) 在2=t s 时,质点的速度和加速度。 [解] (1) 由质点的运动方程 2t x = (1) ()2 1-=t y (2) 消去参数t ,可得质点的轨迹方程 21)y = (2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t dt dx v x 2== ()12-==t dt dy v y 所以 ()221x y v v t t =+=+-v i j i j (3) 222==dt x d a x 222==dt y d a y 所以 22=+a i j (4) 把t =2s 代入式(3)、(4),可得该时刻质点的速度和加速度。 42=+v i j 22=+a i j 1—6 质点的运动学方程为() 2 22t t =++r i j (S1),试求:(1)质点的轨道方程;(2)t =2s 时质点的速度和加速度。 [解] (1) 由质点的运动方程,可得 2 2,2x t y t ==+ 消去参数t ,可得轨道方程 2124 y x =+ (2) 由速度、加速度定义式,有 d /d 22t t ==+v r i j 22d /d 2t ==a r j 将t=2s 代入上两式,得 24=+v i j , 2=a j 1—10 在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,g 为重力加速度,B 为与物体的质量、形状及媒质有关的常数。设t =0时物体的初速度为零。(1)试求物体的速度随时间变化的关系式;(2)当加速度为零时的速度(称为收尾速度)值为多大? [解] (1) 由dt dv a /=得 dt Bv g dv =-

大学物理4章作业

第四章气体动理论 答案在最后 一. 选择题 1.一个容器内储有1mol氢气和1mol氧气,处于平衡态.若两种气体各自对器壁产生的压强为p1和p2,则两者关系是 (A) p1p2 (B) p1p2 (C) p1p2 (D) 不确定 2. 关于温度的意义,下列说法中错误的是 (A) 气体的温度是分子平均平动动能的量度 (B) 气体的温度是大量气体分子热运动的集体表现,具统计意义 (C) 温度反映了物质内部分子运动的剧烈程度 (D) 从微观上看,气体的温度表示每个气体分子的冷热程度 3. 温度、压强相同的氦气和氧气,它们分子的平均动能和平均平动动能有如下关系 (A) 平均动能和平均平动动能都相等 (B) 平均动能相等,而平均平动动能不相等 (C) 平均平动动能相等,而平均动能不相等 (D) 平均动能和平均平动动能都不相等 4. 容器内装有N1个单原子理想气体分子和N2个刚性双原子理想气体分子,当该系统处在温度为T的平衡态时,其内能为 (A) (B) (C)

(D) 二.填空题 5. 1mol氦气,分子热运动的总动能为,则氦气的温度T=___________. 6. 1mol氦气和1mol氧气,温度升高1K,则两种气体内能的增加值分别为________________和____________. 7. 的物理意义是_________________________________________. 8. 由能量按自由度均分定理,设气体分子为刚性分子,分子自由度为i,则温度为T时,一个分子的平均动能为______________;一摩尔氧气分子的转动动能总和为____________. 三.计算题 300,求:(1)气体的分子数密 9. 一容器内储有氢气,其压强为Pa ,温度为K 01 10 .15 度;(2)气体的质量密度。 第四章气体动理论参考答案 一. 选择题 1. (C) 2. (D) 3. (C) 4. (A) 二.填空题 5.( 400K ) 6.( 12.5J ;20.8J ) 7.( 温度为T时,自由度为5的气体分子的平均动能 ) 8. ( ,RT )

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

西工大大学物理 大作业参考答案-真空中的静电场2009

第九章 真空中的静电场 一、选择题 ⒈ C ; ⒉B ;⒊ C ; ⒋ B ; ⒌ B ; 6.C ; 7.E ; 8.A,D ; 9.B ;10. B,D 二、填空题 ⒈ 2 3 08qb R πε,缺口。 ⒉ 0 q ε,< ; ⒊ 半径为R 的均匀带电球面(或带电导体球); ⒋ 12 21 E E h h ε--; 2.21?10-12C/m 3; ⒌ 100N/C ;-8.85×10-9C/m 2 ; ⒍ -135V ; 45V ; ⒎ 006q Q R πε;0;006q Q R πε- ;006q Q R πε ; ⒏ 1 2 22 04() q x R πε+; 32 22 04() qx x R πε+ ; 2 R ;432.5 V/m ; 9.有源场;无旋场 (注意不能答作“保守场”,保守场是针对保守力做功讲的)。 三、 问答题 1. 答: 电场强度0E F q =r r 是从力的角度对电场分布进行的描述,它给出了一个矢量场分布的图像;而电势V =W /q 是从能量和功的角度对电场分布进行的描述,它给出了一个标量场分布的图像。 空间任意一点的电场强度和该点的电势之间并没有一对一的关系。二者的关系是: "0"p d grad ,d d P V E V V E l n =-=-=??r r r 。即空间任一点的场强和该点附近电势的空间变化率相联 系;空间任一点的电势和该点到电势零点的整个空间的场强分布相联系。 由于电场强度是矢量,利用场叠加原理计算时,应先将各电荷元产生的电场按方向进行分解,最后再合成,即: d d d d ;x y z E E i E j E k =++r r r r , d ,d ,d x x y y z z E E E E E E ===??? 而电势是标量可以直接叠加,即:V dV =?。但用这种方法求电势时,应注意电势零点的选择。

大学物理 1-5章作业参考解

1-2章作业 1-4.一质点的运动学方程为2x t =,()21y t =-(SI )。试求:(1)质点的轨迹方程;(2)在2t =s 时,质点的速度和加速度。 [解] (1) 由质点的运动方程 2t x = (1) ()21-=t y (2) 消去参数t ,可得质点的轨迹方程 ( ) 2 1-= x y (2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t t x v 2d d x == ()12d d y -==t t y v 所以 ()j i j i v 122y x -+=+=t t v v (3) 2d d 22x ==t x a 2d d 22y ==t y a 所以 j i a 22+= (4) 把2s =t 代入式(3)、(4),可得该时刻质点的速度和加速度. j i v 24+= j i a 22+= 1-8.质点沿x 轴运动,已知228t v +=,当8=t s 时,质点在原点左边52m 处(向右为x 轴正向)。试求: (1)质点的加速度和运动学方程; (2)质点的初速度和初位置; (3)分析质点的运动性质。 [解] (1) 质点的加速度 t t v a 4/d d == 又 t x v /d d = 所以 t v x d d = 对上式两边积分,得 ??? +==t t t v x d )28(d d 2 所以 c t t x ++=3)3/2(8 由题知 5283 2 8838-=+?+?==c x t m

所以 c = 3 1457m 因而质点的运动方程为 33 283 1457t t x ++-= (2) m/s 802820=?+=v m 3 1 4570-=x (3) 质点沿x 轴正方向作变加速直线运动,初速度为8m ?s -1,初位置为-4573 1 m. 1-9.一物体沿x 轴运动,其加速度与位置的关系为x a 62+=。物体在0x =处的速度为10m ?s -1,求物体的速度与位置的关系。 [解] 根据链式法则 x v v t x x v t v a d d d d d d d d === ()x x x a v v d 62d d +== 对上式两边积分并考虑到初始条件,得 ()?? += x v x x v v 0 10 d 62d 故物体的速度与位置的关系为 100462++=x x v s m 1-10.在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,其中g 为 重力加速度,B 为与物体的质量、形状及媒质有关的常数,并设0=t 时物体的初速度为零。试求: (1)物体的速度随时间变化的关系式; (2)当加速度为零时的速度(称为收尾速度)值。 [解] (1) 由t v a /d d =得 t Bv g v d d =- 两边积分,得 ? ?=-t Bv g v d d 即 c Bt Bv g ln )ln(+-=- 由t =0时v =0 得 c=g 所以,物体的速率随时间变化的关系为: )1(Bt e B g v --=

济南大学大学物理大作业完整答案

济南大学 大学物理大作业答案完整版

第1章 质点运动学 §1.3 用直角坐标表示位移、速度和加速度 一.选择题和填空题 1. (B) 2. (B) 3. 8 m 10 m 4. ()[] t t A t ωβωωωββsin 2cos e 22 +-- ()ωπ/122 1 +n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2) 二.计算题 1解: (1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 0d 4d t t t v=2t 2 v=dx/dt=2t 2 t t x t x x d 2d 0 20 ?? = x 2=t 3 /3+x 0 (SI) §1.5 圆周运动的角量描述 角量与线量的关系 一.选择题和填空题 1. (D) 2. (C) 3. 16R t 2 4rad /s 2 4. -c (b -ct )2/R 二.计算题 1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2 += 根据题意: a t = a n 即 ()R ct b c /2 += 解得 c b c R t -=

§1.6 不同参考系中的速度和加速度变换定理简介 一.选择题和填空题 1. (C) 2. (B) 3. (A) 4.0321=++v v v 二.计算题 1.解:选取如图所示的坐标系,以V 表示质点的对地速度,其x 、y 方向投影为: u gy u V x x +=+=αcos 2v , αsin 2gy V y y = =v 当y =h 时,V 的大小为: () 2cos 2222 2 2αgh u gh u y x ++= +=V V V V 的方向与x 轴夹角为γ, u gh gh x y +==--ααγcos 2sin 2tg tg 1 1 V V 第2章 牛顿定律 §2.3 牛顿运动定律的应用 一.选择题和填空题 1. (C) 2. (C) 3. (E) 4. l/cos 2 θ 5. θcos /mg θ θ cos sin gl 二.计算题 1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f 和质量为m 的物块 对它的拉力F 的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有 向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有 F + f max =M r max ω2 2分 F - f max =M r min ω2 2分 m 物块是静止的,因而 F = m g 1分 又 f max =μs M g 1分 故 2.372 max =+= ωμM Mg mg r s mm 2分 4.122 min =-=ωμM Mg mg r s mm 2分 γ v

大学物理作业

第4章 真空中的静电场 4-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。 解:建立如图所示的直角坐标系o-xy ,在半环上任取d l =Rd θ的线元,其上所带的电荷为 则 2 2r e r πε= r r 外E 0q 4 4-9 如图所示,厚度为d 的“无限大”均匀带电平板,体电荷密度为ρ,求板内外 的电场分布。 解:带电平板均匀带电,产生的电场具有面对称性,因而可以应用高斯定理求解。作一柱形高斯面,其侧面与板面垂直;两底面s 和板面平行,且到板中心平面的距离相等,用x

表示。 (1) 平板内(2 d x < ) 1 1 10 2d 2S S x E S ρψε?=?==?E S r r ? 得 10 E x ρ ε= ,方向垂直板面向外。 3 2 123304S Q Q E dS E r πε+?==?r r ? 12304r Q Q E e πε+=r r (2)求各区域的电势 (a) 1r R <

1221 2 1 2112 11232 00 44R R R r R R R R Q Q Q V E dr E dr E dr dr dr r πεπε∞∞ +=?+?+?=?+????? ?r r r r r r 得 12 10 12 1( 4Q Q V R R πε= + R r ≤时:10 2R R r r V E dr rdr ε=?= ?? )(4220 r R -= ε 习题7-10图

R r >时: 22202S R l E dS E rl ρππε?==?r r ?2202n R E e r ρε→=r r 2 20 2R R r r R dr V E dr r ρε=?= ? ? r r r R R ln 202ερ= 空间电势分布并画出电势分布曲线大致如图。

大学物理作业(一)答案

大学物理作业(一)答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

班级___ ___学号____ ____姓名____ _____成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -== (SI 制),则(1) t =1s 时质点的位置矢量 2i j +,速度 22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -___ ___,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A 点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(SI 制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为 ,法向加速度为 . 二. 选择: 1. 以下说法错误的是:( ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A)0v (B)θcos 0v (C) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(不计空气 阻力): ( D )

大学物理7章作业

第七章机械波 一. 选择题 1. 机械波的表示式为(SI),则 (A) 其振幅为3m (B) 其波速为10m/s (C) 其周期为1/3s (D) 波沿x轴正向传播 2. 一平面简谐波沿x轴正向传播,时波形图如图示, 此时处质点的相位为 (A) 0 (B) π (C) π/2 (D) - π/2 3. 频率为100Hz、波速为300m/s的简谐波,在传播方向上有两点同一时刻振动相位差为π/3,则这两点相距 (A) 2m (B) 21.9m (C) 0.5m (D) 28.6m 4. 一平面简谐波在介质中传播,某瞬时介质中某质元正处于平衡位置,此时它的能量为 (A) 动能最大,势能为零 (B) 动能为零,势能最大 (C) 动能为零,势能为零 (D) 动能最大,势能最大 5. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的? (A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒 (B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同 (C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等 (D) 介质质元在其平衡位置处弹性势能最大 6. 两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是 (A) (B) (C) (D)

7. 两相干波源S 1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是 (A) 干涉极大 (B) 干涉极小 (C) 有些点干涉极大,有些点干涉极小 (D)无法确定 8. 在波长为λ的驻波中,任意两个相邻波节之间的距离为 (A) λ (B) 3λ/4 (C) λ/2 (D) λ/4 二. 填空题 9. 一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0.37m,则它在该介质中的传播速度为__________________. 10. 平面简谐波沿x轴正向传播,波动方程为,则处质点的振动方程为_________________,处质点与处质点振动的相位差为_______. 11. 简谐波沿x轴正向传播,传播速度为5m/s ,原点O振动方程为 (SI),则处质点的振动方程为_____________________. 12. 一平面简谐波周期为2s,波速为10m/s,A、B是同一传播方向上的两点,间距为5m,则A、B两点的相位差为_______________. 13. S 1、S2是两个相干波源,已知S1初相位为,若使S1S2连线中垂线上各点均干涉相 的初相位为_______________. 消,S 14. 如图,波源S1、S2发出的波在P点相遇,若P点的合振 幅总是极大值,则波源S1的相位比S2的相位领先 _____________________. 三. 计算题

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理习题与作业答案

大学物理习题与作业答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

理想气体 状 态方程 5-1一容器内储有氧气,其压强为105 Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol = ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρ , kg 1033.510 44.230.126 25 2-?=?= = ∴n m O ρ (4)m 1045.31044.2119 325 3 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有 RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-==

上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将10-2kg 的氢气装在10-3m 2的容器中,压强为105Pa ,则氢分子的平均平动动能为多少 解:RT M m pV mol = ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少 解:kT N t 2 3=∑ε,其中N 为总分子数。kT V N nkT p = = ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少欲使分子的平均 平动动能等于1eV ,气体的温度需多高(1eV=10-19J ) 解:C 0?时,J 1065.52731038.12 32321230--=?=???==kT t ε C 100?时,J 1072.73731038.12 3 232123100--=?=???== kT t ε J 106.1eV 119-?= ,∴分子具有1eV 平均动能时,气体温度为 能量均分、理想气体内能

大学物理习题答案第五章

[习题解答] 5-1 作定轴转动的刚体上各点的法向加速度,既可写为a n= v2 /R,这表示法向加速度的大小与刚体上各点到转轴的距离R成反比;也可以写为a n= ω2 R,这表示法向加速度的大小与刚体上各点到转轴的距离R成正比。这两者是否有矛盾?为什么? 解没有矛盾。根据公式 ,说法向加速度的大小与刚体上各点到转轴的距离R成反 比,是有条件的,这个条件就是保持v不变;根据公式 ,说法向加速度的大小与刚体上各 点到转轴的距离R成正比,也是有条件的,条件就是保持ω不变。 5-2一个圆盘绕通过其中心并与盘面相垂直的轴作定轴转动,当圆盘分别在恒定角速度和恒定角加速度两种情况下转动时,圆盘边缘上的点是否都具有法向加速度和切向加速度?数值是恒定的还是变化的? 解 (1)当角速度ω一定时,切向速度也是一定的,所以切向加速度 , 即不具有切向加速度。而此时法向加速度 , 可见是恒定的。 (2)当角加速度一定时,即 恒定,于是可以得到 , 这表示角速度是随时间变化的。由此可得

. 切向加速度为 , 这表示切向加速度是恒定的。法向加速度为 , 显然是时间的函数。 5-3 原来静止的电机皮带轮在接通电源后作匀变速转动,30s后转速达到152 rad?s-1 。求: (1)在这30 s内电机皮带轮转过的转数; (2)接通电源后20 s时皮带轮的角速度; (3)接通电源后20 s时皮带轮边缘上一点的线速度、切向加速度和法向加速度,已知皮带轮的半径为5.0 cm。 解 (1)根据题意,皮带轮是在作匀角加速转动,角加速度为 . 在30 s内转过的角位移为 . 在30 s内转过的转数为 .

相关文档
最新文档