小电流接地系统中性点接地方式分类-北京丹华昊博电力科技有限公司

小电流接地系统中性点接地方式分类-北京丹华昊博电力科技有限公司
小电流接地系统中性点接地方式分类-北京丹华昊博电力科技有限公司

北京丹华昊博电力科技有限公司

小电流接地系统中性点接地方式的分类介绍 中性点接地方式有很多种,包括中性点直接接地、中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地、中性点经高电阻接地等。中性点接地方式的分类的标准在不同国家也有所区别,下面介绍最常用的两种分类标准,第一种分为有效接地方式、非常有效接地方式和非有效接地方式三类;第二种分为大电流接地方式和小电流接地方式两类。 中性点有效接地方式的定义:当系统的零序电抗和正序电抗比值不大于3(即31

0≤X X ),零序电阻对正序电抗之比不大于1时(即11

0≤X R ),该系统是中性点有效接地方式。 中性点非常有效接地方式的定义:如果系统的全部中性点都保持直接接地,其零序阻抗远远小于中性点有效接地方式,甚至单相接地电流大于三相短路电流,该系统是中性点非常有效接地方式。

中性点非有效接地方式包括:除了有效接地和非常有效接地以外的方式是中性点非有效接地方式。

大电流接地方式:发生单相接地故障后需要断路器快速断开故障设备(包括母线、线路等)的,属于大电流接地方式。

小电流接地方式:发生单相接地故障后电弧能够自行熄灭,可以带故障运行一段时间的,属于小电流接地方式。

在第一种分类标准中,中性点非有效接地方式既包含了单相接地后需要立即跳闸的中性点经小电阻接地方式,又包含了单相接地后可以带故障运行一段时间的中性点不接地方式、中性点经消弧线圈接地方式等,在实际运行中不易直观理解,因此在我国通常使用第二种分类标准。在我国大电流接地方式具体包括:①中性点直接接地;②中性点经小电阻接地。小电流接地方式具体包括:①中性点不接地;②中性点经高电阻接地;③中性点经消弧线圈接地。

对于110kV 及以上的高压、超高压电力系统,主要考虑限制工频电压升高和瞬时过电压,因此普遍采用直接接地方式。对于110kV 以下的中低压电力系统,接地方式的选择比较复杂,难以形成统一的形式,世界各国家及地区中压配电网中性点接地方式都不尽相同。下面详细介绍各种中性点接地方式的特点。

一、中性点直接接地系统

中性点直接接地方式,即是将中性点直接接入大地。若发生单相接地时,其接地电流很大,使断路器跳闸切除故障。这种大电流接地方式,无需装设绝缘监测装置。

中性点直接接地系统产生的过电压最低,可以有效减少绝缘上的投资,提高建设及运行的经济性。

中性点直接接地系统产生的接地电流大,故对传统电缆通信系统的干扰影响也大。当电力线路与电缆通信线路平行走向时,由于耦合产生感应电压,对通信造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点附近区域还会产生较大的跨步电压与接触电压,使人畜受到伤害。

二、中性点不接地系统

中性点不接地方式,即中性点对地绝缘。其结构简单,运行方便,且比较经济,不需任

北京丹华昊博电力科技有限公司 何附加设备,投资省,当前广泛应用于我国3-60kV 中压配电网。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值小于负荷电流,更远小于短路电流,因此属于小电流接地方式。由于单相接地故障电流小,所以保护装置不会动作跳闸,很多情况下故障能够自动熄弧,系统重新恢复到正常运行状态。由于单相接地时非故障相电压升高为线电压,系统的线电压依然对称,不影响对负荷的供电,故可带故障继续供电2小时,提高了供电的可靠性。

但是,随着配电网的不断发展,特别是城市电网电缆电路的增多,电容电流越来越大,

当电容电流超过一定范围,接地电弧就很难熄灭了,会产生以下后果[5,6]:

(1) 导致火灾。由于电弧产生数千度的高温,有可能烧断配电线路,还有可能引燃相邻的易燃物品,最终造成重大的火灾事故.

(2) 产生过电压。如果接地电弧不稳定,即产生所谓的间歇性电弧,电弧不断的熄灭与重燃,会在非故障的两相产生间歇性电弧接地过电压(又称为电弧过电压)。这种过电压幅值高、持续时间长、遍及全网,会对电气设备的绝缘造成极大的危害,导致绝缘薄弱处击穿;

(3) 诱发PT 铁磁谐振。PT 铁磁谐振的机理是电磁式电压互感器的励磁感抗在一定的激发条件下有可能出现饱和情况,使得感抗值降低并与线路对地的容抗值匹配,最终出现谐振过电压。在不同的饱和情况下,铁磁谐振可分为基频谐振,倍频谐振和分频谐振。单相接地就是PT 铁磁谐振的激发因素之一,一旦发生铁磁谐振,很有可能导致PT 爆炸,还有可能造成氧化锌避雷器击穿,电缆头爆炸等危及电气设备绝缘的事故。

三、中性点经消弧线圈接地

如前文所述,当系统电容电流超过某个数值后,中性点不接地系统会出现一些问题,因此中性点经消弧线圈接地方式就出现了。中性点经消弧线圈接地方式,即是在中性点和大地之间接入一个电感线圈。

消弧线圈的作用有两个:一是消弧线圈产生的电感电流补偿了电网的接地电容电流,使故障点处的接地电流减小,当接地电流小于一定程度后就更易于熄灭;二是当残流过零熄弧后,消弧线圈能降低故障相恢复电压的初速度及其幅值,避免接地电弧的重燃并使之彻底熄灭。因此,消弧线圈大大提高了接地电弧自动消除的概率,“消弧线圈”的名称就是由此而来的。

与中性点不接地系统相比,中性点经消弧线圈接地需要更多的投资,但是保障了系统的安全性,提高了供电可靠性。

由于在发生单相接地时,消弧线圈电感与线路对地电容形成了并联谐振电路,使系统的零序阻抗值很大,故中性点经消弧线圈接地系统又被称为“谐振接地”系统,消弧线圈产生的电感电流又称为“补偿电流”。不过,运行中的消弧线圈通常并不是恰好在谐振点运行,在一般情况下多采用略微偏离谐振点的过补偿运行方式。

中性点经消弧线圈接地方式的优点有以下几点:

①使故障点的接地电流减小,降低了恢复电压速度,有利于电弧熄灭,从而避免了单相接地故障产生的间歇性电弧接地过电压和铁磁谐振过电压。

②由于中性点经消弧线圈接地减小了接地点的电流,抑制了电弧的重燃,有效防止故障点处发生着火、爆炸等次生灾害。

③不接地系统改为经消弧线圈接地后,其过电压水平一般不高于2.8phm U (phm U 表示相电压的峰值), 满足3-60kV 配电装置和线路承受电压设计。

④经消弧线圈接地后,接地电流减小,保证了设备和人员的安全。

北京丹华昊博电力科技有限公司

上世纪90年代以前消弧线圈多采用无载调节开关调匝方式,当系统电容电流发生变化后,需要停电人工更改消弧线圈电感值。这种无载调匝方式的消弧线圈存在三个问题,第一个问题是当线路运行方式发生变化时,消弧线圈不能跟踪电容电流的变化自动调整电感电流,降低了熄弧的效果;第二个问题是调节消弧线圈时需要停电然后人工调节,费时费力;第三个问题是,运行方式改变时容易使消弧线圈运行在谐振点,导致出现过电压。为了解决这些问题,从上世纪90年代以来,我国多个生产厂家设计并研制出了不同类型的自动调谐消弧线圈,使得中性点经消弧线圈接地方式得到了很大的发展。

自动调谐消弧线圈克服了老式消弧线圈的不足,能够实时在线对系统电容电流进行测量,并且在带电运行中自动调整消弧线圈的补偿电感电流,使消弧线圈永远处于最佳补偿状态。与传统消弧线圈只有一次设备不同,自动调谐式消弧线圈包括了一次设备和二次设备,一次设备用于提供补偿电感电流,二次设备又称为控制器用于计算系统电容电流并且对一次设备进行调节控制。

自动调谐式消弧线圈按照运行的特点分为两种:预调式和随调式。

预调式消弧线圈的特点是:正常运行时消弧线圈跟踪系统电容电流的变化不断调整,始终处于接近谐振的位置,为了防止出现串联谐振过电压,需要投入一个串联或者并联电阻,称为阻尼电阻;当发生单相接地故障后,快速退出阻尼电阻,既保护了阻尼电阻,又使消弧线圈进入补偿的工作状态;当故障消失后,重新投入阻尼电阻。

随调式消弧线圈的特点是:正常运行时消弧线圈跟踪系统电容电流的变化计算出消弧线圈的目标补偿电流,但是处于远离谐振的位置(通常是接近中性点不接地方式),这样就避免出现串联谐振过电压,也就不需要阻尼电阻;当发生单相接地故障后,消弧线圈快速调整至谐振状态,产生补偿电流;当故障消失后,重新将消弧线圈恢复到远离谐振的位置。预调式与随调式消弧线圈各有利弊,其优缺点如表1-1所示。一般来说如果系统电容电流波动不大,应优先选择预调式消弧线圈;如果系统电容电流波动较大,应优先选择随调式消弧线圈。

表1-1 预调式与随调式消弧线圈的比较

目前常用的预调式消弧线圈包括如下几种:带有载调节开关的调匝式消弧线圈、具有可动铁芯的调气隙式消弧线圈等。目前常用的随调式消弧线圈包括如下几种:高短路阻抗变压器式消弧系统、调容式消弧线圈、8421并联电抗器组合式消弧线圈等。下面分别对这几类消弧线圈的原理进行简单介绍,详细内容请参考其他书籍或者厂家说明书。

1、调匝式自动调谐消弧线圈

调匝式自动调谐消弧线圈采用有载调压开关调节电感线圈的抽头改变电感值,为了限制

北京丹华昊博电力科技有限公司

在接近全补偿时中性点出现过高的位移电压,电感线圈必须串联或者并联阻尼电阻。当电网发生永久性单相接地故障时,阻尼电阻自动退出,以防止过电流损坏。

调匝式自动调谐消弧线圈一次设备的结构如图1-1所示,一次设备包括:①Z型接地变压器(当系统具有中性点时可不用);②消弧线圈;③阻尼电阻箱;④避雷器;⑤CT和PT。它可以在电网正常运行时,通过实时测量消弧线圈电压、电流的幅值和相位变化,计算出电网当前方式下的对地电容电流,根据预先设定的最小残流值或脱谐度,由控制器调节有载调节开关,使消弧线圈调节到所需要的补偿档位,在发生接地故障后,故障点的残流可以被限制在设定的范围之内。它的不足之处是不能连续调节,需要合理的选择各个档位电流和档位总数,保证残流在各种运行方式下都能限制在5A以内,以满足工程需要。

图1-1 调匝式自动调谐消弧线圈原理接线图

2、调气隙式自动调谐消弧线圈

调气隙式消弧线圈是将铁芯分成上下两部分,下部分铁芯同线圈固定在框架上,上部分铁芯用电动机带动传动机构可调,通过调节气隙的大小达到改变消弧线圈电抗值的目的。它能够自动跟踪无级连续可调,安全可靠。其缺点是振动和噪声比较大,在结构设计中应采取措施控制噪声。这类装置也可以将接地变压器和消弧线圈共用铁芯,做成“三相五柱式”结构,使结构更为紧凑。

3、高短路阻抗变压器式消弧系统

该消弧线圈是一种高短路阻抗变压器式可控电抗器,其基本结构如图1-2所示。变压器的一次绕组作为工作绕组接入配电网中性点,二次绕组作为控制绕组由2个反向连接的晶闸管短路,通过调节晶闸管的导通角来调节二次绕组中的短路电流,从而实现电抗值的可控调节。由于采用了晶闸管调节,因此响应速度快,可以实现零至额定电流的无级连续调节。此外,由于是利用变压器的短路阻抗作为补偿用的电感,因而具有良好的伏安特性。

北京丹华昊博电力科技有限公司

晶闸管

SCR

图1-2 变压器式可控电抗器基本结构

在正常运行情况下,消弧线圈可以工作在远离谐振点的区域,发生单相接地故障后快速调节至接近谐振点,当电弧熄灭后快速调节远离谐振点以避免产生串联谐振过电压,因此可以不设置阻尼电阻。

4、调容式消弧线圈

调容式消弧线圈的原理是在消弧线圈的二次侧并联若干组用真空开关或晶闸管通断的电容器,用来调节二次侧电容的容抗值,以达到减小一次侧电感电流的要求。电容值的大小及组数有多种不同排列组合,以满足调节范围和精度的要求。通过调节消弧线圈二次容抗的大小可方便地控制接地的接地电流大小,以达到调节消弧线圈电感电流的目的。

5、8421并联电抗器组合式消弧线圈

图1-3并联电抗器示意图

8421并联电抗器组合式消弧线圈结构如图1-3所示,L1、L2、L4、L8为电抗器,其容量按1:2:4:8分配,K1、K2、K3、K4为高压真空接触器,当接触器闭合时,相应的电抗器投入电网;当接触器断开时,相应的电抗器退出电网。这样消弧线圈具有0000~1111之间变化的16个档位,如果为了进一步减小级差,可以采用5个电抗器,使消弧线圈具有32个档位。高压真空接触器耐压高、运行稳定、控制简单、速度快,完全满足现场要求。并联电抗器组合式消弧线圈特别适用于发展中补偿网络,可以对原来的消弧线圈加以利用,避免重复投资。

虽然中性点经消弧线圈特别是自动调谐消弧线圈接地系统相比于中性点不接地系统提高了供电可靠性,但是也带来了如下一些新的问题:

北京丹华昊博电力科技有限公司

1、单相接地故障选线问题

在中性点不接地系统中,可以采用零序电流比幅比相法进行故障选线。但是安装自动调谐消弧线圈后,由于消弧线圈电感电流的补偿,使得故障线路的零序电流特征非常不明显,导致选线困难,现场经常发生选线错误的情况。

2、中性点位移电压过高问题

自动调谐消弧线圈有可能会对电网的中性点位移电压造成影响,比如预调式消弧线圈如果阻尼电阻的选择不合适,投入电网后距离谐振点很近,中性点位移电压就会长时间过高。随调式消弧线圈虽然在正常运行时理论上远离谐振点,但是如果单相接地消失后没有及时返回,也会出现中性点位移电压过高的问题。特别是在单相断线的情况下,位移过电压更高,甚至会对绝缘造成损害。有些现场为了解决中性点位移电压过高的问题,往往不得不提高消弧线圈的脱谐度,即把残流放大,但残流放大后又会影响熄弧效果。

近年来,随着我国电力工业的迅速发展,城市配电网的结构变化很大,在馈电线路中电缆所占的比重越来越大,中性点经消弧线圈接地方式的一些问题日渐暴露。 随着配电网电容电流的迅速增大,很难保证消弧线圈可靠运行。主要原因为:

(1) 消弧线圈只能补偿电容电流的基频无功分量,有些配电网在整个接地电容电流中含

有一定成分的谐波电流分量和有功电流分量,其比例高达5%~15%,即使将工频接

地电流计算得十分精确,但是消弧线圈对于这5%~15%的谐波电流和有功电流还是

无法补偿的。

(2) 有些配电网电容电流很大,超过200A ,能够补偿该电容电流的消弧线圈容量过大,

导致价格昂贵、安装难度大,有些地方甚至采用多个消弧线圈分散补偿,但是在运

行方式发生变化时,很难协调控制多个消弧线圈。

(3) 电缆为主配电网的单相接地故障多为外力破坏所致,此时发生故障通常都是永久性

故障或者相间短路故障,消弧线圈的优势不大。

(4) 当接地点在电缆内部时,接地电弧在封闭性空间内不易自行熄灭,很快扩大为永久

性故障或者相间短路故障,消弧线圈的优势也将不复存在。

四、中性点经电阻接地

为了限制配电网过电压的幅值,解决消弧线圈容量无法满足电容电流需求的问题,有些现场逐渐采用中性点经电阻接地方式。中性点经电阻接地方式的好处是当电容电流在一定范围变动时,也能有效限制间歇性电弧接地过电压和铁磁谐振过电压,不像消弧线圈必须严格匹配电容电流。

中性点经电阻接地方式适用于以下情况:

(1) 大量采用了国外进口的低绝缘水平的设备、对过电压要求比较严的配电网;

(2) 存在大量电缆的配电网。

中性点经电阻接地方式从阻值上可以分为: 中性点经高电阻接地方式、中性点经小电阻接地方式。

1、中性点经高电阻接地

中性点经高电阻接地方式会增加单相接地故障电流,但是可以有效防止铁磁谐振过电压和间歇性电弧接地过电压,主要用于200MW 以上中大型发电回路和某些6~10 kV 配电网。

在6~10kV 配电系统以及发电厂厂用电系统,为了抑制间歇性电弧接地过电压,应满足C R I I 1.5)-1(=,这时消耗在电阻上的功率P

R I P R 2

= (1-1)

北京丹华昊博电力科技有限公司

式中:

流过电容的电流,;

电阻的阻值,;

流过电阻的电流,;

电阻消耗功率,A A W ???Ω?????????C R I R I P 显然,如果电容电流过大,则电阻电流也必须增加,这样电阻的发热量不仅有可能烧坏电阻本身,而且对附近的设备也是一种威胁,所以高阻接地方式的电容电流C I 不宜过大,一般不宜大于4~5A ,因而这种接地方式局限性很大。

2、中性点经小电阻接地

中性点经小电阻接地方式故障电流的标准为10~1000A ,根据我国具体情况,接地故障电流为400~1000A ,考虑过电压与绝缘配合,继电保护动作的选择性,对通信线的干扰以及中性点设备的动热稳定,一般电阻取值为R=10~20Ω。中性点经小电阻接地方式一般需要配备零序保护,在线路发生单相接地故障时,零序保护快速切断单相接地故障线路。

中性点经小电阻接地方式的优点为:

(1) 可把间歇性电弧接地过电压限制到2.5phm U (phm U 表示相电压的峰值)以下,这样

就可一采用绝缘水平较低的电缆及设备,减少投资;

(2) 能够完全抑制电网中因PT 磁饱和所引起的铁磁谐振过电压;

(3) 小电阻接地方式对电容电流的变化及电网的发展适应范围很大,即随着电网电容电

流的变化,接地电流水平变化不大;

(4) 单相接地故障时,流过故障线路的电流较大,零序电流保护有较好的灵敏性,可以

较容易切除接地线路.一般将单相接地故障电流控制在500A 左右,通过此电流起动零序保护动作。

但这种接地方式也存在不利的一面,主要表现在:

(1) 只要是发生单相接地故障,不管是瞬时还是永久故障,线路都要跳闸,降低了供电

可靠性;

(2) 当单相接地电流较大时(如大于1000A)可能对电缆通信线路造成干扰;

(3) 接地故障电流大时,在接地点和电阻柜附近容易产生较大的跨步电压和接触电压,

影响人身安全;

(4) 在发生非金属性接地故障时,由于有过渡电阻的存在,将影响继电保护的灵敏度;

(5) 发生接地故障时,电阻中流过的电流较大,电阻的热容量与2I 成正比,需要大的热

容量电阻,这给电阻的制造安装都带来不便。

(6) 在电网中高压电机启动时,启动电流中的非周期分量容易造成零序接地保护误动。

本文来源:北京丹华昊博电力科技有限公司

低压供电系统的接地方式分类

有关低压供电系统的接地方式的分析 XXXXXXXXXXXXXXXXXXX 一、工程施工供电系统 工程施工用电的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面就以上所指各种供电系统做一个扼要的分析。 (一)工程供电的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 ( 1 )TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。这种供电系统的 设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统不宜在380/220V供电系统中应用。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的施工单位是采用TT 系统,施工单位专门安装一组接地装置,引出一条专用 统适用于用电设备容量小且很分散的场合。 ( 2 ) TN 方式供电系统这种供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为(220V)短路电流,这个电流很大,是TT 系统的很多倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。 ( 3 ) TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,

中性点接地方式

中性点接地方式 1.前言:1、集中电网系统规划、电气主接线、厂用电和设备选择等单元中有关中性点接地方式内容,统一讲解,建立系统概念; 2.内容包括中压、高压、超高压特高压系统,重点是中压。 一、概述 1、中性点接地的意义 三相交流电流系统的三相交汇处与参考地之间多种多样的关系。称之谓中性点接地方式。它是工作接地、安全接地和保护接地。选择不同的接地方式,对电力系统建设和运行的安全性、可靠性、先进性和经济性意义重大。 2、中性点接地方式的种类 序号接地方式 中压电网高压电网超高压电网特高压电网 3—66KV 110—220KV 330—500KV 750—1000KV 1 中性点不接地★ 2 中性点直接接地★★ 3 中性点选择性直接接地★★ 4 中性点经电抗接地★★★ 5 中性点经电阻接地★★ 6 中性点经阻抗接地★ 3、中性点接地方式的性质 有效接地和非有效接地的零序阻抗范围: X O/X1<3 R O/X1<1 基于对电网绝缘配合的考量,对工频过电压和短路电流的限制是其出发点。

4、选择接地方式要考虑的因素 电压等级 网络结构 安全性 供电可靠性和连续性 环境保护 过电压水平 绝缘配合和避雷器选择 设备耐压水平 短路电流的控制 导体和设备选择 继电保护及其配合 高海拔地区 经济性 二、3—66KV中压电网的接地方式 1、沿革 2、中性点不接地方式 1)特点及适用范围 ——单相接地不跳闸、连续运行; ——接地点电流为容性,易发生间歇性弧光接地过电压;——工频过电压高,内部过电压高; ——架空网络多为瞬时性可恢复;

——避雷器选择100%。 适用于单相接地电容电流小于7~10A的场合。 2)单相接地故障 流过的是电容电流 3)间歇性弧光接地过电压 ——接地点多次重燃引起; U,稳态电压为线电压。——非故障相的最大过电压3.5 xg ——波及整个电网; ——时间持续很长; ——没有有效的保护设备,避雷器要避免动作,消弧柜的动作时间跟不上; ——接地点位置不易确定; ——易使P.T饱和引发谐振。 4)电容电流的限值 6~66KV电网:10A 6~10KV厂网:7A 5)电容电流计算 近似计算:6KV架空C I=0.015~0.017A∕Km 10KV 0.025~0.029A∕Km 35KV 0.1A∕Km 另一种估算通式:

保护接地的分类

接地的分类 各种接地的分类一般可以分为工作接地,保护接地和防雷接地。工作接地又可分为交流工作接地和直流工作接地。 1、工作接地: 由于运行和安全的需要,为保证供电电源在正常或故障的情况下,能可靠地工作而进行的接地。 1)直流工作接地 在通信系统中,为保证通信设备正常运行而设置的接地系统称为工作接地。所谓工作接地,就是利用大地这个导体构成回路,来传输能量和信息。同时,利用工作接地的方式来降低电信回路中的串音,抑制电信线路中的各种电磁干扰,提高通信线路的传输质量。 在各通信局、站的工作接地系统中,包括“电池的正极接地”、“交换机的外壳接地”、“载波机和载波机架接地”以及“总配线架接地”等。 程控交换机室内地线布线系统要比纵横制严格,必须采用一点接地原则,即引入到程控交换机室内的接地线只能接到一次接地端子,再由该端子引到各个机架。 表3-1 通信局站接地电阻要求 261

2)交流工作接地 按照IEC(国际电工委员会)规定,接地制式一般由两个字母组成,必要时可以加后续字母。 第一个字母表示电源接地点对地的关系: T表示电源端有一点直接接; I表示电源端所有带电部分和地绝缘,或由一点经阻抗接地。 第二个字母表示电气设备的外露导电部分和地的关系: T表示电气设备外露导电部分对地直接电气连接,和配电系统的任何接地点无关, N表示电气设备外露导电部分和配电系统的接地点直接电气连接或与该点引出的导体相连接。 后续字母表示中性线和保护线之间的关系: C表示中性线N和保护线PE合并为PEN线, S表示中性线和保护线分开, C-S表示电源侧为PEN线,从某点分开为N及PE线。 根据以上的分法,安接地制式划分的配电系统有TN-S、TN-C、TN-C-S、TT、IT。 根据我国《低压电网系统接地形式的分类、基本技术要求和选用导则》的规定,低压电网系统接地的保护方式可分为:接零系统(TN 系统)、接地系统(TT系统)和不接地系统(IT系统)三类。 (1)TN-C系统 TN-C系统为三相电源中性线直接接地的系统,通常称为三相四线制电源系统,其中性线与保护线是合一的。如图3-1(a)所示。TN-C系统没有专设 262

电力系统中性点接地方式分类、特征及应用

电力系统中性点接地方式分类、特征及应用 摘要:供电系统的中性点接地方式涉及电网的安全运行,供电可靠性,过电压和绝缘的配合,继电保护,接地设计等多个因素,而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。目前供配电系统的接地方式主要有中性点不接地、中性点直接接地、中性点经电阻接地和中性点经消弧线圈接地四种,本文对这四种中性点接地方式进行了分类、分析与比较,并针对发展中城市配电系统中接地变的应用进行分析和建议。 关键词:中性点接地系统接地变 电力系统中性点接地方式是指电力系统中的发电机和变压器的中性点与地的连接方式。可以分为大接地电流系统和小接地电流系统,前者即中性点直接接地电流系统,后者又分为中性点不接地系统和中性点经消弧线圈或电阻接地系统。 1.大接地电流系统 大接地电流系统,即将中性点直接接地。该系统运行中若发生一相接地故障时,就形成单相接地短路,线路上将流过很大的短路电流,使线路保护装置迅速动作,断路器跳闸切除故障。大电流接地系统在发生单相接地故障时,中性点电位仍为零,非故障相对地电压基本不变,这是它的最大优点。因此在这种系统中的输电设备绝缘水平只需按电网的相电压考虑,较为经济。此外,该系统单相接地故障时,不会产生间歇性电弧引起的过电压,不会因此而导致设备损坏。大接地电流系统不装设绝缘监察装置。 中性点直接接地系统缺点也很多,首先是发生单相接地故障时,不允许电网继续运行,防止短路电流造成较大的损失,因此可靠性不如小接地电流系统。其次中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。中性点直接接地系统单相接地故障时产生的接地电流较大,对通讯系统的干扰影响也大,特别是当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 2.小接地电流系统 小电流接地系统,即中性点不接地或经消弧线圈或电阻接地系统。小接地电

电力系统接地分类

电力系统接地分类详解 电力系统接地分类详解 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

低压配电系统分类

低压配电系统分类 380V/220V低压配电系统按保护接地的形式不同,低压配电系统分为三种:IT系统、TT系统和TN系统。 其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。 IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。 TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即过去的三相四线制供电系统中的保护接地。 TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即过去的三相四线制供电系统中的保护接零。 TN系统的电源中性点直接接地,并有中性线引出。按其保护线形式,TN 系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。 (1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。 (2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。此外,由于N线与PE线分开,N线断开也不会影响PE线的保护作用。 ③TN-C-S系统(三相四线与三相五线混合系统),该系统从变压器到用户配

电力系统中性点接地方式浅析

电力系统中性点接地方式浅析 【摘要】电力系统中性点接地方式是指电力系统中发电机和变压器中性点与地的连接方式,中性点不同接地方式各具优点与不足,涉及电网安全运行、供电可靠性、过电压与绝缘的配合、断路器选用、继电保护方式、接地设计等多种因素。 【关键词】中性点;接地;方式 0 引言 电力系统中性点接地方式分为大接地电流系统和小接地电流系统。前者分为中性点直接接地电流系统、中性点经低值阻抗接地系统,后者可分为中性点不接地系统、中性点经消弧线圈接地系统、中性点经高值阻抗接地系统。本文将对各类中性点接地方式的优点与不足进行分析探讨。 1 大接地电流系统 1.1 中性点直接接地系统 1.1.1 中性点直接接地系统原理 1)单相接地故障时,电压情况 (1)接地故障相电压降低为零; (2)非接地故障相电压不变,依然为相电压; (3)中性点对地电压不变,依然为零。 2)单相接地故障时,电流情况 形成短路?流经很大短路电流?装设继电保护?跳闸切除故障,避免扩大成相间短路。 1.1.2 中性点直接接地系统优点 1)降低设备绝缘水平(约20%),节省造价。

在单相接地故障时,中性点电位仍为零,非故障相对地电压仍为相电压,设备绝缘水平只需按相电压考虑。 2)不另设消弧装置,即可自行消弧。 在单相接地故障时,不会产生间歇性电弧过电压,不会因此导致设备损毁,不需另设消弧装置。 1.1.3 中性点直接接地系统的不足及改进措施 1)不允许故障设备继续运行,可靠性不如小接地电流系统。 发生单相接地故障时,短路电流触发保护装置动作,断路器跳闸切断故障部分,降低了供电可靠性。 2)短路电流很大,单相磁场对弱电干扰,特别是电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 3)接地点还会产生较大跨步电压与接触电压,容易发生触电伤害事故。 1.2 中性点经低值阻抗接地系统(见3) 2 小接地电流系统 2.1 中性点不接地系统 2.1.1 中性点不接地系统原理 1)接地故障相对地电压降低为零; 2)非接地故障相对地电压升高为线电压,且相位改变; 3)中性点对地电压升高为相电压,且方向与故障相电压相反; 4)相对中性点电压和线电压仍不变,认为三相系统对称,可继续运行2h; 5)接地点流过的电容电流是正常每相对地电容电流的3倍,故在接地点产生电弧。 2.1.2 中性点不接地系统优点

中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开

供电系统的分类

什么是TT、TN-C、TN-S、TN-C-S、IT系统? 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。 (1)TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 TT方式供电系统 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。

图2 带专用保护线的TT方式供电系统 图中点画线框内是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统 这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT系统优点多。TN系统根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。 (3)TN-C方式供电系统 它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。 图3 TN-C方式供电系统

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

发电机中性点接地方式及作用 综合2

发电机中性点接地方式及作用 发电机中性点接地一般有以下几类: 1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。发电机中性点不接地方式,一般适用于小容量的发电机。 (中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。这种接地方式能实现无死区的定子接地保护) 2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。 3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。 发电机中性点经单相变压器高阻接地接地装置设计及选型 1.发电机中性点接地电阻的计算原则 1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线 电压1.5U N=2.6U X) 2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求; 3)10kv 10MW发电机最大容性电流<4A C<2.1 uF 2.电容及电容电流计算: =0.7242uF(发电机厂家提供); 1)发电机定子绕组三相对地电容C of 2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排) =0.06829uF 0.05×2.6=0.13A即三相对地电容 C ol =0.2uF(经验值); 3)发电机出口至升压主变低压绕组间单相对地等值电容为C 02 4)主变低压侧三相对地电容20470PF即0.02047 uF 5)阻容参数:单相电容0.1 uF,三相为0.3 uF 发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF 发电机系统电容电流为: I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A

电路板接地概念

1.电路图上和电路板上的GND(Ground)代表地线或0线.GND就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。它与大地是不同的。有时候需要将它与大地连接,有时候也不需要,视具体情况而定。 https://www.360docs.net/doc/7914225329.html,B上的:VCC是电源接入;GND为接地;DP、DM是差分信号;PORT-、PORT+是数据负、正信号。 GND VDD: 电源电压(单极器件);电源电压(4000系列数字电路);漏极电压(场效应管) VCC:电源电压(双极器件);电源电压(74系列数字电路); VSS:地或电源负极 VEE:负电压供电;场效应管的源极(S) VPP:编程/擦除电压。 (1)电气地大地是一个电阻非常低、电容量非常大的物体,拥有吸收无限电荷的能力,而且在吸收大量电荷后仍能保持电位不变,因此适合作为电气系统中的参考电位体。这种“地”是“电气地”,并不等干“地理地”,但却包含在“地理地”之中。“电气地”的范围随着大地结构的组成和大地与带电体接触的情况而定。 (2)地电位与大地紧密接触并形成电气接触的一个或一组导电体称为接地极,通常采用圆钢或角钢,也可采用铜棒或铜板。图 1示出圆钢接地极。当流入地中的电流I通过接地极向大地作半球形散开时,由于这半球形的球面,在距接地极越近的地方越小,越远的地方越大,所以在距接地极越近的地方电阻越大,而在距接地极越远的地方电阻越小。试验证明:在距单根接地极或碰地处 20m 以外的地方,呈半球形的球面已经很大,实际已没有什么电阻存在,不再有什么电压降。换句话说,该处的电位已近于零。这电位等于零的“电气地”称为”地电位”。若接地极不是单根而为多根组成时,屏蔽系数增大,上述 20m 的距离可能会增大。图 1中的流散区是指电流通过接地极向大地流散时产生明显电位梯度的土壤范围。地电位是指流散区以外的土壤区域。在接地极分布很密的地方,很难存在电位等于零的电气地。 (3)逻辑地电子设备中各级电路电流的传输、信息转换要求有一个参考的电位,这个电位还可防止外界电磁场信号的侵入,常称这个电位为“逻辑地”。这个“地”不一定是“地理地”,可能是电子设备的金属机壳、底座、印刷电路板上的地线或建筑物内的总接地端子、接地干线等;逻辑地可与大地接触,也可不接触,而“电气地”必须与大地接触。 .接地:

电力系统接地分类详解及其特点

电力系统接地分类详解及其特点 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成的伤害。通过接地导体将可能产生的线路漏电、设备漏电及电磁感应、静电感应等产生的过电压通过接地回路导入大地,而避免设备等的损坏及保证人生的安全。有了接地保护,可以将漏电电流迅速导入地下,而实现此目的就是要求所有的用电设备、钢结构及电子、仪表设备都要与接地网可靠连接,简单而言,在电力系统中,接地和接零的目的,一是为了电气设备的正常工作,例如工作性接地;二是为了人身和设备安全,如保护性接地和接零。虽然就接地的性质来说,还有重复接地,防雷接地和静电屏蔽接地等,但其作用都不外是上述两种。而针对不同的供电系统,这些接地也有不同的选择。两种不同的保护方式使用的客观环境又不同,如果选择不当,不仅会影响对设备及人身的保护性能,还会影响电网的供电可靠性。对于不同供电方式所要求的接地系统也有区别,采取的保护措施也不同。 保护接地中的接零保护与接地保护有几个方面的不同。一是保护原理不同。接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是

地线的分类

1.信号“地” 信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共段,图形符号“⊥”。 1)直流地:直流电路“地”,零电位参考点。 2)交流地:交流电的零线。应与地线区别开。 3)功率地:大电流网络器件、功放器件的零电位参考点。 4)模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。 5)数字地:也叫逻辑地,是数字电路的零电位参考点。 6)“热地”:开关电源无需使用变压器,其开关电路的“地”和市电电网有关,既所谓的“热地”,它是带电的,图形符号为:“”。 7)“冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合、既能传送反馈信号又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。图形符号为“⊥”。 2. 保护“地” 保护“地”是为了保护人员安全而设置的一种接线方式。保护“地”线一端接用电器,另一端与大地作可靠连接。 3. 音响中的“地” 1)屏蔽线接地:音响系统为防止干扰,其金属机壳用导线与信号“地”相接,这叫屏蔽接地。 2)音频专用“地”:专业音响为了防止干扰,除了屏蔽“地”之外,还需与音频专用“地”相连。此接地装置应专门埋设,并且应与隔离变压器、屏蔽式稳压电源的相应接地端相连后作为音控室中的专用音频接地点。 不同地线的处理方法 1. 数字地和模拟地应分开 在高要求电路中,数字地与模拟地必需分开。即使是对于A/D、D/A转换器同一芯片上两种“地”最好也要分开,仅在系统一点上把两种“地”连接起来。 2. 浮地与接地 系统浮地,是将系统电路的各部分的地线浮置起来,不与大地相连。这种接法,有一定抗干扰能力。但系统与地的绝缘电阻不能小于50MΩ,一旦绝缘性能下降,就会带来干扰。通常采用系统浮地,机壳接地,可使抗干扰能力增强,安全可靠。 3. 一点接地 在低频电路中,布线和元件之间不会产生太大影响。通常频率小于1MHz的电路,采用一点接地。 4. 多点接地 在高频电路中,寄生电容和电感的影响较大。通常频率大于10MHz的电路,采用多点接地。

中性点接地方式及其影响(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 中性点接地方式及其影响(2021 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

中性点接地方式及其影响(2021版) 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地

接地系统分类

建筑工程供电系统中的接地系统规介绍 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不就是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就就是对各种供电系统做一个扼要的介绍。 (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN与IT系统,分述如下。 (1)TT方式供电系统 TT方式就是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1所示。这种供电系统的特点如下。 图1 1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但就是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。 3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位就是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。

图2 图中点画线框内就是施工用电总配电箱,把新增加的专用保护线PE线与工作零线N分开,其特点就是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。 (2)TN方式供电系统 这种供电系统就是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。 1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,就是TT系统的5、3倍,实际上就就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2)TN系统节省材料、工时,在我国与其她许多国家广泛得到应用,可见比TT系统优点多。TN方式供电系统中,根据其保护零线就是否与工作零线分开而划分为TN-C与 TN-S等两种。 (3)TN-C方式供电系统 它就是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。这种供电系统的特点如下。 图3 1)由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电气设备金属外壳有一定的电压。 2)如果工作零线断线,则保护接零的漏电设备外壳带电。

相关文档
最新文档