函数性质的综合问题考点和题型归纳

函数性质的综合问题考点和题型归纳
函数性质的综合问题考点和题型归纳

函数性质的综合问题考点和题型归纳

考点一 函数的单调性与奇偶性

[典例] (1)(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )

A .[-2,2]

B .[-1,1]

C .[0,4]

D .[1,3]

(2)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( ) A .f (1)

72 B .f ????72

D .f ????52

?72 [解析] (1)∵f (x )为奇函数, ∴f (-x )=-f (x ).

∵f (1)=-1,∴f (-1)=-f (1)=1.

故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)上单调递减, ∴-1≤x -2≤1,∴1≤x ≤3.

(2)∵函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,

∴函数y =f (x )在[2,4]上单调递减,且在[0,4]上函数y =f (x )满足f (2-x )=f (2+x ), ∴f (1)=f (3),f ????72

[解题技法]

函数的单调性与奇偶性的综合问题解题思路

(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.

(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f(x1)>f(x2)或f(x1)

[题组训练]

1.已知函数f(x)满足以下两个条件:①任意x1,x2∈(0,+∞)且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0;②对定义域内任意x有f(x)+f(-x)=0,则符合条件的函数是() A.f(x)=2x B.f(x)=1-|x|

C.f(x)=-x3D.f(x)=ln(x2+3)

解析:选C由条件①可知,f(x)在(0,+∞)上单调递减,则可排除A、D选项,由条件②可知,f(x)为奇函数,则可排除B选项,故选C.

2.(2018·石家庄一模)设f(x)是定义在[-2b,3+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≥f(3)的解集为()

A.[-3,3]B.[-2,4]

C.[-1,5]D.[0,6]

解析:选B因为f(x)是定义在[-2b,3+b]上的偶函数,

所以有-2b+3+b=0,解得b=3,

由函数f(x)在[-6,0]上为增函数,得f(x)在(0,6]上为减函数,故f(x-1)≥f(3)?f(|x-1|)≥f(3)?|x-1|≤3,故-2≤x≤4.

考点二函数的周期性与奇偶性

[典例](2017·山东高考)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x ∈[-3,0]时,f(x)=6-x,则f(919)=________.

[解析]∵f(x+4)=f(x-2),

∴f(x+6)=f(x),∴f(x)的周期为6,

∵919=153×6+1,∴f(919)=f(1).

又f(x)为偶函数,∴f(919)=f(1)=f(-1)=6.

[答案]6

[解题技法]

已知f (x )是周期函数且为偶函数,求函数值,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内,把未知区间上的函数性质转化为已知区间上的函数性质求解.

[题组训练]

1.已知定义在R 上的奇函数f (x )满足f (x )=-f ????x +3

2,且f (1)=2,则f (2 018)=________. 解析:因为f (x )=-f ????x +32,所以f (x +3)=f ???

?????x +32+32=-f ???

?x +3

2=f (x ). 所以f (x )是以3为周期的周期函数.

则f (2 018)=f (672×3+2)=f (2)=f (-1)=-f (1)=-2. 答案:-2

2.已知f (x )是定义在R 上以3为周期的偶函数,若f (1)<1,f (5)=2a -3,则实数a 的取值范围为________.

解析:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3<1,即a <2.

答案:(-∞,2)

考点三 函数性质的综合应用

[典例] (1)(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )

A .-50

B .0

C .2

D .50

(2)定义在R 上的奇函数f (x )满足f ????x +32=f (x ),当x ∈???

?0,1

2时,f (x )=log 12

(1-x ),则f (x )在区间???

?1,3

2内是( ) A .减函数且f (x )>0 B .减函数且f (x )<0 C .增函数且f (x )>0

D .增函数且f (x )<0

[解析] (1)法一:∵f (x )是奇函数,

∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).

由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0. 又∵f (1-x )=f (1+x ),

∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,

∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.

法二:由题意可设f (x )=2sin ????

π2x ,作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,所以f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2.

(2)当x ∈???

?0,1

2时,由f (x )=log 12

(1-x )可知,f (x )单调递增且f (x )>0,又函数f (x )为奇函数,所以f (x )在区间????-12,0上也单调递增,且f (x )<0.由f ????x +3

2=f (x )知,函数的周期为3

2

,所以在区间????1,32上,函数f (x )单调递增且f (x )<0. [答案] (1)C (2)D

[解题技法]

(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.

(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.

[题组训练]

1.定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,2)上单调递减,则下列结论正确的是( )

A .0

B .f (3)<0

C .f (1)<0

D .f (3)

解析:选C 由函数f (x )是定义在R 上的奇函数,得f (0)=0. 由f (x +2)=-f (x ), 得f (x +4)=-f (x +2)=f (x ),

故函数f (x )是以4为周期的周期函数, 所以f (3)=f (-1). 又f (x )在[0,2)上单调递减, 所以函数f (x )在(-2,2)上单调递减, 所以f (-1)>f (0)>f (1), 即f (1)<0

2.已知函数y =f (x )的定义域为R ,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1

x 1-x 2>0恒成立;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),

b =f (11),

c =f (17),则a ,b ,c 的大小关系正确的是( )

A .a

B .b

C .a

D .c

解析:选B 由①知函数f (x )在区间[4,8]上单调递增.由②知f (x +8)=-f (x +4)=f (x ),所以函数f (x )的周期为8,所以b =f (11)=f (3),c =f (17)=f (2×8+1)=f (1).由③可知f (x )的图象关于直线x =4对称,所以b =f (11)=f (3)=f (5),c =f (1)=f (7).因为函数f (x )在区间[4,8]上单调递增,所以f (5)

[课时跟踪检测]

A 级

1.(2019·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x +e -

x B .y =ln(|x |+1) C .y =sin x

|x |

D .y =x -1

x

解析:选D 选项A ,B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1

x 在(0, +

∞)上均为增函数,故y =x -1

x

在(0,+∞)上为增函数,所以选项D 正确.

2.下列函数中,与函数y =1

2x -2x 的定义域、单调性与奇偶性均一致的函数是( )

A .y =cos x

B .y =x 1

3

C .y =1

x

D .y =?

????

-x 2,x ≥0,

x 2,x <0

解析:选D 函数y =1

2x -2x 为奇函数,且在R 上单调递减.函数y =cos x 是

偶函数,且在R 上不单调.函数y =x 13是奇函数,但在R 上单调递增.函数y =

1

x

的定义域是{x |x ≠0},不是R.画出函数y =?

????

-x 2,x ≥0,

x 2

,x <0的大致图象如图所示,

可知该函数是奇函数,且在R 上单调递减.故选D.

3.已知定义在R 上的奇函数f (x )有f ????x +52+f (x )=0,当-5

4≤x ≤0时,f (x )=2x +a ,则f (16)的值为( )

A.1

2 B .-1

2

C.32

D .-3

2

解析:选A 由f ????x +52+f (x )=0,得f (x )=-f ????x +5

2=f (x +5), ∴f (x )是以5为周期的周期函数, ∴f (16)=f (1+3×5)=f (1). ∵f (x )是R 上的奇函数, ∴f (0)=1+a =0,∴a =-1.

∴当-5

4≤x ≤0时,f (x )=2x -1,

∴f (-1)=2-1-1=-1

2,

∴f (1)=12,∴f (16)=1

2

.

4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a

A .有最大值4

B .有最小值-4

C .有最大值-3

D .有最小值-3

解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B. 法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,

∴-4≤f (x )≤3,即在区间[-b ,-a ]上,f (x )min =-4,f (x )max =3,故选B.

5.(2018·惠州一调)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )

A .(2,+∞) B.????0,1

2∪(2,+∞) C.?

??

?

0,

22∪(2,+∞) D .(2,+∞)

解析:选B 因为f (x )是R 上的偶函数,且在(-∞,0]上是减函数, 所以f (x )在[0,+∞)上是增函数,

所以f (log 2x )>2=f (1)?f (|log 2x |)>f (1)?|log 2x |>1?log 2x >1或log 2x <-1?x >2或0

2.

6.(2019·合肥调研)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有( )

A .f ????32

B .f ????14

C .f ????32

D .f ????-14

?1

4 解析:选C 因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数的周期为4,

作出f (x )的草图,如图,由图可知f ????32

-14.

7.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ????-5

2=________. 解析:f ????-52=f ????-52+2=f ????-12=-f ????12=-1

2. 答案:-1

2

8.(2018·合肥二模)设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则函数f (x )在[1,2]上的解析式是________________.

解析:令x ∈[-1,0],则-x ∈[0,1],结合题意可得f (x )=f (-x )=log 2(-x +1), 令x ∈[1,2],则x -2∈[-1,0],故f (x )=log 2[-(x -2)+1]=log 2(3-x ). 故函数f (x )在[1,2]上的解析式是f (x )=log 2(3-x ). 答案:f (x )=log 2(3-x )

9.已知定义在R 上的奇函数y =f (x )在(0,+∞)内单调递增,且f ????12=0,则f (x )>0的解集为_______________.

解析:由奇函数y =f (x )在(0,+∞)内单调递增,且f ????12=0,可知函数y =f (x )在(-∞,0)内单调递增,且f ????-12=0.由f (x )>0,可得x >12或-1

2

-12

12

10.已知函数f (x )为偶函数,且函数f (x )与g (x )的图象关于直线y =x 对称,若g (3)=2,则f (-2)=________.

解析:因为函数f (x )与g (x )的图象关于直线y =x 对称,且g (3)=2,所以f (2)=3.因为函数f (x )为偶函数,所以f (-2)=f (2)=3.

答案:3

11.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .

(1)判断f (x )的奇偶性;

(2)试求出函数f (x )在区间[-1,2]上的表达式. 解:(1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ). 又f (x )的定义域为R ,∴f (x )是偶函数.

(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 从而当1≤x ≤2时,-1≤x -2≤0, f (x )=f (x -2)=-(x -2)=-x +2. 故f (x )=????

?

-x ,x ∈[-1,0],x ,x ∈(0,1),

-x +2,x ∈[1,2].

12.设函数f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x . (1)求f (π)的值;

(2)当-4≤x ≤4时,求函数f (x )的图象与x 轴所围成图形的面积. 解:(1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,

所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数且f (x +2)=-f (x ),

得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ). 故函数y =f (x )的图象关于直线x =1对称.

又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.

当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S , 则S =4S △OAB =4×????12×2×1=4.

B 级

1.已知f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上单调递增,则( )

A .f (0)>f (log 32)>f (-log 23)

B .f (log 32)>f (0)>f (-log 23)

C .f (-log 23)>f (log 32)>f (0)

D .f (-log 23)>f (0)>f (log 32)

解析:选C ∵log 23>log 22=1=log 33>log 32>0,且函数f (x )在(0,+∞)上单调递增, ∴f (log 23)>f (log 32)>f (0),又函数f (x )为偶函数,∴f (log 23)=f (-log 23), ∴f (-log 23)>f (log 32)>f (0).

2.定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三种叙述:

①8是函数f (x )的一个周期; ②f (x )的图象关于直线x =2对称; ③f (x )是偶函数.

其中正确的序号是________.

解析:由f (x )+f (x +2)=0,得f (x +2)=-f (x ), 则f (x +4)=-f (x +2)=f (x ),

即4是f (x )的一个周期,8也是f (x )的一个周期,故①正确; 由f (4-x )=f (x ),得f (x )的图象关于直线x =2对称,故②正确; 由f (4-x )=f (x )与f (x +4)=f (x ), 得f (4-x )=f (-x ),f (-x )=f (x ), 即函数f (x )为偶函数,故③正确. 答案:①②③

3.设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈????0,12,都有f (x 1+x 2)=f (x 1)·f (x 2).

(1)设f (1)=2,求f ????12,f ????

14; (2)证明:f (x )是周期函数.

解:(1)由f (x 1+x 2)=f (x 1)·f (x 2),x 1,x 2∈????0,12,知f (x )=f ????x 2·f ????x

2≥0,x ∈[0,1]. ∵f (1)=f ????12+12=f ????12·f ????12=????f ????122

,f (1)=2, ∴f ???

?12=21

2.

∵f ????12=f ????14+14=f ????14·f ????14=????f ????142,f ????12=21

2, ∴f ????14=21

4.

(2)证明:依题设,y =f (x )关于直线x =1对称, ∴f (x )=f (2-x ).

又∵f (-x )=f (x ),∴f (-x )=f (2-x ),∴f (x )=f (2+x ), ∴f (x )是定义在R 上的周期函数,且2是它的一个周期.

函数的性质知识点总结

1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数; 5.方程 (1)方程k=f(x)有解k∈D(D为f(x)的值域); (2)a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min; (3)(a>0,a≠1,b>0,n∈R+); log a N= ( a>0,a≠1,b>0,b≠1); (4)log a b的符号由口诀“同正异负”记忆;

(完整版)函数的基本性质详细知识点及题型分类(含课后作业)

《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 一、函数的单调性 1、定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 2、单调性的简单性质: ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。 3、判断函数单调性的方法步骤: 利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1)(x f y =I I )(x f y =

(完整版)一次函数题型总结归纳

a a t 精心整理 一次函数题型总结 函数定义 1、判断下列变化过程存在函数关系的是() A.是变量, B.人的身高与年龄 C.三角形的底边长与面积 y x ,x y 2±=A 、1B 、2C 、3D 、42、若函数y=(3-m)x m-9是正比例函数,则m=。 3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数(2)是正比 例函数 一次函数与坐标系 1.一次函数y=-2x+4的图象经过第象限,y 的值随x 的值增大而(增大或减少)

2.已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= . 3.已知k >0,b >0,则直线y=kx+b 不经过第 象限. 4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. B. C. D. 1-14 1-4 1(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度 是多少? 4、东从A 地出发以某一速度向B 地走去,同时小明从B 地 出发以 另一速度向A 地而行,如图所示,图中的线段、B 地的 1y 距离(千米)与所用时间(小时)的关系。 2

a t s ⑵试求出A 、B 两地之间的距离。 函数图像的平移 1.把直线向上平移3个单位所得到的直线的函数解析式为 .13 2+=x y 2、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是()。 A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2) 的增大而,当. 函数图像与坐标轴围成的三角形的面积 1、函数y=-5x+2与x 轴的交点是与y 轴的交点是与两坐标轴围成的三角形面积是。 2.已知直线y =x +6与x 轴、y 轴围成一个三角形,则这个三角形面积为___。3、已知:在直角坐标系中,一次函数y=的图象分别与x 轴、y 轴相交于23

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

高一数学《函数的性质》知识点总结

高一数学《函数的性质》知识点总结 二.函数的性质 函数的单调性 增函数 设函数y=f的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x12时,都有f2),那么就说f在区间D上是增函数.区间D称为y=f的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x12时,都有f>f,那么就说f在这个区间上是减函数.区间D称为y=f的单调减区间. 注意:函数的单调性是函数的局部性质; 图象的特点 如果函数y=f在某个区间是增函数或减函数,那么说函数y=f在这一区间上具有单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 函数单调区间与单调性的判定方法 定义法: 任取x1,x2∈D,且x12; 作差f-f; 变形;

定号; 下结论. 图象法 复合函数的单调性 复合函数f[g]的单调性与构成它的函数u=g,y=f的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. .函数的奇偶性 偶函数 一般地,对于函数f的定义域内的任意一个x,都有f=f,那么f就叫做偶函数. .奇函数 一般地,对于函数f的定义域内的任意一个x,都有f=—f,那么f就叫做奇函数. 具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 首先确定函数的定义域,并判断其是否关于原点对称; 确定f与f的关系; 作出相应结论:若f=f或f-f=0,则f是偶函数;若

f=-f或f+f=0,则f是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再根据定义判定;由f±f=0或f/f=±1来判定;利用定理,或借助函数的图象判定. 函数的解析表达式 函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. 求函数的解析式的主要方法有: )凑配法 )待定系数法 )换元法 )消参法 0.函数最大值 利用二次函数的性质求函数的最大值 利用图象求函数的最大值 利用函数单调性的判断函数的最大值: 如果函数y=f在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f在x=b处有最大值f; 如果函数y=f在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f在x=b处有最小值f;

高一数学函数的基本性质综合训练

函数的基本性质--综合训练B 组 一、选择题 1.下列判断正确的是( ) A .函数22)(2--=x x x x f 是奇函数 B .函数()(1f x x =- C .函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .( -∞C .(-∞3.函数A .(∞-C .[,24 则实数a A .a ≤ 5. )x 是增函数; (2)23x --的 A .0 6. 在下图中是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f ,那么0x <时,

()f x = . 3.若函数2()1 x a f x x bx += ++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则 2(6)(3)f f -+-=__________。 5.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。 1][]2,6 2()f b ,且当 0x >时,()y f x =是 奇函数。 3.设函数,且 ()(f x g + 4.设a 为实数,函数1||)(2 +-+=a x x x f ,R x ∈(1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值。

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

函数的基本性质练习题(重要)

(高中数学必修1)函数的基本性质 [B 组] 一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数()(1f x x =- C .函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3 .函数y = ) A .( ]2,∞- B .(]2,0 C .[ )+∞,2 D .[)+∞,0 4.已知函数()()2 212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数; (2)若函数2 ()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 2 23y x x =--的 递增区间为[)1,+∞;(4) 1y x =+ 和y = 表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题

1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . 3.若函数2 ()1 x a f x x bx += ++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8, 最小值为1-,则2(6)(3)f f -+-=__________。 5.若函数2 ()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。 三、解答题 1.判断下列函数的奇偶性 (1)()f x = (2)[][]()0,6,22,6f x x =∈-- 2.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立,证明:(1)函数()y f x =是R 上的减函数; (2)函数()y f x =是奇函数。 3.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且1 ()()1 f x g x x +=-,求()f x 和()g x 的解析式. 4.设a 为实数,函数1||)(2 +-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值。

一次函数知识点总结与常见题型-一次函数知识点整理(最新最全)

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =2 1 -3x (5)y =x 2-1中,是一次函数的有 ( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y =x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y =kx (k 是常数,k ≠0)

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,

点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -= 已知A ),(11y x 、B ),(22y x AB|= 2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。 函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的 值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域: 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。

必修一函数的基本性质综合应用

数学试卷 考试围:xxx;考试时间:100分钟;命题人:xxx 学校:___________:___________班级:___________考号:___________ 注意事项:1、答题前填写好自己的、班级、考号等信息 2、请将答案正确填写在答题卡上 第1卷 1、设,,其中,如果,数的取值围. 2、集合,。 1.若,数的取值围。 2.当时,没有元素使与同时成立,数的取值围。 3、已知函数是奇函数,且当时,,求函数的解析式. 4、设函数在定义域上总有,且当时,. 1.当时,求函数的解析式; 2.判断函数在上的单调性,并予以证明. 5、已知函数. 1.判断函数的奇偶性; 2.若在区间上是增函数,数的取值围。 6、设是上的函数,且满足,并且对任意的实数都有,求的表达式。

7、定义在上的函数 ,满足 ,且当时, 1.求的值 2.求证: 3.求证: 在上是增函数 4.若 ,解不等式 8、已知函数 1.数的取值围,使是区间上的单调函数 2.求的值,使在区间上的最小值为。 9、已知是奇函数 1.求的值 2.求的单调区间,并加以证明 10、已知是定义在实数集上的偶函数,且在区间上是增函数,并且 ,数的取值围。 11、已知集合。 1.当时,求 2.求使的实数的取值围

12、知二次函数。 1.若函数在区间上存在零点,数的取值围。 2.问是否存在常数 ,当时, 的值域为区间 ,且区间的长度为 (视区间的长度为 ) 13、二次函数满足 ,且。 1.求的解析式 2.求在上的值域。 3.若函数为偶函数,求的值 4.求在上的最小值。 14、定义在上的函数满足对任意、恒有且不恒为。 1.求和的值; 2.试判断的奇偶性,并加以证明 3.若时为增函数,求满足不等式的的取值集合 15、设是定义在 R 上的奇函数,且对任意实数 ,恒有。当时,。 1.求证:函数恒有成立 2.当时,求的解析式 3.计算。 16、已知定义在上的函数对任意实数,恒有,且当时,,又. 1.求证:为奇函数;

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

高中数学全必修一函数性质详解及知识点总结及题型详解

高中数学全必修一函数性质详解及知识点总结及题型详解

————————————————————————————————作者:————————————————————————————————日期:

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同 1、下列各对函数中,相同的是 ( ) A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,1 1 lg )(--+=-+=x x x g x x x f C 、 v v v g u u u f -+= -+= 11)(,11)( D 、f (x )=x ,2)(x x f = 2、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合 N 的函数关系的有 ( ) A 、 0个 B 、 1个 C 、 2个 D 、3个 二、函数的解析式与定义域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f x x x x 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 y y y y 3 O O O O

人教版高中必修一数学第二章函数的基本性质综合练习题

函数的基本性质练习题 、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。 1. (2010 浙江理)设函数的集合 P = < f (x) =log 2(x+a)+b a =- 丄0 1 1; y = _10l ],则在同一直角坐标系中, P 中函数f(x)的图象恰好 经过 Q 中两个点的函数的个数是 A.关于原点对称 B. 关于直线y=x 对称 C.关于x 轴对称 D.关于y 轴对称 3. (2010广东理)3 .若函数f (x ) =3x +3-x 与g (x ) =3x -3-x 的定义域均为 R ,则 (4)设f(x)为定义在R 上的奇函数,当 x > 0时,f(x)= 2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 1 5. (2010湖南理)8.用min :a,bf 表示a, b 两数中的最小值。若函数f x = min x x ? t 的图像关于直线x=- 2 对称,则t 的值为 A. -2 B . 2 C . -1 D . 1 6??若f(x)是R 上周期为5的奇函数,且满足 f(1)=1 , f(2)=2,则f(3)-f(4)= (A ) -1 (B) 1 (C) -2 (D) 2 7. (2009全国卷I 理)函数 f (x)的定义域为R ,若f(x ,1)与f(X-1)都是奇函数,则( ) A. f (x)是偶函数 Y-(X 2 -x j :: f (X 2) -f (xj :: :(X 2 -x j ,下列结论正确的是 (A) 若 f(x) M :1,g(xr M -2,则f(x) g(x) M :2 1 1 2,0Rb7U , 平面上点的集合 Q=g(x, y) (A ) 4 (B ) 6 (C ) 8 (D ) 10 2. (2010重庆理) 4x 1 2x 的图象 A. f (x)与g(x)与均为偶函数 B. f (x)为奇函数,g(x)为偶函数 C. f (x)与g(x)与均为奇函数 D. f (x)为偶函数,g(x)为奇函数 4. (2010山东理) B. f (x)是奇函数 C. f (x^f (x ■ 2) D. f (x ■ 3)是奇函数 8.对于正实数〉,记 M :.为满足下述条件的函数f ( x )构成的集合 一 X 1, x 2 ? R 且 X 2 > X 1 ,有

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

相关文档
最新文档