第三角与第一角投影的区分

第三角与第一角投影的区分
第三角与第一角投影的区分

第三角与第一角投影的区分

机械三视图的第三角法和第一角法划分

三视图的第三角法和第一角法划分:

一、第一角投影法

1.凡将物体置於第一象限内,以「视点(观察者)」→「物体」→「投影面」关系而投影视图的画法,即称为第一角法。亦称第一象限法。,

2.第一角投影箱之展开方向,以观察者而言,为由近而远之方向翻转展开。

3.第一角法展开后之视图排列如下,以常用之三视图(前视、俯视、右侧视图)而言,其右侧视图位於前视图之左侧,俯视固则位於前视图之正下方。

二.、第三角投影法

1.凡将物体置於第三象限内,以「视点(观察者)」→「投影面」→「物体」关系而投影视图的画法,即称为第三角法。亦称第三象限法。

2.第三角投影箱之展开方向,以观察者而言,为由远而近之方向翻转展开。

3.第三角法展开后之六个视固排列如下,以常用之三视图而言,其右侧视图位於前视图之右侧,而俯视图则位於前视图之正上方。

CNS 相关规定

CNS中国国家标准之象限投影符号,系将一截头圆锥之前视图与左侧视图,依投影之排列而得。主要之区别为第一角法符号(左侧视图排在右边),而第三角法符号(左侧视图位在左边)。

对于正投影方法之使用,CNS规定第一角法或第三角法同等适用。但在同一张图纸上不可混合使用,且须在标题概内或其他明显处绘制符号或加注「第一角法」或「第三角法」字样。以作为读图之识别。

由於第二象限投影与第四象限投影因水平投影面旋转后与直立投影面重叠,致使投影视图线条混淆不清,增加绘固及识图不便,故不予采用。

欧洲各国盛行第一角法投影制,所以第一角法投影亦有「欧式投影制」之称呼。例如德国(DIN)、瑞士(VSM)、法国(NF).挪威(NS)等国家使用之。

美国采用第三角投影制,故有「美式投影制」之称呼。除美国(ANSI)外,尚盛行於美洲地区。而中华民国(CNS)、国际标准化机构(ISO)与日本[JIS]则采第一角法及第三角两制并行。

视图之排列,应依投影原理上下左右对齐排列,不得任意更换或未依据投影方式排置。

六种视图中最常用之三视图组合为:前视图、上视圆及右侧视图,一般均以L字形或逆向L字形之方式排列於图纸上。

我们国内用的是第一角画法,国外用第三角画法的比较多

第一角画法和第三角画法的区别是视图放的位置

第一角画法:左视图放右边,右视图放左边,上视图放下面,依此类推

第三角画法:左视图放左边,右视图放右边,上视图放上面,依此类推

在我们国家有关制图方面的国家标准中规定,我国采用第一角投影法。但有些国家(如美国、日本)则采用第三角投影法。伴随着我国的对外开放和WTO的加入及对外贸易和国际间技术交流的日趋增多,我们会越来越多的接触到采用第三角投影法绘制的图纸。为了更好地进行国际间的技术交流和发展国际贸易的需要,我们应该了解和掌握第三角投影法。

如图13-59所示,两个互相垂直的投影面,把空间分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个分角。机

件放在第一分角进行投影表达,称为第一角投影。机件放在第三分角进行投影表达,称为第

三角投影。

图13-59 第一角投影是把被画机件放在投影面与观察者之间,从投影方向看是观察者-机件-

投影面的投影关系。而第三角投影则是将机件放在投影面后边,即是人隔着投影面观察物体,保持着观察者-投影面-机件的投影关系。然后按正投影法得到各个视图,从前向后投影是前视图,从上向下投影是顶视图,从右向左投影是右视图,如图13-60a所示。各投影面按图13-60a所示的方法展开,三视图的配置如图13-60b所示。

(a)形成过程(b)三视图图13-60第三角投

从图13-61中可知,第三角投影与第一角投影都是采用正投影法,且投影面互相垂直,因此在第三角投影的视图之间仍然保持“长对正,高平齐,宽相等”的投影对应关系。它们之间的主要区别有:

⒈第三角投影的视图名称和视图配置关系与第一角投影的视图名称和视图配置关系不同。

⒉视图间的投影对应关系不同

在第三角投影法中,除后视图以外的其余视图中,靠近前视图的一侧为机件的前面,远离前视图的一侧则为机件的后面,而在第一角投影法中正好相反。

(a)六基本投影面及其展开

在熟练掌握第一角投影的基础上,了解第三角投影的特点后,第三角投影画法就比较容易熟悉和掌握了。

鉴于两种投影法的不同特点,为了便于识别,国际标准规定了第一角投影和第三角投影的识别方法。

⒈以识别符号识别

识别符号见图13-62,该识别符号应画在图纸的标题栏内。

⒉以拉丁字母A、E表示

(A)——表示第三角投影画法。

(E)——表示第一角投影画法。

第二种方法一般常用于技术文件中。

(b)六个基本视图及其配置 13-61第三角画法六个基本视图的形成

(a)第一角(b)第三角

图13-62两种画法的标识符号

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

2.6地图投影的选择和变换

幻灯片1 地图投影的选择和变换幻灯片2 地图投影的选择和变换●本讲主要内容: ●一、地图投影的选择 二、地图投影的变换 幻灯片3 一、地图投影的选择 (一)投影选择的依据 1、制图区域的地理位置、形状和范围 制图区域的地理位置决定了所选择投影的种类 正轴方位投影 极地—— 赤道附近—— 横轴方位投影或正轴圆柱投影 正轴圆锥投影或斜轴方位投影 中纬地区—— 幻灯片4 制图区域形状直接制约地图投影的选择 中纬度地区: 沿纬线方向延伸的长形区域—— 单标准纬线正轴圆锥投影 沿经线方向略窄,沿纬线方向略宽的长形区域—— 双标准纬线正轴圆锥投影 沿经线方向南北延伸的长形区域—— 多圆锥投影 斜轴方位投影 南北、东西方向差别不大的圆形区域—— 低纬赤道附近: 沿赤道方向呈东西延伸的长条形区域—— 正轴圆柱投影 东西、南北方向长宽相差无几的圆形区域—— 横轴方位投影 幻灯片5 制图区域的范围大小也影响地图投影的选择 正轴圆柱、伪圆锥、广义多圆锥和某些派生的地图投影世界地图—— 东西半球:横轴等面积或等距离方位投影 水路半球:斜轴等距离或等面积方位投影 南北半球:正轴等角或等距离方位投影 半球地图—— 非洲:横轴等面积方位、横轴等角圆柱 其他洲:斜轴等面积方位投影

大洲地图—— 不同变形性质的正轴圆锥投影 大国地图—— 幻灯片6 2、比例尺 不同比例尺地图,对精度要求不同,投影选择不同。 大比例尺地形图,对精度要求高,宜采用变形小的投影,如分带投影。 中、小比例尺地图范围大,概括程度高,定位精度低,可有等角、等积、任意投影的多种选择。 幻灯片7 幻灯片8

幻灯片9

实验地图投影的判别

实验一地图投影的判别 说明 ⒈地图几大投影系统的经纬网的基本形状 (1)方位投影 正轴方位投影:纬线是以极点为圆心的同心圆,经线是以极点为中心的放射状直线。 横轴方位投影:赤道是直线,其他纬线为对称于赤道的曲线;中央经线是直线,其他经线为对 称于中央经线的曲线。 斜轴方位投影:中央经线为直线,其他经线为对称与中央经线的曲线;纬线为任意曲线。 (2)圆柱投影 正轴圆柱投影:纬线为平行于赤道的直线,经线为垂直于迟到的平行直线。 横轴圆柱投影(高斯投影或UTM投影):中央经线为直线,其他经线为对称于中央经线的曲线;赤道为直线,其他纬线为对称于赤道的曲线。 (3)圆锥投影通常均指正轴圆锥投影。 正轴圆锥投影:纬线为同心圆弧,经线为交于一点的放射状直线束。 (4)伪圆投影和伪圆锥投影 伪圆柱投影:纬线是同心圆弧;中央经线是直线,其他经线为对称于中央经线的曲线。 伪圆锥投影:纬线是平行于赤道的直线;中央经线为直线,其他经线为对称于中央经线的曲线。 ⒉一些常用地图投影的经纬线形状特征,如表 1 ⒊地图上经纬线形状的判别地图上的经纬线一般有直线、曲线、同心圆、同心圆弧、同轴圆 弧几种形式,其判断方法如下: (1)直线和曲线的判断:取一直尺,将经线或纬线线段的两个端点置于直线的直线边上,如果 线段上的各点均位于直尺的直线边上,则说明这条线段是直线,否则是曲线。 (2)曲线与圆弧的判别:用一块透明纸蒙在曲线上,在曲线上按一定间隔绘出3-5个点,然后移动透明纸至曲线的另外位置,若透明纸上的点仍在这条曲线上,则说明此曲线为圆弧,否则为其 他曲线。 表1 一些常用地图投影的经纬线形状特征 投影名称 经纬线形状 中经线上纬线间隔的变 化 主要制图区 域 经线纬线 等差分纬线多圆锥投影中央经线为直线,其余经线 为对称于中央经线的曲线 赤道为直线,其余纬 线为对称于赤道的 同轴圆弧 从赤道向两极稍有增大世界图 摩尔魏特投 影中央经线是直线,其他经线 为椭圆弧 纬线是平行直线由赤道向两极逐渐变小 世界图、半 球图 古德投影有几条中央经线是直线,其 余经线是曲线 纬线是平行直线 纬度40°以下相等,纬 度40°以上逐渐减小 世界图 墨卡托投影间隔相等的平行直线与经线垂直的平行 直线 由低纬向高纬急剧增大 世界图、东 南亚地区图 1 / 6

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

地图投影的选择、设计和变换

一、地图的用途和性质 这是最重要的因素。一旦确定,便可确定投影的性质。 等积投影:适用于经济、政治和自然地图 等角投影:适用于航行、军事和地形图 等距离投影:普通地图等各种变形具有同等重要意义的地图 任意投影:教学地图和各种科学一览图。 特种地图对投影有特殊的要求,如球心投影,等距离方位投影,时区图等等。 二、制图区域的形状和地理位置 可以确定投影的类型 圆形地区:方位投影 中纬度东西延伸地区:圆锥投影 赤道附近或沿赤道两侧东西延伸地区:正轴圆柱投影 南北延伸地区:横轴圆柱投影或多圆锥投影 斜向延伸地区:斜轴圆柱或圆锥投影 在小区域内,各种投影的影响均不大,此时可考虑用计算方便,格网简单的投影。 三、制图区域的大小 其影响表现在由于面积的增大,使投影的选择更为复杂化,要考虑的因素更多。 如大比例尺地图就不需要更多考虑区域的形状和地理位置。 实际工作中,凡面积不超过5-6百平方公里的区域,选择投影的变形为0.5%即可;面积在3.5-4.0千平方公里的区域,长度变形在2-3%即可;若是更大的区域,其长度变形往往超过3%。对于中等或不大的区域,投影选择一般只考虑几何因素,不必考虑地图的用途和性质。 ? 1.世界地图的投影 世界地图的投影主要考虑要保证全球整体变形不大,根据不同的要求,需要具有等角或等积性质,主要包括:等差分纬线多圆锥投影、正切差分纬线多圆锥投影(1976年方案)、任意伪圆柱投影、正轴等角割圆柱投影。 2.半球地图的投影 东、西半球有横轴等面积方位投影、横轴等角方位投影;南、北半球有正轴等面积方位投影、正轴等角方位投影、正轴等距离方位投影。 3.各大洲地图投影 1)亚洲地图的投影:斜轴等面积方位投影、彭纳投影。 2)欧洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 3)北美洲地图的投影:斜轴等面积方位投影、彭纳投影。 4)南美洲地图的投影:斜轴等面积方位投影、桑逊投影。 5)澳洲地图的投影:斜轴等面积方位投影、正轴等角圆锥投影。 6)拉丁美洲地图的投影:斜轴等面积方位投影。 4.中国各种地图投影 1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方位投影、彭纳投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割圆锥投影。 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投影(宽带)。 3)中国大比例尺地图的投影:多面体投影(北洋军阀时期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯-克吕格投影(解放以后)。

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图投影实验报告

淮海工学院 现代地图学A 实验报告 实验名称:专题地图制作 班级:测绘122 姓名:苏红飞 实验地点:测绘楼307 实验时间: 2013-12-02 实验成绩: 测绘工程学院测绘工程系

实验一地图投影 一、实验目的与要求 1.学会MapInfo的最基本操作,如表、工作空间、图层等的操作。 2.掌握有关高斯-克吕格投影的知识。 3.学会根据地图上不同经纬网形态识别不同的投影类型。 二、实验步骤 (一)掌握MapInfo中地图投影的操作过程。

(二)绘制武汉市所在地区的高斯—克吕格投影6度带经纬网和方里网,绘图范围:东西范围由武汉市所在投影带决定,南北范围:北纬25o—35o。经线线距1,纬线线距1o。 1、打开MapInfo,出现如图1所示的对话框,点击ok键。 图 1

2、如图2-1所示,在File选项中选中open点击,打开“实验素材”(图2-2)。 图2-1 图2-2 3、再依次打开CHINA.TAB、CHINCAP.TAB、PROVINCE.TAB,打开后如图3所示。

图3 4、点击Layer Control,如图4-1所示。在Tools选项中单击Tool Manger...出现下图4-3中所示的对话框,选中Coordinate Extractor,将它后面的两个 小框打钩。 图4-1 图4-2 图4-3

5、在Tools菜单中单击Coordinate Extractor中的Extract Coordinates...选项出现如图5-2所示的对话框,在table name一栏中选择CHINCAPS,然后点击ok出现如图5-3所示的对话框,选择continue,即可看见如图5-4所示的窗口,在上面找到并记下武汉的地理坐标。 图5-1 图5-2 图5-3

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

地理信息系统常用的地图投影

地理信息系统常用的地图投影 1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影 该投影是等角横切椭圆柱投影。想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。 高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。 高斯投影的条件和特点 ★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴 高斯投影的条件★投影具有等角性质 ★中央经线投影后保持长度不变 ★中央子午线长度变形比为1,其他任何点长度比均大于1 ★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大 高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方 ★长度比的变形线平行于中央子午线 高斯投影6°和3 为了控制变形,我国地图采用分带方法。我国1:1.25万—1:50万地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。 6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。一般从南纬度80到北纬度84度的范围内使用该投影。 3度分带法从东经1度30分算起,每3度为一带。这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。 高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制; ★径纬网和直角坐标的偏差小,便于阅读使用; ★计算工作量小,直角坐标和子午收敛角值只需计算一个带。 ★由于高斯-克吕格投影采用分带投影,各带的投影完全相同,所以各投影带的直角坐标值也完全一样,所不同的仅是中央经线或投影带号不同。为了确切表示某点的位置,需要在Y坐标值前面冠以带号。如表示某点的横坐标为米,前面两位数字“20”即表示该点所处的投影带号。 2、墨卡托投影---------- 等角正切圆柱投影 定义:假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 特性:墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。 墨卡托投影的用途 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和

浅谈地图投影及其选择与应用

浅谈地图投影及其选择与应用 信息科学技术的进步,为现代地图学带来了全新的发展,数字化技术大大缩短了测绘地图周期,使快速成图变为现实,由4D 产品衍生的复合型地图成果也随之出现,但在地图投影选择、投影参数确定、地图数据叠加等方面凸显问题,从而使地图投影作为地图学的重要组成部分和建立地图的数学基础,再次引起广大科技工作者的重视。笔者就复合型地图以及运用多数据编制较小比例尺区域地图、专题地图、地图集等所涉及的地图投影谈谈自己的一点认识,供大家参考。 ?地图与地图投影概念 一幅现代地图必须是具备严密的数学基础,运用科学的制图综合方法,采用特定的地图符号、注记,表达出地面的三维信息和信息动态的图件。地图由此而产生的特性不同于地面写景图、照片或风景画,它是建立在一定数学基础之上的。 地图投影学正是研究建立地图数学基础的一门学科,即研究如何将地球椭球面(或圆球面)无裂隙、无重叠、平整地转换到平面(或可展曲面)上的理论与方法。因此,地图投影的实质就是建立地球椭球面地理坐标点(φ,λ)和平面直角坐标点(X ,Y )的函数对应关系,其数学表达式为: X =F 1 (φ,λ) Y =F 2 (φ,λ) 这种函数关系式必须是单值、有限而连续的。 众所周知,地球体面是一个不可展的曲面,无论采用何种地图投影法都不可能将地球体表面表示在平面上保持原样,都将产生变形或误差,其变形包括长度变形、面积变形和角度变形。一般情况下,三种变形同时存在,但在特殊情况下,或可保持角度无变形,或可保持面积无变形,或可保持某个特定方向上的长度无变形。相应地我们根据变形性质把投影分为等角投影、等面积投影和任意投影(包括等距离投影)三类,它们之间是相互联系相互影响的,其关系是: ?在等面积投影中,不能保持等角特性。 ?在任意投影中,不能保持等面积和等角特性。 ?在等面积投影中,形状变形比其它投影大;在等角投影中,面积变形比其它投影大。 根据投影的经纬线形状,我们也可把地图投影分为方位投影、圆锥投影、圆柱投影、伪方位投影、伪圆锥投影、伪圆柱投影、多圆锥投影和组合投影等。下面简要地介绍部分常用地图投影。 ?方位投影——假设将一平面相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到平面上。此时的纬线为同心圆,经线为同心圆半径,两经线间夹角保持不变。例如联合国徽标就是典型的方位投影世界地图。 ?圆柱投影——假设将圆柱内侧相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆柱面上,然后沿一母线切开并展成一矩形平面。此时纬线为平行直线,经线为垂直于纬线的另一组等距离直线,两经线距离与相应经差成正比。例如世界时区图。 ?圆锥投影——假设将一圆锥相切(或相割)于地球体表面,将地球体曲面上的经纬线投影到圆锥面上,然后将圆锥面沿一母线切开并展成一扇形平面。此时纬线为同心圆弧,经线为同心圆弧半径,两经线间的夹角与相应经差成正比。例如中华人民共和国全图。 当然还有其它种类繁多的投影,在此不一一赘述。 ?地图投影选择与应用 在设计编制任何性质的地图或地图集时,选择一个适当的地图投影,不但能保证最适合于地图用途的要求,而且可根据需要选定其变形性质并限定变形大小,提高地图的使用精度。在此笔者仅就在实际工作中选择地图投影应考虑的几点作一浅述。

地图投影复习资料

名词解释:(20分) 地图的基本概念 地图是根据一定的数学法则,经过制图综合,运用符号和注记,将地球(或星球)表面缩绘在平面上的图象。它能反映地表各种自然和社会环境的空间分布、联系、变化和发展。 地图投影: 地图投影就是将地球椭球面(或球面)上确定的点,通过一定的数学法则表示到投影面上,建立两面之间点的一一对应关系。 大地水准面: 设想当海水面完全处于静止状态下,并延伸到大陆内部,使它成为一个处处与铅垂线(重力线)正交的连续的闭合曲面,这个曲面叫做大地水准面。 子午圈 (名词解释) 通过地面任一点的法线可以有无数法截弧,它们与椭球面相交 则形成无数法截弧,其中有一对互相垂直的法截弧,称为主法截弧。 主法截弧都是椭圆,其中一个是子午圈。 卯酉圈(名词解释) 与子午圈垂直的另一个圈称为卯酉圈。地球椭球面上的子午圈 始终代表南北方向;卯酉圈除了两个极点外,代表东西方向。 方位角:过A 点的垂直圈与过新极点的经线圈的交角,为方位角。从 形式上来看,方位角相当于λ 天顶距:A 点至新极点Q 的垂直圈弧长,即天顶距。从形式上来看,天顶距相当于90?-?。 高斯克吕格:假想用一个椭圆柱套在地球椭球体外面,并与某一子午线相切,椭圆柱的中心轴位于椭球的赤道面上,再按高斯-克吕格投影所规定的条件,将中央经线东、西各一定的经差范围内的经纬线交点投影到椭圆柱面上,并将此椭圆柱面展为平面,即得本投影。 航海图:采用墨卡托投影。是正轴等角圆柱投影,假想一个与地轴方向一致的圆柱切或割于地球,按等角条件,将经纬网投影到圆柱面上,将圆柱面展为平面后,即得本投影。 【参考】: 地图投影的基本方法: 几何透视法:利用透视线的关系,将地球面上点描写到投影面上。 数学分析法在原面与投影面之间建立点与点的函数关系。 一般表达式: 主比例尺:通常在地图上注出的比例尺叫主比例尺,由于投影的长度变形,不仅随着不同的点位不同,而且在 同一点的不同方向线也不一样,因此地图上的比例尺不可能处处相等,只有在无变形点和无变形线上才能保持投影长度比为1,即与主比例尺保持一致。 局部比例尺:大于或小于主比例尺者,则称为局部比例尺。 长度比 地面上的一微分线段投影后的长度(ds ') 与它原有的长度(ds )之比,以 μ 特点: 一点上的长度比,不仅随点的位置(经、纬度)而变化,而且也随着线段的方向而发生变化。也就是说,不同点上长度比都不相同,同一点上不同方向的长度比也不相同。 面积比 地面上的一微分面积投影后的大小(dF ')与它原有的面积(dF ) 之比,以 P 表示,即 P 1 子午圈(PEP 1E 1) 和卯酉圈(AQW) ) ,(),(21λ?λ?f y f x ==

我国常用的三种地图投影

椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”)Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80采用)(长轴a: 6378140, 短轴b: 6356755.2882) WGS 84(长轴a: 6378137, 短轴b: 6356752.3142) 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影( transverse conformal cylinder projection)”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国

人教版地理高二选修7第二章第一节地图和地图投影B卷(练习)

人教版地理高二选修7第二章第一节地图和地图投影B卷(练习) 姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共38分) 1. (4分) RS、GPS和GIS被统称为3S技术,现已在地理学研究领域和国土整治中得到广泛运用。据此完成下列问题。 (1) GIS是指 A . 地理信息技术 B . 遥感技术 C . 全球定位系统 D . 计算机辅助制图系统 (2)投资商在某城市内进行大型购物中心区位选择时,可利用该城市的GIS系统作综合分析,调取的主要参考图层是 A . 地形图层和供应商分布图层 B . 交通图层和人口图层 C . 工业区图层和居住区图层 D . 服务企业图层和通讯图层 【考点】 2. (2分)下图为“某区域示意图”,左图为右图中“R河河谷及其附近地质剖面示意图”(R河河谷的形成主要受地转偏向力影响)。读图,R河应位于()。 A . 北半球 B . 南半球 C . 东半球 D . 西半球 【考点】

3. (2分)在电视屏幕上,我们经常看到沙尘、台风、风暴等灾害性天气的形成过程,这些信息的获得主要得益于()。 A . 遥感技术 B . 全球定位系统 C . 地理信息系统 D . 数字地球 【考点】 4. (2分)遥感技术在农业方面的应用有() ①识别各种农作物②计算种植面积③根据作物生长情况估计产量④农作物灾情预报 A . ①②③ B . ②③ C . ①③④ D . ①②③④ 【考点】 5. (2分) GIS不仅可以像传统地图一样,解决与“地点”“状况”有关的查询,而且能进行趋势分析、复杂的“模式分析”和用“虚拟模拟”进行预测性分析。2010年3月23日发生在西藏林芝察隅的森林火灾全部扑灭。将GIS用来监测森林火灾,可以()。 A . 用来分析、判断引起火灾的原因 B . 预测森林火灾的发生地 C . 预测森林火灾所造成的后果 D . 及时知道火灾地点、范围,以便于及时分析火势蔓延方向,制订灭火方案 【考点】 6. (4分) 2017年共享汽车成为共享经济领域获投金额最高的行业,分时租赁共享电动汽车发展势头迅猛。读图完成下列问题。

实验地图投影的判别

地图投影的判别实验一 说明 ⒈地图几大投影系统的经纬网的基本形状 (1)方位投影 正轴方位投影:纬线是以极点为圆心的同心圆,经线是以极点为中心的放射状直线。 横轴方位投影:赤道是直线,其他纬线为对称于赤道的曲线;中央经线是直线,其他经线为对称于中央经线的曲线。 斜轴方位投影:中央经线为直线,其他经线为对称与中央经线的曲线;纬线为任意曲线。(2)圆柱投影 正轴圆柱投影:纬线为平行于赤道的直线,经线为垂直于迟到的平行直线。 横轴圆柱投影(高斯投影或UTM投影):中央经线为直线,其他经线为对称于中央经线的曲线;赤道为直线,其他纬线为对称于赤道的曲线。 (3)圆锥投影通常均指正轴圆锥投影。 正轴圆锥投影:纬线为同心圆弧,经线为交于一点的放射状直线束。 (4)伪圆投影和伪圆锥投影 伪圆柱投影:纬线是同心圆弧;中央经线是直线,其他经线为对称于中央经线的曲线。 伪圆锥投影:纬线是平行于赤道的直线;中央经线为直线,其他经线为对称于中央经线的曲线。 ⒉一些常用地图投影的经纬线形状特征,如表1 ⒊地图上经纬线形状的判别地图上的经纬线一般有直线、曲线、同心圆、同心圆弧、同轴圆弧几种形式,其判断方法如下: (1)直线和曲线的判断:取一直尺,将经线或纬线线段的两个端点置于直线的直线边上,如果线段上的各点均位于直尺的直线边上,则说明这条线段是直线,否则是曲线。(2)曲线与圆弧的判别:用一块透明纸蒙在曲线上,在曲线上按一定间隔绘出3-5个点,然后移动透明纸至曲线的另外位置,若透明纸上的点仍在这条曲线上,则说明此曲线为圆弧,否则为其他曲线。

)同心圆弧的判断:若每一个圆弧上的任一点与另一个圆弧的最短距离均相同,即相邻圆弧3(之间的垂线处处等长,则这组圆弧为同心圆弧。)同轴圆弧的判断:有一组圆弧,相邻圆弧之间垂线处处不相等,且左右对称,这组圆弧就4(是同轴圆弧,既圆心不在一点而在一条直线上,这一条直线一般是中央经线。判断直线、曲线、圆弧、同心圆弧、同轴圆弧的方法是确定经危险形式的基础,根据经纬线形 式就可以确定常见的几种投影的类别。常见的投影的变形性质都决定于⒋根据地 图上纬线间距变化规律判别地图投影变形性质中央经线上的纬线间距的变化规律。例如,等角投影的纬线间距是从地图的中央向南北逐渐增大,并且增大具有一顶规律。像横轴

地图投影的判别与选择

第五节地图投影的判别与选择 一、地图投影的判别 地图投影是地图的数学基础,它直接影响地图的使用。地图是地理工作者不可缺少的工具,有很多地理知识是从图上获得的。如果在使用地图时,不了解投影的特性,往往会得出错误的结论。例如在小比例尺等角或等积投影图上量算距离,在等角投影图上对比不同地区的面积,以及在等积投影图上观察各地区的形状特征等。目前,国内外出版的地图上大多数都注明地图投影名称,这对于使用地图,当然是很方便的。但是,也有一些地图不注明投影名称和有关说明,因此,我们必须运用地图投影的知识,根据不同投影的特征——经纬线形状,结合制图区域所在的地理位置、轮廓形状及地图的内容和用途等,综合进行分析、判断和进行必要的量算来判别它们。文档来自于网络搜索 地图投影的判别,主要是对小比例尺地图而言。大比例尺地图往往是属于国家地形图系列,投影资料一般易于查知。另外由于大比例尺地图包括的地区范围小,不管采用什么投影,变形都是很小的,在使用时可以忽略不计。文档来自于网络搜索 判别地图投影一般是先根据经纬线网形状确定投影种类,如方位、圆柱、圆锥等,其次是判定投影的变形性质,如等角、等积或任意投影。文档来自于网络搜索 (一)确定投影种类 对于常见的地图投影,一般还是比较容易确定它的种类的,表2-16列出一些常见投影,供判别时参考。 判别经纬线形状的方法如下:直线只要用直尺量度,便可确定。判断曲线是否为圆弧,可以将透明纸覆盖在曲线之上,在透明纸上沿曲线按一定间隔定出三个以上的点,然后沿曲线移动透明纸,使这些点位于曲线的不同位置,如这些点处处都与曲线吻合,则证明曲线是圆弧,否则就是其他曲线。判别同心圆弧与同轴圆弧,则可以量测相邻圆弧间的垂线距离,若处处相等则为同心圆弧,否则是同轴圆弧。文档来自于网络搜索 (二)确定投影的变形性质 当已确定投影的种类后,对有些投影的变形性质是比较容易判定的。例如已确定为圆锥投影,那么只须量任一条经线上纬线间隔从投影中心向南、北方向的变化就可以判别

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|) 一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”) 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777~1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的两条母线剪开展平,即得到高斯-克吕格投影平面。 高斯-克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

第五节地图投影的判别与选择-精品

第五节地图投影的判别与选择-精品 2020-12-12 【关键字】情况、方法、条件、问题、系统、整体、透明、保持、统一、加深、建立、掌握、了解、研究、规律、特点、位置、根本、基础、能力、方式、关系、分析、主张、宣传、解决、改善、方向、巩固、扩大、提高、协调、中心 一、地图投影的判别 地图投影是地图的数学基础,它直接影响地图的使用。地图是地理工作者不可缺少的工具,有很多地理知识是从图上获得的。如果在使用地图时,不了解投影的特性,往往会得出错误的结论。例如在小比例尺等角或等积投影图上量算距离,在等角投影图上对比不同地区的面积,以及在等积投影图上观察各地区的形状特征等。目前,国内外出版的地图上大多数都注明地图投影名称,这对于使用地图,当然是很方便的。但是,也有一些地图不注明投影名称和有关说明,因此,我们必须运用地图投影的知识,根据不同投影的特征——经纬线形状,结合制图区域所在的地理位置、轮廓形状及地图的内容和用途等,综合进行分析、判断和进行必要的量算来判别它们。 地图投影的判别,主要是对小比例尺地图而言。大比例尺地图往往是属于国家地形图系列,投影资料一般易于查知。另外由于大比例尺地图包括的地区范围小,不管采用什么投影,变形都是很小的,在使用时可以忽略不计。 判别地图投影一般是先根据经纬线网形状确定投影种类,如方位、圆柱、圆锥等,其次是判定投影的变形性质,如等角、等积或任意投影。 (一)确定投影种类 对于常见的地图投影,一般还是比较容易确定它的种类的,表2-16列出一些常见投影,供判别时参考。 判别经纬线形状的方法如下:直线只要用直尺量度,便可确定。判断曲线是否为圆弧,可以将透明纸覆盖在曲线之上,在透明纸上沿曲线按一定间隔定出三个以上的点,然后沿曲线移动透明纸,使这些点位于曲线的不同位置,如这些点处处都与曲线吻合,则证明曲线是圆弧,否则就是其他曲线。判别同心圆弧与同轴圆弧,则可以量测相邻圆弧间的垂线距离,若处处相等则为同心圆弧,否则是同轴圆弧。

相关文档
最新文档