基于非均匀网格有限差分法的大地电磁静位移模拟

基于非均匀网格有限差分法的大地电磁静位移模拟
基于非均匀网格有限差分法的大地电磁静位移模拟

我国大地电磁测深新进展及瞻望

第17卷 第2期 地 球 物 理 学 进 展 V ol.17 N o.2 2002年6月(245~254) PROG RESS I N GE OPHY SICS June 2002我国大地电磁测深新进展及瞻望 魏文博 (中国地质大学,北京100083) [摘 要] 简要回顾了上世纪60—80年代,我国大地电磁测深工作的起步和发展,较全面地介绍了90年代以来的新进展,并瞻望了新世纪的发展方向. [关键词] 大地电磁测深仪器;数据采集;数据处理和反演;应用;新进展 [中图分类号] P631 [文献标识码] A [文章编号] 1004229032(2002)022******* 0 引 言 电法勘探是勘探地球物理学的重要分支.如果从1815年P.F ox在硫化矿体上观测到自然电场[1]算起,电法勘探已有近200年历史;但真正得到发展,则不到100年时间.20世纪初,世界各国的工业迅速发展,矿产原料需求量急剧增加,迫切需要先进的勘查技术;因而,促使电法勘探从科学研究进入实用阶段,并得以迅速发展.显然,电法勘探的发展是和工业生产水平、社会经济状况,以及科学技术进步密切相关的.发展到今天,电法勘探在勘探地球物理学各分支中,方法技术最多、应用面最广,其应用领域遍及固体矿产、油气和水资源勘查,工程勘查,环境监测,及地学基础理论研究等各方面.在所有的电法勘探方法中,发展最快的是大地电磁测深. 大地电磁测深是20世纪50年代初由A.N.T ikhonov[2]和L.Cagnird[3]分别提出的天然电磁场方法.60年代以前,由于技术难度大,该方法的研究进展缓慢;但它具有探测深度大、不受高阻层屏蔽的影响、对低阻层反应灵敏等吸引人的优点,因而对该方法的研究始终为人们所关注.70年代以来,由于张量阻抗分析方法的提出,方法理论研究出现突破性进展,并随着电子、计算机、信号处理技术突飞猛进的发展,大地电磁测深无论在仪器研制,或是数据采集、处理技术与反演、解释方法等方面的研究,都融合了当代先进的科学理论和高新技术,这使大地电磁测深有了长足的进步,因此成为电法勘探众多方法技术中最成熟的方法. 近年来,大地电磁测深方法不断得到完善,应用效果明显改善,成绩斐然,引人瞩目.在这新世纪开端,我们回顾它在我国的发展历程,总结近些年取得的进展,瞻望新世纪未来的方向,这将有益于大地电磁测深在我国的进一步推广应用,取得更辉煌的成就. 1 回 顾 我国的大地电磁测深工作始于20世纪60年代初期.至今,经历了60年代的引进、探索时期,70—80年代的研究、试验时期和90年代的迅速发展、推广应用时期. 20世纪60年代初期,在顾功叙院士的大力倡导下,原中国科学院兰州地球物理研究所 [收稿日期] 2001212226; [修回日期] 2002203225. [基金来源] 中国科学院资源与环境重大项目(K29512A12401). [作者简介] 魏文博,男,1945年9月生,福建泉州人,1969年毕业于原北京地质学院地球物理勘探系,现任中国地质大学(北京)教授、博士生导师,主要从事电法勘探、海洋电磁探测及大陆动力学研究.

大地电磁测深法作业指导书

大地电磁测深法作业指导书 大地电磁测深法是指可控源音频大地电磁测深(CSAMT)和音频大地电磁测深(AMT)。 1.目的 为了规范和提高大地电磁测深法的勘查工作及其质量,提出该项目的设计、勘查、资料整理和报告编写等方面的要求。 2.适用范围 本作业指导书主要针对地热勘查工作中的适用于大地电磁测深法,其他地质勘查中的大地电磁测深法应遵照相应的规范要求执行。 3.总则 地热勘查工作中的大地电磁测深法工作,必需按本作业指导书和相应的规范要求执行。 设计编写 1.实施步骤 1.1 设计书编写的准备工作(综合研究) 1.1.1 项目实施单位根据有关部门下达的《任务书》,认真研究项目的目标任务,落实设计编写的具体方案,系统收集,分析与任务有关的资料。充分收集测区内所有前人工作成果

资料(包括地质、矿产、物探、化探和遥感图像资料及各种科研成果),详细研究各种资料的可信度和存在问题,了解测区地质构造轮廓及地层、火成岩分布等性质。同时,应注意收集环境地质、水文地质、灾害地质、管道设施及输变电网布局等资料。作到充分利用以往资料,不作重复工作,分析在以往工作成果基础上获得新成果的可能性和新成果的价值,分析方法的有效性,充分利用先进适用的方法技术,获得最大的地质找矿效果。 1.1.2必要时,应在设计前进行现场踏勘和方法有效性试验,其主要内容为: a.实地考察测区地形、地貌、交通及生活条件 b.核对已收集的地质、物化探及测绘资料 c.测定电性参数,并分析它们于勘

查对象的相关性 d.在某些典型地段进行方法有效性试验 1.1.3落实编写部门和任务。编写部门用两天时间起草编写的具体方案,报有关专业地质调查部门审核,经批准后着手设计前的准备工作。 1.2技术设计 1.2.1 CSAMT 装置 AB 接地长导线为发射源,在r>3δ(趋肤深度)的扇形范围内布置测网,通过在接收点同时测量电场和磁场两个互相垂直的水平分量的振幅和相位,计算阻抗视电阻率P E/H 和相位差φ E-H 。装置图如下: A B O ≥3δHy Ex 1.2.2 CSAMT 装置的技术要求 1.2.2.1利用场强单分量视电阻率时,装置必须满足偶极子条件,而利用单一的比值视电阻率时可放宽。 1.2.2.2确定r距(发射源到测量点的距离)的原则是确保勘

AMT音频大地电磁法实验报告

本科生实习报告 实习类型生产实习 题目AMT生产实习 学院名称地球物理学院 专业名称勘查技术与工程 学生姓名ZRY 学生学号 指导教师 实习地点东苑及5417 实习成绩 二〇一二年十一月二〇一二年十一月

目录 AMT音频大地电磁法 摘要 学会使用V8仪器以及野外音频大地电磁法测量的基本原理和方法,从而进行数据资料的采集;此外也需要学会使用SSMT2000软件对所采集的电磁信号进行处理,最终通过一系列的计算得到最终的成果,这是要求学会AMT数据资料的处理与解释。 关键字:V8;SMT;SSMT2000 第1章AMT数据资料的采集 1.1数据采集仪器 V8主机,AMTC-30磁棒,不极化电极,GPS,电线及屏蔽电缆,CF卡以及读卡器,蓄电池等,参数设计工具软件TBLEDIT.exe,台式机或笔记本电脑。 其中V8多功能电法仪具备时间域的常规电剖面、电测深、高密度电法、瞬变电磁测量功能;具备频率域的MT(大地电磁法)AMT(音频大地电磁法)CSAMT(可控源音频大地电磁法)SIP(频谱激电)勘探测量功能. 1.2实习内容 1.学习使用V8仪器,会熟练操作V8仪器; 2.学会AMT数据资料采集的野外布线方式; 3.掌握音频大地电磁法的基本原理以及操作方式。

1.3V8布线方式 1.3.1“十”字布极法 图 1“十”字布极法 工作特点:AMT/MT单点测;张量观测:五分量测量;为适应不同地形条件。 1.3.2“L”型布极法 图 2 “L”型布极法 工作特点:AMT/MT单点测;张量观测:五分量测量;为适应不同地形条件。

1.3.3“T”字型布极法 图 3 “T”字型布极法 工作特点:AMT/MT单点测;张量观测:五分量测量;为适应不同地形条件。 1.3.4 RXU-3ER连接方法 图 44 RXU-3ER连接方法 工作特点:AMT/MT单点测深;张量观测:2电道观测;也有三种布极方法;只测量两个电道与V8主机共用磁道;提高工作效率 本次实习采用的是“十”字布极法。

大地电磁测深一维正演——地电学实验报告.讲义

实验报告 课程名称:地电学 课题名称:大地电磁层状模型数值模拟实验专业:地球物理学 姓名:xx 班级:06xxxx 完成日期:2016 年11月26日

目录 一、实验名称 (3) 二、实验目的 (3) 三、实验要求 (3) 四、实验原理 (3) 五、实验题目 (4) 六、实验步骤 (4) 七、实验整体流程图 (8) 八、程序及运行结果 (9) 九、实验结果分析及体会 (14)

一、实验名称 大地电磁层状模型数值模拟实验 二、实验目的 (1)学习使用Matlab编程,并设计大地电磁层状模型一层,二层,三层正演程序 (2)在设计正演程序的基础上实现编程模拟 (3)MATLAB软件基本操作和演示 . 三、实验要求 (1)利用MT一维测深法及其相关公式,计算地面上的pc视电阻率和ph相位,绘制视电阻率正演曲线和相位曲线并分析。 (2)利用Matlab软件作为来实现该实验。 四、实验原理 (一)、正演的概念: 正演是反演的前提。在实际地球物理勘探中,一些模型的参数是不容易确定的,如埋藏在地下的地质体模型的岩性、厚度、产状等参数,我们把这些描述未知模型的参数的集合定义为“模型空间”。为了获得这些模型参数,可以利用那些可以直接观测的量来推测,而这些能够直接观测的量的集合则被称作“数据空间”。如果把模型空间中的一个点定义为m,把数据空间中的一个点定义为d,按照物理定律,可以把两者的关系写成 式中,G为模型空间到数据空间的一个映射。我们把给定模型m求解数据d的过程称为正演问题。 (二)、MT一维正演模型简介 大地电磁法作为一种电磁类勘探方法,它的模型参数为一组能够表征地球物理勘探目标体的电性参数,即目标体电阻率和相应层的层厚度。所谓一维模型,即介质在三维空间中沿两个方向上模型参数是不变的,只在另一个方向上特征属

大地电磁(MT)噪声压制方法

可以将大地电磁噪声压制方法简单分为三类: 1)传统的大地电磁数据处理方法集中在频率域中对阻抗的估算,如最小二乘法、Robust 估计、远参考技术和人工挑选功率谱; 2)时频域中的处理方法:小波变换、希尔伯特-黄变换; 3) 从时域中对时间序列进行预处理,直接滤除明显的强干扰噪声,如:人工神经网络,Kalraan 滤波,形态滤波、IARWR 等。 频率域的噪声压制方法:最小二乘法、Robust 估计和远参考技术。 最小二乘法:早期的大地电磁数据处理多使用该方法估算阻抗,可以有效压 制高斯噪声。即要残差η=E ?ZH ,满足 ηi 2N i=1最小,来估算阻抗Z 。 Robust 估计是根据最小二乘法求得的阻抗估计值,再计算观测值与估计值的残差,根据残差大小赋予不同的权重,即对数据质量高的给予较大的权重,对数据质量差的给予较小的权重。Robust 估计方法可以得到较精确的估计,可以抑制一些不满足高斯分布的不相关噪声。但该方法应用的前提是要求大多数据的残差是较小的,只允许少量残差大的数据,这样才能保证对残差小的数据给予较高的权。但是,残差小并不一定就是噪声弱,当存在电磁相关噪声,残差较小,用Robust 估计反而会加重噪声的权重。由此可见,Robust 法的优点在于可以减小某些不满足高斯分布噪声的影响,注重整体数据质量,剔除为数不多的“跳点”,缺点是无法消除磁道噪声和电磁相关噪声。 远参考技术:原理是在距离观测点较远的区域设置一个参考点,同步观测磁场RH 和电场RE 。由于磁场在一定区域范围内具有较高的相关性,观测点噪声和参考点的噪声不相关,噪声与信号之间不相关,再利用Robust 估计阻抗。 时频域噪声压制方法:短时傅里叶变换、小波变换、希尔伯特-黄变换。 短时傅里叶变换的主要思想是对变换的基函数加一个窗函数,窗函数是时间的函数,通过平移窗函数,就可以分析信号某一时间窗口的频率,得到信号的时频信息。缺点在于窗函数的大小和形状是固定不变的,对信号的分辨率也是固定的,因此一般用来分析分段平稳或近似平稳的信号。

三维大地电磁正演及反演方法研究现状

三维大地电磁正演及反演方法研究现状 摘要:近年来,随着计算机技术和三维电磁模拟技术的发展。基于积分方程法(IEM)、有限差分法(FDM)和有限单元法(FEM)的三大方法的三维大地电磁正演模拟 技术得到了极大的发展。基于最优化理论的三维大地电磁反演研究也得到了快速 发展。 关键词:电磁正演模拟;数值模拟技术;大地电磁反演 1 三维大地电磁正演方法研究现状 积分方程法(IEM)、有限差分法(FDM)和有限单元法(FEM)是数值模拟技术中的三大方法。 近年来,基于上述方法的三维大地电磁正演模拟技术得到了极大的发展。 在积分方程法中,麦克斯韦方程组被转换为 Fredholm 积分方程,并以此实现对电磁场散 射方程的离散,从而得到与待求电场有关的复线性方程组。该线性方程组的系数矩阵为致密 的复数矩阵。在简单模型的模拟计算中,该方法仅对异常区进行离散,由此得到规模较小的 致密系数矩阵,这有利于线性方程组的快速求解。基于积分方程法在内存消耗、计算速度等 方面的优势,该方法在电磁模拟的研究中受到了研究人员的重视。然而必须指出的是,在复 杂地球物理模型中,必须考虑全区域离散化,此时基于积分方程法得到的系数矩阵表现为大 规模的致密矩阵,不利于方程组求解。因此,考虑到对复杂模型模拟计算的适应性问题,认 为基于积分方程法的三维 MT 正演技术在反演中的应用具有一定的局限性。 有限差分法发展最为成熟数值计算方法之一,该方法基于差分原理,以节点的差商近似 为相应的偏导数,从而得到节点上关于物理场的相关线性方程组。在电磁场模拟计算中,该 线性方程组的系数矩阵为大型稀疏复数矩阵,基于合适的存储和求解方案,可以较快速的对 其进行求解。早在上世纪 60 年代,有限差分法就被用于地球物理场的模拟计算。进入上世纪90 年代以后,随着交错网格有限差分理论的提出,该方法在地球电磁场模拟研究领域中得到 了更为广泛的关注和重视。交错网格有限差分法在处理内部电磁差异引起的电场与磁场不连 续现象等方面具有相当优势,且易于适合编程实现,因而在三维大地电磁场的正演模拟中得 到了广泛应用。并且,由于在计算效率方面的优势,该方法已被广泛应用到电磁法反演研究中。然而必须指出,有限差分法要求利用规则网格将模型剖分为规则的几何形体,这制约了 在复杂地形条件下,该方法在大地电磁法正、反演研究中的应用。 有限单元法(FEM)是上世纪五十年代在弹性力学领域中发展起来的一种数值模拟方法。在 有限单元法中,利用变分原理或加权余量法将相关边值问题转化为泛函的极值问题,并利用 插值形函数将网格剖分单元的泛函离散化,在此基础上对研究区域所有单元的泛函求和,并 根据泛函的极值条件得到相应的线性方程组。在电磁场问题中,该线性方程组为大型稀疏复 数方程组。有限元方法可以采用不规则网格剖分,其计算精度较高,适合于地形起伏和复杂 介质条件下的电磁场模拟计算。应用于三维电磁场模拟时,传统的(节点)有限单元法存在一 定局限性。首先,在三维条件下,基于节点有限元方法的 MT 正演求解过程中无法避免电磁 场模拟的“伪解”问题。其次,有限元方法形成的线性方程组系数矩阵条件数较大,增加了迭 代法求解的难度。另外,该系数矩阵中非零元数量较多,同样网格剖分的条件下其非零元素 的数量远多于有限差分法,由此增加了计算的内存消耗。 矢量有限单元法(又称为棱边有限单元法,Edge-based FEM)是上世纪 90 年代后逐步兴起 的一种新的有限元方法。其基本思想于上世纪 50 年代提出,Bossavit(1988)的研究开启了电磁场矢量有限元模拟计算的序幕。该方法避免了三维电磁模拟中“伪解”的出现,且易于加载边 界条件,其系数矩阵中非零元数量也相对较少,因而在电磁模拟领域得到广泛应用(Jin J M 2014)。近年来,该方法在电磁法测深研究领域中取得较大发展,Yoshimura(2002)基于矢量有 限元法研究了频率域电磁测深的三维响应。Mitsuhata 等(2004)基于电场矢量势和磁场标量势,开展了三维大地电磁矢量有限元正演研究。Nam M J 与 Kim H J 等对起伏地形条件下的三维大 地电磁正演和地形校正方法进行了研究。 综上所述,与有限差分法比较,矢量有限元方法在网格适应性、计算精度等方面具有相 当优势;与传统的节点有限元方法比较,矢量元方法在避免“伪解”问题、内存消耗和计算速

可控源音频大地电磁法(CSAMT)勘查设计培训资料

可控源音频大地电磁法(C S A M T)勘查设计

精品资料 可控源音频大地电磁法(CSAMT)勘查方案 设计单位: 二〇〇八年四月 仅供学习与交流,如有侵权请联系网站删除谢谢2

第一章前言 1.1 项目概况 目标任务是:查明区内地层、及构造的分布情况……………………… 1.2位置与交通 1.3自然地理及经济地理概况 1.4以往开展的类似工作 第二章工作区域地质及构造情况 第三章工作方法 3.1测网布设 3.2 工作方法及技术要求 本次物探工作投入可控源音频大地电磁法执行以下有关规范、规程: 1) 《可控源声频大地电磁法勘探技术规程》(SY/T 5772 – 2002) 2) 《物化探工程测量规范》(DZ/T0153-1995) 3) 《地球物理勘查图式图例及用色标准》(DZ/T0069 –1993) (1)工作中采用的仪器为加拿大凤凰公司生产的V8多功能电法采集系统。 根据工作区要求的勘查深度大、附近人文干扰大等实际情况,采用抗干扰能力强的可控源音频大地电磁法(CSAMT法)进行勘查,CSAMT法测量方式采用标量。收发距暂定为3km,具体将按试验结果定。了解300m深度范围内岩体、构造分布情况。 (2)数据处理采用V8多功能采集系统配套反演软件。

了解矿区内异常响应特征,包括异常强度、形态、范围、时间特性、频率特性、地质噪声及信噪比等,查明外来电磁噪声电平及干扰特征,检查设计工作精度工作装置等是否合理工方法是否有效等,并依据方法试验结果确认,确定最佳的装置和测量参数。 3.3 质量要求和评价 3.4 可控源音频大地电磁法(CSAMT)精度及质量要求 1)本次CSAMT测量的质量评价将通过计算检查点与原始测量卡尼亚电阻率的均方相对误差Mr来衡量。其计算公式如下: Mr<±5%为合格。 2)质量检查:总工作量的5%。 3)CSAMT工作精度 综合CSAMT测地工作精度要求,CSAMT精度用电磁法测地精度表中B级精度。 3.5 仪器型号及主要技术指标 3.5.1本项目拟使用以下几种物探仪器:V8多功能接收机、TXU-30多功能发射机、30KW发电机 3.5.2各仪器主要技术指标如下: 1)V8多功能接收机主要技术指标 V8是加拿大凤凰公司自1975年以来研制开发的第八代多功能电法系统,在非常成熟的系统2000和V5,V6A的基础上,V8更趋向于尽善尽美,包括轻便坚固的采集系统和GPS同步系统以及触摸式防水ASCII键盘和彩色的背光屏幕,让操作员可以轻松地对数据质量进行监控处理。

大地电磁法

第一节大地电磁测深法 大地电磁测深法(MagnetotelluricSounding),简称MT,是苏联学者Tikhonov(1950)和法国学者Cagniard(1953)50年代初提出来的利用天然交变电磁场研究地球电性结构的一种地 球物理勘探方法。由于它不用人工供电,成本低,工作方便,不受高阻层的屏蔽,对低阻层分辨率高,而且勘探深度随电磁场的频率而异,浅可以几十米,深可达数百公里,因此,近年来在许多领域都得到了成功的应用,引起了地球物理学家的广泛兴趣和极大的重视。 据报道,MT在苏联、美国、加拿大、澳大利亚、东欧、日本、冰岛等国的地球物理勘探工作中都占有重要地位。近十年来,在我国也取得了突飞猛进的发展。特别是在引进一批先进的仪器设备后,其勘探效果已逐渐被地球物理学家所公认。现在已成为深部地球物理探测的一种重要方法和必不可少的手段;在石油和天然气的普查与勘探中,该方法是其它地球物理方法,特别是地震法的一种重要的补充;此外,在地热田的调查、天然地震的预测预报等方面,MT都发挥了或者正在发挥着重要的作用。 和任何新生事物一样,大地电磁的发展也不是一帆风顺的。质自由50年代初问世以来,由于仪器测量精度不够,加之理论也不完善,它曾一度被打入冷宫,只是在此60年代引入模拟记录,在数字处理和解释中采用张量分析后,大地电磁才开始进入实际应用阶段。随着数字技术的发展和数字化仪的推广,大地电磁法的地质效果才最终被地球物理学家所乘认。在我国,虽然60年代初就引进了大地电磁法并开始了仪器的研制和方法的实验,然而,由于同样的原因,直至80年代初,在实际应用方面还没有取得任何突破性的进展。 大地电磁法(即大地电磁测深法)不仅给石油和天然气的普查与勘探增添了一种新的手段和方法,而且也给那些地震勘探难以进行(如火成岩和碳酸盐岩覆盖地区)和难以到达地区的石油勘探展示了新的前景。 大地电磁法也有它的不足。首先,野外施工期限和每个测点上数据采集时间都受大地电磁场变异的强弱制约,记录的质量也取决于场源的性质和尺寸,这种“靠天吃饭”的被动源工作方式,无疑会大大影响工作效率,增加工作成本;其次,体积勘探的性质决定了MT 的分辨率不高而且电阻率越高、频率越低,分辨能力越低;第三,观测误差,特别是低频的观测误差较大,而且观测误差的大小不仅受场源性质,构造的复杂程度和干扰的大小所制约,而且也有赖于观测时间的长短和叠加次数的多少;第四,在复杂地质条件下的资料处理和解释方法还很不成熟,有待进一步研究和发展。 岩石的电性差别不仅是电磁测深法而且也是大地电磁测深法的基础和前提。不同种类的岩石的电阻率存在着明显的差异,这已为大量的事实所证明。因此,大地电磁法和电测深法一样可以在地质工作中发挥它应有的作用。这里,我们着重分析大地电磁法的地质、地球物理基础的另一个侧面:天然大地电磁场及其特征。 §7.1.1 大地电磁场及其特征 大家知道,地磁场可分为基本场和变化场两大部分。基本场起因于地球内部,是磁法勘探的研究对象;而变化场的起因却源于地球的外部,是大地电磁法和磁变测深等的研究对象,因此,这种变化场又称为大地电磁场或大地电磁变异。 根据现代理论,大地电磁变异与太阳风引起高空电离层的电流运动以及大气中的放电现象等有关,如图2-1所示。研究表明,在地球表面随时随地都存在大地电磁场,而且具有一定的规律和特征。 图2-1太阳风和地球磁层

大地电磁测深技术发展及在油气勘探的应用

万方数据

地质与勘探2003年 为提高构造勘探分辩率奠定了基础。EMAP资料采集以高效的多道排列式为单位进行,代替了传统的单点式或双点式资料采集。1995年在国内首次引进该方法后,在采集方法上进行了全张量方式的改进,并依据国内学者的建议,称之为连续电磁剖面法(continueE1ectricMagneticPr06le简称cEMP)。 2野外工作方法 作为以天然电磁场为场源的MT和cEMP,属被动源物探方法系列,野外资料采集工作主要在信号接受方面,主要接受水平正交的电磁场分量(Ex、Hy、Ey、Hx)和垂直磁场分量(Hz),其中接受电场信号的信号传感器为两对正交的不极化电极对,电极距一般为50~200m,接受磁场信号的信号传感器是高灵敏度的感应式线圈磁棒。 图1为MT野外工作站布置。一般在每个测点 E 图1常规MT十字型布站示意图 上为5分量采集(Ex、Hy、Ey、Hx、Hz),其中x布站方向为正南北方向,Y为正东西方向。点距根据勘探目的不同而异,一般进行盆地前期油气勘探采用 4 1~2km的点距,而进行大地构造研究和深部地壳结构调查则采用5~10km的点距。 图2为二维cEMP野外工作站布置。CEMP以排列为单位进行布站,资料采集都采用张量方式观测,即每道除记录测线方向(x布站方向)的电场分量外,还观测垂直测线方向(Y布站方向)的电场分量,并布置两水平磁场分量采集站,排列上各道共用水平磁场分量采集站的信息,水平磁分量采集磁棒对应采集电场分量的电偶极平行布置(图2)。为提高资料采集精度,压制相关干扰,在离工区50~100km的区域内设置4分量的远参考站,测区内各排列与远参考站依次同步采集,资料采集时间一般为8~15小时。排列内的道数可根据采集单元的多少确定,道间距为200m,参考站采集单元与排列内各道采集单元通过GPs同步控制采集。 图3为三维cEMP小面元网络式采集布置示意图。一个面元网络内的道数,可根据采集系统的多少和点距大小来确定,一般为9道,也可为16道、25道等,中心点以四分量(Ex、Ey、Hx、Hy)或五分量(Ex、Ey、Hx、Hy、Hz)采集为主,周围道则可用两分量(Ex、Ey)采集,共用中心点的磁场分量。面元内的各道与参考站之间利用Gps卫星同步控制开始采集。面元内各道距依设计测网点线距确定。 3资料采集系统及处理系统简介 从应用MT近20年的历程看,仪器制作技术及方法技术的进步,一方面使该方法野外资料采集效率大大提高,另一方面应用领域拓宽,勘探效果日益突出。20世纪80年代初,资料采集“靠天吃饭”,信号强时就可获得合格资料,信号弱时就停工休息,庞大的车装采集系统都没有实时处理能力,质量反馈 图2二维cEMP排列式采集示意图 万方数据

可控源音频大地电磁法(CSAMT)勘查设计

可控源音频大地电磁法(CSAMT)勘查方案 设计单位: 二〇〇八年四月

第一章前言 1.1 项目概况 目标任务是:查明区地层、及构造的分布情况……………………… 1.2位置与交通 1.3自然地理及经济地理概况 1.4以往开展的类似工作 第二章工作区域地质及构造情况 第三章工作方法 3.1测网布设 3.2 工作方法及技术要求 本次物探工作投入可控源音频大地电磁法执行以下有关规、规程: 1) 《可控源声频大地电磁法勘探技术规程》(SY/T 5772 – 2002) 2) 《物化探工程测量规》(DZ/T0153-1995) 3) 《地球物理勘查图式图例及用色标准》(DZ/T0069 –1993) (1)工作中采用的仪器为加拿大凤凰公司生产的V8多功能电法采集系统。 根据工作区要求的勘查深度大、附近人文干扰大等实际情况,采用抗干扰能力强的可控源音频大地电磁法(CSAMT法)进行勘查,CSAMT法测量方式采用标量。收发距暂定为3km,具体将按试验结果定。了解300m深度围岩体、构造分布情况。 (2)数据处理采用V8多功能采集系统配套反演软件。 了解矿区异常响应特征,包括异常强度、形态、围、时间特性、频率特性、地质噪声及信噪比等,查明外来电磁噪声电平及干扰特征,检查设计工作精度工作装置等是否合理工方法是否有效等,并依据方法试验结果确认,确定最佳的装置和测量参数。 3.3 质量要求和评价

3.4 可控源音频大地电磁法(CSAMT)精度及质量要求 1)本次CSAMT测量的质量评价将通过计算检查点与原始测量卡尼亚电阻率的均方相对误差Mr来衡量。其计算公式如下: Mr<±5%为合格。 2)质量检查:总工作量的5%。 3)CSAMT工作精度 综合CSAMT测地工作精度要求,CSAMT精度用电磁法测地精度表中B级精度。 3.5 仪器型号及主要技术指标 3.5.1本项目拟使用以下几种物探仪器:V8多功能接收机、TXU-30多功能发射机、30KW发电机 3.5.2各仪器主要技术指标如下: 1)V8多功能接收机主要技术指标 V8是加拿大凤凰公司自1975年以来研制开发的第八代多功能电法系统,在非常成熟的系统2000和V5,V6A的基础上,V8更趋向于尽善尽美,包括轻便坚固的采集系统和GPS同步系统以及触摸式防水ASCII键盘和彩色的背光屏幕,让操作员可以轻松地对数据质量进行监控处理。 V8有三个电道和三个磁道,磁道可以连接MTC-50,AMTC-30磁探头或TDEM 线圈。V8可以单机工作;也可以和多个其他系统单元如V8或RXU-3ER(3个电道采集站)组成多测站多道无线局域网络采集系统。 所有地记录单元及场源发射均通过GPS信号保持精确同步,在GPS信号不好的地方,系统晶振时钟会自动启动同步. (1)其技术特点为: ●先进地模块化设计●灵活,配置可选择●重量轻,便携 式 ●工作温度:-20℃到+50℃●网络化,站与站或和发射机之间无连 线 ●场源和接收网络均通过GPS同步●不受地域限制高精度同步叠加,扫 频 ●可控源功能,用户可添加测量频点提高测量分辨率

可控源音频大地电磁测深(CSAMT)作业指导书

目录 章节号内容页码 1. 立项作业指导书 (2) 2. 设计编写作业指导书 (4) 3. 野外作业指导书 (11) 4. 资料整理作业指导书 (16) 5. 资料野外验收作业指导书 (20) 6. 成果报告编写作业指导书 (23) 7. 成果报告评审作业指导书 (26)

立项作业指导书 1.目的 立项是可控源音频大地电磁测深法(CSAMT)工作质量的起点,其质量将直接影响成果质量和找矿效果。本规范对可控源音频大地电磁测深法立项工作所必须遵循的规则作了具体规定,以提高立项质量。 2.适用范围 本规范适用于申请上级主管部门、社会企事业单位委托承包、招标承包的可控源音频大地电磁测深法的前期立项工作。 3.总则 可控源音频大地电磁测深法立项工作必须严格执行本规定及 DZ/T地球物理勘查名词术语 GB/T14499-93地球物理勘查技术符号 GB/T0069-93地球物理勘查图式图例及用色标准 4.实施步骤 4.1 综合研究 在确定任务时,应结合具体情况系统地收集和细致地研究目标区内前人工作成果资料(含以往地质、物探、化探、遥感等资料),作到充分利用已有资料,不作重复工作,分析在以往工作成果基础上获得新成果的可能性和新成果的价值,研究开展可控源音频大地电磁测深法的地球物理前提及方法的有效性。 4.2 项目规划 4.2.1可控源音频大地电磁测深法(以下简称CSAMT)是利用人工源建立谐变电磁场,在固定发收距r的情况下人为的改变电磁场的频率f,以达到探测地下不同深度地层构造的目的。该方法的主要特点是能穿透高阻容屏蔽层,探测深度大,分辨率高。可用于金属矿勘探、油气田勘探、深部地层构造勘探和解决水文工程地质等问题。 4.2.2 CSAMT应用条件 4.2.2.1勘查对象与周围地质体之间存在较明显的电阻率差异。 4.2.2.2勘查对象产生的电性异常能从干扰背景中分辨出来。

【CN110068873A】一种基于球坐标系的大地电磁三维正演方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910388998.X (22)申请日 2019.05.10 (71)申请人 成都理工大学 地址 610059 四川省成都市成华区二仙桥 东三路1号 (72)发明人 王绪本 罗威  (74)专利代理机构 成都天嘉专利事务所(普通 合伙) 51211 代理人 赵凯 (51)Int.Cl. G01V 3/38(2006.01) G01V 3/40(2006.01) (54)发明名称 一种基于球坐标系的大地电磁三维正演方 法 (57)摘要 本发明公开了一种基于球坐标系的大地电 磁三维正演方法,属于地球物理勘探技术领域, 包括以下步骤:a、建立大地电磁控制方程;b、在 球坐标系中,划分成若干个小的倒立四棱柱网格 单元;c、设置球坐标模型参数,构建磁场离散的 球坐标交错网格单元;d、对单个频率进行循环, 将大地电磁控制方程在球坐标交错网格单元进 行数值离散;e、求解线性方程组;f、由球坐标张 量阻抗公式计算阻抗,再带入卡尼亚视电阻率计 算公式求取测点处的视电阻率和相位。本发明能 够有效克服地球曲率对大地电磁三维深部探测 的干扰,避免因地球曲率所带来的计算误差,适 用于大地电磁三维正演数值模拟, 能够与地球模型更好的匹配, 精确度高。权利要求书1页 说明书11页 附图4页CN 110068873 A 2019.07.30 C N 110068873 A

1.一种基于球坐标系的大地电磁三维正演方法,其特征在于,包括以下步骤:a、建立大地电磁控制方程; b、在球坐标系中,沿r、θ、三个坐标轴方向,分别用若干平行的球面以不同的间距划分成若干个小的倒立四棱柱网格单元; c、设置球坐标模型参数,包括网格节点坐标、单元、节点编号和单元电阻率,构建磁场离散的球坐标交错网格单元; d、对单个频率进行循环,将步骤a中的大地电磁控制方程在步骤c中的球坐标交错网格单元进行数值离散,得到系数矩阵和右端项,组装到线性方程组中; e、求解线性方程组,迭代过程中开展散度校正,计算得到各个节点的场值; f、根据大地电磁场源,由球坐标张量阻抗公式计算阻抗,再带入卡尼亚视电阻率计算公式求取测点处的视电阻率和相位。 2.根据权利要求1所述的一种基于球坐标系的大地电磁三维正演方法,其特征在于:所述步骤a中,大地电磁控制方程采用忽略位移电流后的麦克斯韦尔积分方程形式。 3.根据权利要求1所述的一种基于球坐标系的大地电磁三维正演方法,其特征在于:所述步骤b中,划分成若干个小的倒立四棱柱网格单元是指沿θ轴方向剖分成N θ段,每段的编号i沿θ轴方向序号递增,i=1,2,…,N θ,网格弧度为Δθ(i)(1,...,N θ); 沿轴方向被剖分 成段, 网格弧度为沿r轴方向被剖分成N r 段,网格间距为Δr(k)(1,...,N r )。 4.根据权利要求1所述的一种基于球坐标系的大地电磁三维正演方法,其特征在于:所述步骤f中,大地电磁场源,分解为两个正交源场等效作用的结果,表征为S θ 和两个极化模式。权 利 要 求 书1/1页2CN 110068873 A

大地电磁法及其应用

大地电磁法及其应用 狭义电磁法: 前身:磁法、大地电流法(Telluric)(目标:探测地球构造)。 主体:大地电磁法(MT)及有关技术(MT,Magneto-telluric)。 广义电磁法:磁法、电法、电磁法。 大地电磁测深法是以天然电磁场为场源来研究地球内部电性结构的一种重要的地球物理手段。 测深方法:重磁电震。 非地震方法:重磁电(重力+广义的电磁类)。 大地电磁是重要的非地震测深方法 研究对象:地球内部的电性结构(电导率结构)。 物理原理:宏观电磁理论(有耗媒质中的低频电磁波理论)。 大地电磁测深的优缺点 优点 不受高阻层屏蔽、对高导层分辨能力强; 横向分辨能力较强; 资料处理与解释技术成熟; 勘探深度大、勘探费用低、施工方便; 缺点 体积效应,反演的非唯一性较强(跟地震方法相比) 纵向分辨能力随着深度的增加而迅速减弱

大地电磁法(MT)是以天然电磁场为场源来研究地球内部电性结构的一种重要的地球物理手段。 基本原理:依据不同频率的电磁波在导体中具有不同趋肤深度的原理,在地表测量由高频至低频的地球电磁响应序列,经过相关的数据处理和分析来获得大地由浅至深的电性结构。 大地电磁法原理示意图 大地电磁法野外观测装置 2、理论背景 理论基础:麦克斯韦方程 3大地电磁的理论基础:正演问题 需要一个信号激发源 需要地表响应的观测数据 还需要掌握模型在源作用下地表响应产生的物理过程:这就是正演 正演指的是对于一个给定的模型,在一定激发源的作用下,根据一定的物理原理

求其响应的过程。 大地电磁正演过程两大假设: 1)激励场源:垂直入射到地表的均匀平面电磁波 2)地球模型:水平层状导电介质 视电阻率和阻抗相位的定义 横电波横磁波:场的极化模式 横电波(TE ) :垂直于传播方向的场分量只有电场; 横磁波(TM ) :垂直于传播方向的场分量只有磁场; 大地电磁测深中只研究场源为横电磁波的情况 大地电磁测深中常说的极化模式是以场源的极化方式来区分的,并且这种区分一般只在二维情况下才有意义。一维情况虽然可以解耦出TE 和TM 模式,但不能带来更多的信息。三维模型下不能解耦出TE 模式和TM 模式。 反演是指根据实测的数据来反推产生这些数据的系统内在信息的一种数学物理过程。 反演的两个基本条件:实测的数据和一个先验模型系统。 通常的最小二乘多项式拟合就可以看成是一个反演过程。参与拟合的数据就是反演中实测的数据,“多项式”这种函数形式就是“先验模型系统”。 对于大地电磁测深而言,“实测的数据”就是在地表实测的视电阻率、相位等数据;“先验模型系统”是对地球电导率模型的假设(一维、二维还是三维?),以及在此假设基础上的正演实现过程。更明确的说,这里的“先验模型系统”就是指的是“一维正演”过程、“二维正演”过程或“三维正演”过程。 对于大地电磁测深而言,所谓待反演的“系统内在信息”指的就是电导率结构。 大地电磁测深反演就是根据地表实测的视电阻率、相位等数据来求取大地深部电导率结构的过程,该电导率结构的正演响应能极好地拟合视电阻率、相位等实测数据。 手工量板法 反演问题和反演方法的分类 反演问题主要分两类:线性问题和非线性问题。大地电磁测深反演属于非线性反演问题。 反演方法也有线性反演和非线性反演之分。 线性反演方法是针对线性反演问题发展起来的,但也被广泛应用于解决非线性问题,这时称为非线性问题的线化反演。在非线性问题的线化反演中,首先需要将非线性问题线性化,这是这一技术的最为关键之处。 非线性反演方法是直接针对非线性反演问题的。其共同的基础是采用一些启发式搜索技巧来寻找合适的反演模型,如遗传算法、模拟退火、神经网络等。 反演的非唯一性 先验约束条件 正则化反演方法介绍

可控源音频大地电磁法介绍

可控源音频大地电磁法介绍 1.方法原理和仪器 可控源音频大地电磁法(Controlled Source Audio-frequency Magnetotellurics, 简称CSAMT 卡尼亚电阻率测深曲线,因此又称可控源音频大地电磁测深法。 该法最早是由加拿大多伦多大学的D. W.Strangway教授和他的学生Myaron Goldtein于1971年提出。针对大地电磁测深法场源的随机性和信号微弱,以致观测十分困难这一状况,他们提出了一种改变方案——采用可以控制的人工场源。从而在理论和实践两方面奠定了CSAMT法的基础。 自70年代中期起CSAMT法得到了实际应用,一些公司相继生产用于CSAMT法测量的仪器和解释应用软件。主要仪器是美国Zonge公司生产的GDP-16和GDP-32两种多功能电磁仪。现以GDP-32为例说明仪器的技术指标:该仪器有八个接收通道,能够完成时域激发极化(TDIP)、频域激发极化(RPIP)、复电阻率(CR)、瞬变电磁法(TEM)、可控源音频大地电磁法(CSAMT)测量。其性能指标为工作频率0.007Hz—8192Hz,工作温度-20℃--60℃,工作湿度5%--100%,时钟稳定度∠5×10ˉ10∕24h,输入阻抗10 Ω ∕D C ,动态范围190dB,最小检测信号电压0.03μv、相位±0.1mard(毫弧度),最大输入信号电压±32v,自动补赏电压±2.25v(自动),增益1/8-65536(自动)。 2.方法技术 80年代以来,方法理论和仪器都得到了很大发展,应用领域也扩展到了地质普查,勘探石油、天然气、地热、金属矿床,水文,环境等方面,从而成为受人重视的一种地球物理方法。目前在我国已将本方法作为危机矿山深部资源勘探的重要手段,在许多矿山取得了很好的效果。 可控源音频大地电磁测深法是以有限长地电偶极子为场源,在距偶极中心一定距离处同时观测电、磁场参数的一种电磁测深法。需要考虑的装置是: 测点距:20-100米 供电电极距:(AB):1000-3000米 接收电极距(MN):20-100米 可测扇区的夹角(?)≤15° 我们可以用图1来说明最常用的一种赤道偶极装置进行标 量CSAMT法的测量过程: 场源:用发送机通过接地电极A、B向地下供交变电流, 在地下形成交变电磁场。电流的频率可在一定范围内变化,通 常从2-3~213Hz按2进制递变,在接地十分困难的地方可用不 接地回线作垂直磁偶极子来发送电磁场。 测量:在距离AB相当远的地方进行测量。所谓“相当远” 指的是在这些地方的电磁场已接近平面波,从而可使用卡尼亚

大地电磁测深法

大地电磁法 研究专家 单位姓名 中南大学柳建新 中国地质大学(武汉) 胡祥云 成都理工大学王绪本 技术原理 大地电磁法(Magnetotelluric mehtod, MT) 是利用天然电磁场作场源,是在地面布设仪器测量5个分量的电磁场(3各相互垂直的磁场分量Hx, Hy and Hz 和2个相互垂直的水平分量Ex, Ey)(图1). 图1 野外观测装置示意图(包括3个磁场分量,2个电场分量) 大地电磁数据处理 对观测记录的5个分量的原始时间序列(time series)数据,通过频谱(spectre)分析,获得各个场分量的频谱,然后计算它们各自的和相互之间的自功率谱和互功率谱(auto, cross- spectrum ),进而计算反映地下构造的张量阻抗(tensor impedance),以及视电阻率(apparent resistivity)、阻抗相位(impedance phase)等其他参数(图2)。

图2 数据处理流程示意图 图3 是得到的视电阻率和阻抗相位图 0.0010.0100.100 1.00010.000100.0001000.00010000.000 0.1 1.0 10.0 100.01000.010000.0 100000.0 l o g 10(a p p .r e s i s t i v i t y /O h m m )0.0010.0100.100 1.00010.000100.0001000.00010000.000 log10(period/sec)0 30 6090p h a s e (d e g )xy yx 图3视电阻率(上图)和阻抗相位(下图), 横坐标是数据的周期

二维大地电磁人机交互解释系统的实现_关艺晓

二维大地电磁人机交互解释系统的实现 关艺晓1,李桐林1,李建平1,尚通晓1,林品荣2 11吉林大学地球探测科学与技术学院,长春 130026 21中国地质科学院地球物理化学勘查研究所,河北廊坊 065000 摘要:利用Fo rtran 强大的数值计算能力和V isual Basic 界面开发功能,通过动态链接库(DLL )连结,两种语言直接用文本传递,通过混合编程,开发出二维人机交互系统,实现了二维大地电磁人机交互解释系统电法资料的处理。介绍了解释系统的特点,并给出了在电法数值模拟和可视化技术中的具体应用实例。 关键词:动态链接库;混合编程;联合正演;人机交互中图分类号:P 63112 文献标识码:A 基金项目:国家“863”计划项目(1212010660301) 作者简介:关艺晓(1983—),女,硕士研究生,主要从事地球物理研究,E 2m ail :yixiaohehe @https://www.360docs.net/doc/7917493738.html, 。 Research of 2D M agnetotellur ic I n teractive I n terpreta tion System GUAN Y i 2x iao 1,L I Tong 2lin 1,L I J ian 2p ing 1,SHAN G Tong 2x iao 1,L I N P in 2rong 2 1.Colleg e of GeoE xp lora tion S cience and T echnology ,J ilin U n iversity ,Chang chun 130026,Ch ina 2.Institu te of Geop hy sica l and Geoche m ica l E xp lora tion CA GS ,L angf ang ,H ebei 065000,Ch ina Abstract :U sing pow erfu l num erical ab ility of Fo rtran and excellen t in terface developm en t functi on s of V isual B asic ,th rough dynam ic link lib rary (DLL )link s and directly w ith the tw o language tex t tran s m issi on ,D evelop a tw o 2di m en si onal hum an 2com pu ter in teract 2tive system fo r the in teractive 2D m agneto tellu ric in terp retati on system by m ixed p rogram ing .ach ieveed electrical data p rocessing of the 2D m agneto tellu ric hum an 2com p u ter in teractive in ter p retati on system ,in troducing to the characteristics and the m ethods by given num erical si m u lati on and visualizati on techno logy in the specific app licati on exam p les . Key words :DLL ;m ixed 2language p rogramm ing ;jo in t direct ;hum an 2com p u ter in teracti on 电法勘探中,反演问题是指已知电场分布规律推求地电模型的过程。反演有多解性。为了能够解决这个问题使用人机交互,在实行反演时,加入人先验经验,充分发挥人的主观能动性。近年来人机交互受到了国内外学者广泛的关注,本文主要实现W indow s 环境下二维大地电磁人机交互系统。 1 解释系统的关键技术 二维人机交互正反演系统,运用V isual B asic 610(以下简称VB )在W indow s 环境下制作可视化界面,该界面具有直观、友善的集成开发环境和高效的原型化开发方法的优点。而VB 的缺点在于运算速度慢。Fo rtran 语言及其集成开发环境V isual Fo rt ran 610则以其清楚的结构层次、强大的数值计算与数学分析能力,广泛应用于科学与工程计算。在利用Fo rtran 和VB 两种语言混合开发科学计算软件中,一般有两种方法:用VB 设计界面,将Fo rtran 程序编译成可执行程序,在需要时用VB 程序启动它,计算结束后Fo rtran 计算结果显示在VB 界面上,利用VB 中的Shell 函数来启动Fo rtran 应用程序,但存 在两个问题:一是Shell 函数以异步方式执行,该方式不能等待Fo rtran 程序结束而将继续执行后续VB 程序,使VB 得不到Fo rtran 程序运行结果而出错。二是VB 运行于W I NDOW S 平台上,而Fo rtran 应用 第37卷 增刊吉林大学学报(地球科学版) V o l 137 Sup 1 2007年11月 Journal of J ilin U niversity (Earth Science Editi on )N ov 12007

相关文档
最新文档