辅助供电系统概述

辅助供电系统概述
辅助供电系统概述

第三章辅助供电系统

辅助供电系统是城市轨道交通车辆电气系统的重要组成部分,主要任务是产生车辆中、低压电源、客室照明、空调、通风机、空气压缩机以及其他低压用电设备所需的各种不同电压。

辅助逆变器是辅助供电系统的主要部件。国内城市轨道交通车辆上,辅助逆变器均采用静止式逆变器,它具有输出电压的品质好、功率因数高、工作性能安全可靠等优点。

本章主要介绍城市轨道交通车辆辅助供电系统的组成结构、中压供电分配电路、低压供电分配电路、列车扩展供电电路等。

第一节辅助供电系统概述

1.辅助供电系统的功能

辅助供电系统(辅助电源系统/辅助电源),是为除牵引系统之外的所有车载用电设备供电的一套系统。

2.辅助供电系统的组成

辅助供电系统主要由三部分组成:辅助逆变器、蓄电池充电器、蓄电池。

辅助逆变器一般采用静止逆变器,简称SIV。辅助逆变器将网压转换成AC380V、50Hz的三相交流电能输出,为车辆上空压机、空调装置等交流负载供电。

蓄电池充电器主要输出DC110V电能给车辆控制、蓄电池充电等直流负载供电。

蓄电池作为直流备用电源,在列车启动和紧急情况下(失去高压电源时)为列车提供DC110V电能。列车正常运行时,蓄电池处在浮充电状态。

3.辅助供电系统的负载

辅助供电系统的负载包括列车上的几乎所有用电设备,可以将这些负载根据使用电能不同分为以下几类。

①AC380V、50Hz三相负载:空气压缩机单元、空调装置、通风冷却装置等。

②AC220V、50Hz单相负载:客室正常照明、司机室方便插座、客室维修用方便插座等。

③DC110V负载:列车控制系统、列车控制电路、列车信号系统、乘客信息系统、客室紧急照明、紧急通风、电动车门驱动电机等。

除了以上三种负载之外,还有极少量的DC24负载,如司机室阅读灯、列车前照灯等。

4.车间电源

辅助供电系统在有接触网供电区域,由接触网供电;在没有接触网供电的区域,来自于车间电源。一般在检修车间内设有车间电源,通过列车车底高压箱内有车间电源插座,向列车提供高压电能。车间电源与接触网之间存在电气联锁,两者不可同时为列车供电。在电网供电时,必须断开车间电源;电网为列车供电时,列车不可接车间电源。

车间电源只能为辅助供电系统提供电能,不能为牵引系统供电。车间电源向列车供电时,列车必须处于静止状态。

5.辅助供电系统供电框图

图3-1给出车辆上常见的一种供电框图,其中包含辅助供电系统的主要负载设备。不同车辆,辅助供电系统供电框图略有差异。

图3-1 辅助供电系统框图

电力系统基本概念

一、电力工业发展概况及前景 几个需要记住的知识点 1、电力工业是将一次能源转换成二次能源的工业,其发展水平是反映国家经济发展程度的重要标志。 2、1882年在上海建立第一个火电厂。 3、1912年在昆明滇池石龙坝建立第一座水电站。 4、2001年,针对我国能源结构的实际情况,我国的电源发展实施了“优先开发水电、大力发展火电、适当发展核电、积极发展新能源发电”的方针,使电源发展呈现多种 能源互补的格局。 5、在水电方面我取得了骄人成绩,有许多世界之最 ①1994年12月开工建设世界上最大的水电站→三峡 ②界上最大的抽水蓄能电站→广州抽水蓄能电站 ③世界上海拔最高的电站→西藏羊卓雍湖水电站等。 6、我国电力已经开始进入“大机组‘’、“大电网”、“超高压”、“高自动化” 的发展新阶段。 二、电力系统基本概念 (一)、电力系统 1、电力系统概念 由发电厂、升压变电站、输电线路、降压变电站及电力用户所组成的统一整体称为电 力系。 2、动力系统概念 电力系统加上带动发电机转动的动力装置构成的整体称为动力系统。 3、电力网概念 由各类升压变电站、输电线路、降压变电站、组成的电能传输和分配的网络称为电力网。 (二)、发电厂 1、定义 发电厂是电力系统的中心环节,它是把其他形式的一次能源转换成二次能源的一种特 殊工程。 2、分类 ⑴a、按其所用能源分为 火力发电厂、水力发电厂、核能发电厂、风力发电厂、潮汐发电厂、地热发电、太阳 能发电、垃圾发电、沼气发电等等。 b、按发电厂的规模和供电范围划分为:区域性发电厂、地方发电厂、自备专用发电厂等。 ⑵、火力发电厂

①定义 利用煤、石油、天然气、油页岩等燃料的化学能生产电能的工厂。热能→机械能机→ 电能。 ②凝汽式火力发电厂 火力发电厂中的原动机可以是凝汽式汽轮机、燃气式汽轮机或内燃机。我国大部分火 力发电厂采用凝汽式汽轮发电机组,所以称为凝汽式火力发电厂。汽式火力发电厂热 效率较低只有30~40%。适宜建在燃料产地。 ③热电厂 既发电又供热的火力发电厂称为热电厂。热效率可以上升到60~70%。一般建在大城 市及工业附近。 ⑶水力发电厂 定义 通常称水电厂。利用江河水流的水能生产电能的工厂。水能→机械能→电能。 ⑷核电厂 定义 核能→热能→机械能→电能。 特点 能取得较大的经济效益,所需原料极少。 (三)、变电站 1、定义 变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。 2、分类 ⑴按升降电压划分为 ①、升压变电站→通常是发电厂升压部分,紧靠发电厂。 ②、降压变电站→通常运离发电厂而靠近负荷中心。 ⑵按变电站在电力系统中所处的地位和作用划分为 ①、枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV以上, 连接多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电或系统瓦解。 ②、中间变电站:中间变电站位于系统主干环行线或系统主干线的接口处,电压等级 一般为330——220kV,汇集2~3个电源和若干线路。 ③、地区变电站:地区变电站是某个地区和某个城市的主要变电站,电压等级一般为220kV。 ④、企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35——220kV,1~2回进线。 ⑤、终端变电站:终端变电站位于配电线路的终端,接近负荷处,高压侧10——35kV 引入线,经降压后向用户供电。

电力系统基本概述

电力系统基本概述 一、电力系统与电网 发电厂将一次能源转变成电能,这些电能需要通过一定方式输送给电力用户,在由发电厂向用户供电过程中,为了提高其可靠性和经济性,广泛通过升、降压变电站,输电线路将多个发电厂用电力网连接起来并联工作,向用户供电。这种由发电厂、升压和降压变电站、送电线路以及用电设备有机连接起来的整体,称为电力系统。发电机的原动机、原动机的力能部分、供热和用热设备,则称为动力系统。在电力系统中,由升压和降压变电站和各种不同电压等级的送电线路连接在一起的部分称为电网。 二、电力生产的特点 电能的生产与其它工业生产有着显然不同的特点。 1.电能不能大量储藏 电力系统中发电厂负荷的多少,决定于用户的需要,电能的生产和消费时时刻刻都是保 持平衡的。电能的生产、分配和消费过程的同时性,使电力

系统的各个环节形成了一个紧密 的有机联系的整体,其中任一台发、供、用电设备发生故障,都将影响电能的生产和供应。 2.电力系统的电磁变化过程非常迅速 电力系统中,电磁波的变化过程只有千分之几秒,甚至百万分之几秒;而短路过程、发 电机运行稳定性的丧失则在十分之几秒或几秒内即可形成。为了防止某些短暂的过渡过程对 系统运行和电气设备造成危害,要求能进行非常迅速和灵敏的调整及切换操作,这些调整和 切换,靠手动操作不能获得满意的效果,甚至是不可能的,因此必须采用各种自动装置。 3.电力工业和国民经济各部门之间有着极其密切的关系 电能供应不足或中断,将直接影响国民经济各个部门的生产,也将影响人们的正常生活, 因此要求电力工业必须保证安全生产和成为国民经济中的

先行工业,必须有足够的负荷后备 容量,以满足日益增长的负荷需要。 三、电力系统的运行要求 为了保证为用户提供电能,电力系统的运行必须满足下列基本要求。 1.保证对用户供电的可靠性 在任何情况下都应该尽可能的保证电力系统运行的可靠性。系统运行可靠性的破坏,将 引起系统设备损坏或供电中断,以致造成国民经济各部门生产停顿和人民生活秩序的破坏,甚至发生设备和人身事故。 电力用户,对供电可靠性的要求并不一样,即使一个企业中各个部门或车间,对供电持 续性的要求也有所差别。根据对供电持续性的要求,可把用户分为三级。

电力系统概述

第一章电力系统概述 第一节本厂在系统中的地位和作用 一、华中电网现状 2002年底华中地区装机容量为52142MW。其中水电装机17985MW,火电装机34157MW。分别占全部装机的34.5%、65.5%。统调装机容量39140MW,其中水电12294MW,火电26845MW。 2002年华中地区发电量221.9TW·h。其中水电发电量64.2TW·h,火电发电量157.7TW·h,分别占全部发电量的28.9%、71.1%。统调发电量168.1TW h,其中水电发电量45.3TW h,火电发电量122.8TW·h。 2002年华中地区全社会用电量为220.3TW·h。统调用电最高负荷30790MW,比上年增长14.72%。 二、湖南省电力系统现状 1.电源现状 2002年底湖南省装机容量为11110.86MW。其中水电装机6135.28MW,火电装机4975.58MW。分别占全省装机的55.2%、44.8%。2002年统调装机容量为7424.65MW,其中水电装机3419.65MW、火电装机4005MW。 2002年湖南省发电量45.387TW·h。其中水电发电量25.329TW·h、火电发电量20.05785TW·h,分别占全省发电量的55.8%、44.2%。 湖南省电网电源主要分布在湖南西部,全省最大火力发电厂为华能岳阳电厂(725MW)。最大水电站为五强溪水电站(1200MW)。 2.网络现状 湖南省电力系统是华中电力系统的重要组成部分,处于华中系统的南部,目前全网分为14个供电区。 湖南电网经两条联络线即葛洲坝~岗市500kV线路及汪庄余~峡山220kV线路与华中电网联系,贵州凯里电厂通过凯里~玉屏~阳塘220kV线路向湖南送电。目前省内已建成五强溪~岗市~复兴~沙坪~云田~民丰~五强溪500kV环网,并且岗市与云田间另有一回500kV线路直接相联。 2002年底湖南省共有500kV变电所5座,变电容量4,250MV A(云田(株洲)2,750MV A,民丰(娄底)1,750MV A,岗市(常德)1,500MV A,复兴(益阳)1,750MV A,沙坪(长沙)1,750MV A)220kV公用变电所54座,变电容量10,590MV A,拥有500kV线路8条894.3km ,220kV线路136条6666km。 2002年底湖南电网共装有无功补偿设备7630.7Mvar,其中电容器6180.2Mvar,并联电抗器1280.1Mvar,调相机50.4Mvar,其他165Mvar。 3.供用电现状

轨道交通 供电系统

毕业设计文件 设计题目: 城市轨道交通供电系统概述与分析————专业: 指导教师:

设 计 任 务 城市轨道交通供电系统概述及分析 设计要求分析地铁供电系统;绘制电路图; 分析特殊案例 设计成果 设计进程 指导教师评语 评阅人评语 成绩设计成绩指导教师评阅成绩评阅教师答辩成绩答辩负责人总评负责人

摘要: 近几年来,随着我国大城市交通压力的逐渐增大,城市轨道交通系统的发展步伐亦逐日加快。本文主要介绍了城市轨道交通供电系统的构成以及详细介绍了各部分的功能及分类,总结了国内外各城市地铁供电系统的应用方式。 因本人专业偏向于弱电,所以本文在全面总结城市轨道供电系统的前提下,着重介绍了变电所内的二次设备,从设备的种类、分类、用途以及构造方面加以了解。同时以沈阳地铁为案例介绍、分析了此轨道交通供电系统方案。 关键词:轨道交通供电系统二次设备 Abstract: In recent years, with the city traffic pressure increase gradually, the development of urban rail transit system is accelerated pace of daily. This paper mainly introduces the power supply system of urban rail transit are introduced in detail the composition and function of each part and classification, summarizes the domestic and international every city metro power system application. Because I am in favour of professional, so this weak in comprehensive summary of urban rail power supply system, emphatically introduces the condition of equipment, within the substation equipment types, from classification, applications and structural aspects. In case of shenyang subway is introduced and analyzed the rail traffic system. Key words:Rail transit Power supply system Second equipment

电力系统的基本概念

电力系统的基本概念: 电力系统是由发电机、变压器、电力线路及用电设备组成的发电、输电、配电和用电的整体。 电力网是由变电所、电力线路等变换、输送和分配电能的设备连接在一起所组成的网络。它将发电厂与用户连接在一起。是电能产生与消费的纽带。 目前我国有5个跨省的电力系统,即华北、华东、华中、东北、西北电力系统,其中华东电力系统总装机容量和年发电量都占据首位 电力系统的特点及运行应满足的基本要求: 电能作为一种商品,它的生产、输送、分配和使用与其他工业产品相比有明显不同的特点,主要表现在以下几个方面: 电能的生产、传输及消费几乎同时进行,因为发电设备任何时刻生产的电能必须与消耗的电能相平衡。 电能与国民经济各部门之间的关系密切。电能的中断或减少直接影响国民经济生产各部门及人们的生活。 电力系统的暂态过程非常短暂。电能以电磁波的形式传输,传输速度为30万KM/S,电力系统的发电机、变压器、电力线路以及用电设备的投入和退出,都在一瞬间完成。故障的产生及发展非常短促,电力系统的暂态过程非常迅速。 对电能质量的要求颇为严格。电能的质量的好坏由电压的大小、频率和波形质量能否满足要求来衡量。任一个参数不满足要求都将造成不良的影响,甚至造成产品不合格,损坏设备或大面积停电等。

为适应上述特点,对电力系统的运行提出如下基本要求: 一、保证供电的可靠性。 间断供电,将会使生产停顿,生活混乱甚至危及人身和设备的安全,给国民经济造成极大损失,这种损失远远超出对电力系统本身的损失。造成对用户中断供电的原因主要有: 电力系统的设备发生故障; 1、电力系统的误操作; 2、电力系统继电保护的误动作; 3、运行管理水平低,维修质量不合格等。 提高电力系统运行的可靠性,应改善设备质量,提高运行管理水平和技术水平及运行检修人员的责任心。另一方面要完善电力系统的结构,提高抗干扰能力,充分发挥计算机进行监视和控制的优势,不断提高电力系统的自动化水平。 二、保证良好的电能质量。电压质量和频率质量一般以偏离额定值的大小来衡量,实际用电设备均按额定电压设计,电压偏高或偏低都将影响用电设备运行的技术指标和经济指标,甚至不能正常工作。一般规定,电压偏移不应超过额定电压的±5%;频率偏差不超过±0.2~0.5HZ等。正弦交流电的波形质量一般以波形的畸变率衡量。所谓波形的畸变率指的是各次谐波有效值的平方和的方根值与基波有效值的百分比。10KV允许为4%。 三、保证系统运行的经济性。 合理发展电网,优化电网结构和运行方式,降低电能传输过程中的损

电力系统状态估计概述

电力系统状态估计研究综述 摘要:电力系统状态估计是当代电力系统能量管理系统(EMS)的重要组成部分。本文介绍了电力系统状态估计的概念、数学模型,阐述了状态估计的必要性及其作用,系统介绍了状态估计的研究现状,最后对状态估计的研究方向进行了展望。关键词:电力系统;状态估计;能量管理系统 0 引言 状态估计是当代电力系统能量管理系统(EMS)的重要组成部分, 尤其在电力市场环境中发挥更重要的作用。它是将可用的冗余信息(直接量测值及其他信息)转变为电力系统当前状态估计值的实时计算机程序和算法。准确的状态估计结果是进行后续工作(如安全分析、调度员潮流和最优潮流等)必不可少的基础。随着电力市场的发展,状态估计的作用更显重要[1]。 状态估计的理论研究促进了工程应用,而状态估计软件的工程应用也推动了状态估计理论的研究和发展。迄今为止,这两方面都取得了大量成果。然而,状态估计领域仍有不少问题未得到妥善解决,随着电力系统规模的不断扩大,电力工业管理体制向市场化迈进,对状态估计有了新要求,各种新技术和新理论不断涌现,为解决状态估计的某些问题提供了可能。本文就电力系统状态估计的研究现状和进一步的研究方向进行了综合阐述。 1 电力系统状态估计的概念 1.1电力系统状态估计的基本定义 状态估计也被称为滤波,它是利用实时量测系统的冗余度来提高数据精度,自动排除随机干扰所引起的错误信息,估计或预报系统的运行状态(或轨迹)。状态估计作为近代计算机实时数据处理的手段,首先应用于宇宙飞船、卫星、导弹、潜艇和飞机的追踪、导航和控制中。它主要使用了六十年代初期由卡尔曼、布西等人提出的一种递推式数字滤波方法,该方法既节约内存,又大大降低了每次估计的计算量[2,4]。 电力系统状态估计的研究也是由卡尔曼滤波开始。但根据电力系统的特点,即状态估计主要处理对象是某一时间断面上的高维空间(网络)问题,而且对量测误差的统计知识又不够清楚,因此便于采用基于统计学的估计方法如最小方差估计、极大验后估计、极大似然估计等方法,目前很多电力系统实际采用的状态估计算法是最小二乘法。 1.2电力系统状态估计的数学模型 状态估计的数学模型是基于反映网络结构、线路参数、状态变量和实时量测之间相互关系的量测方程: z+ =) ( h v x 其中z是量测量;x是状态变量,一般是节点电压幅值和相位角;v是量测误差;z和v都是随机变量。 状态估计器的估计准则是指求解状态变量x的原则, 电力系统状态估计器采用的估计准则大多是极大似然估计, 即求解的状态变量x*使量测值z被观测到的可能性最大, 用数学语言描述, 即: z f x f= z (x , )] , ( *) max[ 其中f(z)是z的概率分布密度函数[3]。

电力系统概论复习1

1.电力系统运行的特点:电能不能大量储存、过渡过程非常迅速、与国民经济各部门密切相关;基本要求:保证可靠地持续 供电、保证良好的电能质量、努力提高电力系统运行的经济性。 2.按供电可靠性的要求将负荷分为三级: 一级负荷:属于重要负荷,如果对该负荷中断供电,将会造成 人身事故、设备损坏、产生大量废品,或长期不能恢复生产秩序,给国民经济带来巨大损失。 二级负荷:如果对该负荷中断供电,将会造成大量减产、工人 窝工、机械停止运转、城市公用事业和人民生活受到影响。 三级负荷:指不属于第一、二级负荷的其他负荷,短暂停电不 会带来严重后果,如工厂的不连续生产车间或辅助车间、小城镇、农村用电等。 3.电力系统的接线方式和特点:无备用接线的特点是简单、经济、运行方便,但供电可靠性差、电能质量差;有备用接线的 优点是供电可靠、电能质量高,缺点是运行操作和继电保护复杂,经济性较差。 4.中性点接地方式:一般电压在35及其以下的中性点不接地或 经消弧线圈接地,称小电流接地方式;电压在110及其以上的 中性点直接接地,称大电流接地方式。 5.为了减小电晕损耗或线路电抗,电压在220以上的输电线还 常常采用分裂导线。 6.在精度要求较高的场合,采用变压器的实际额定变比进行归算,即准确归算法。在精度要求不太高的场合,采用变压器的 平均额定变比进行归算,即近似归算法。 7.线电压与相电压存√3倍的关系,三相功率与单相功率存在3 倍关系,但他们在标幺值中是相等的。 8.电压降落是指线路始、末两端电压的向量差(12)。 电压损耗是指线路始、末两端电压的数值差(U12)。 电压偏移是指网络中某一点的电压与该网络额定电压的数值差。

电力系统概述

电力系统概述 电力系统是指发电厂,输送电线路,变配电设备和用电设备组成的进行电能生产、输送和应用的整体。 电力由于其生产、输送和应用较其他能源方便,因而在诸多能源中电力发展最快,应用最为广泛。电力系统的结构和发展与经济的发展密切相关,地方经济的发展为电力系统提供了强大的用户,必然促进电力系统的扩容发展,而电力系统丰富的电力资源和无处不到的网络又为经济发展提供了能源保障, 必然促进企业的飞速发展。经济发达地区,电力系统也必然发达。 一个电力系统的组成可用图1-1表示。它是由一个水电厂,两个火电厂和一个热电厂构成了动力系统,由330kV 线路、220kV 线路、110kV 线路、35kV 线路及诸变电所构成输变电力网,由10kV 线路及配电所构成配电网。 电力系统主要包含以下几部分: 一、发电厂 发电厂将其他形式的能源转换为电能。根据转换能量的不同,发电厂分为火电厂、热电厂、风电厂、水电厂、核电厂等。 我国煤炭资源丰富,目前仍以燃煤为燃料的火电厂为主。这些电厂,早期多建在用电集中地区,由于电力输送成本较煤炭运输成本低廉,为提高经济性,近年来火电厂多建在煤炭基地附近,故称为“坑口”电厂。电厂若向用户兼供热能,则称为热电厂。 水电厂是将江河水位落差造成的势能转换为电能的。我国水力资源丰富,而 火力发电厂 变压器台 二次电压变电站 一次降压变电站 工厂 10kV 220V

水力资源不利用又不能保存,会白白浪费。在我国能源紧张的今天,发展水力发电是国家的优先选择。水里电厂一次性投资大,运行费用低廉。由于改革开放的成果,国家财力较为雄厚,为建设大水电厂提供了可能,近年来国家投资兴建的葛洲坝、三峡等一批大型水电站必将为国民经济的大发展发挥重大作用,也将造福于子孙万代。 核电厂是将原子核裂变时产生的核能转化为电能。核电厂的重要部分是核子反应堆和蒸汽发生器。相当于火电厂的蒸汽锅炉,其发电设备与火电厂相同为汽轮发电机。核电厂在安全运行状态下,是最卫生环保的发电厂,但一旦发生泄露,将造成不可估量的损失和严重的后果,所以在建设核电厂时要用大量资金建设公用辅助和防护设施,以确保人民生命财产安全。 风力电厂是将风力的动能转换为电能的。由于能用于发电的风力资源很有限,因而风力发电厂在电力系统中所占的比重较小。 发电机考虑到并网的要求,一般采用三相同步发电机,输出电压多为6.3kV 和10.5kV。通常是经过升压后才并网输送的。 二、输电线 输电线是由导线及相应杆塔组成完成电网连接和电能输送的。输电线路的电压是按输送距离而确定的,输送距离较远电压就高,反之电压就低。如连接几个地区或几个省的一般电压为330~500kV;输送距离在一个省或一个地区的一般电压在110~220kV。用于分配电能的配电线电压在35kV以下。输电线电压与输送距离、容量的关系如表1-1所示。 表1-1 各级电压的输送容量与距离 三、变电所

城市轨道交通供电系统中压网络

城市轨道交通供电系统的中压网络研究一、供电系统的简介及中压网络的概念 1、城市轨道交通供电系统的功能 城市轨道交通供电系统,担负着运行所需的一切电能的供应与传输,是城市轨道交通安全可靠运行的重要保证。 城市轨道交通的用电负荷按其功能不同可分为两大用电群体。一是电动客车运行所需要的牵引负荷,二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC 系统、FAS、BAS、通信系统、信号系统等。 在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷;有固定负荷、有时刻在变化的运动负荷。每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。城市轨道交通供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。保证电动客车畅行,安全、可靠、迅捷、舒适地运送乘客,是供电系统的根本目的。 2、供电系统的构成 根据功能的不同,对于集中式供电,城市轨道交通供电系统可分成以下几部分:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。对于分散式供电,城市轨道交通供电系统则可分成以下几部分:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。牵引供电系统,又可分成牵引变电所与牵引网系统。动力照明配电系统,又可分成降压变电所与动力照明。 但在进行初步设计与施工设计时,为便于设计管理,供电系统往往被划分成:系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所)及降压变电所设计;牵引网设计;电力监控系统设计;杂散电流腐蚀防护设计(注:动力照明随同土建一起设计)。 3、外部电源方案 城市轨道交通系统的外部电源方案,根据城市电网构成的不同特点,可采用集中式、分散式、混合式等不同形式。 (1) 确定外部电源方案的原则 城市轨道交通作为城市电网的特殊用户,一般用电范围多在10km~30km之间。城市轨道交通系统的外部电源方案,主要有集中式、分散式、混合式等不同形式。究竟采用何种方式,应通过计算确定需要负荷之后,根据城市轨道交通路网规划、城市电网构成特点、工程实际情况综合分析确定。 (2) 集中式供电 在城市轨道交通沿线,根据用电容量和线路长短,建设专用的主变电所,这

城市轨道交通供电系统详解

城市轨道交通供电系统详解

第一章 电力牵引供电系统综述 一、 电力牵引的制式 对牵引列车的电动车辆或电力机车特性的基本要求: 1、起动加速性能 要求起动加速力大而且平稳,即恒定的大的起动力矩,便于列车快速平稳起 动。 2、动力设备容量利用 对列车的主要动力设备——牵引电动机的基本性能要求为,列车轻载时,运 行速度可以高一些,而列车重载时运行速度可以低一些。这样无论列车重载或轻 载都可以达到牵引电动机容量的充分利用,因为列车的牵引力与运行速度的乘积 为其功率容量,这时近于常数。 3、调速性能 列车运输,特别是旅客运输,要求有不同的运行速度,即调速。在调速过程 中既要达到变速,还要尽可能经济,不要有太大的能量损耗,同时还希望容易实 现调速。 低频单相交流制是交流供电方式,交流电可以通过变压器升降压,因此可以 升高供电系统的电压,到了列车以后再经车上的变压器将电压降低到适合牵引电 动机应用的电压等级。由于早期整流技术的关系,这种制式采用的牵引电动机在 原理上与直流串激电动机相似的单相交流整流子电动机。这种电动机存在着整流 换向问题,其困难程度随电源频率的升高而增大,因此采用了“低频”单相交流 制,它的供电频率和电压有 25 HZ 、6.5~11 kV 和163 2HZ 、12~15 kV 等类型。由于用了低频电源使供电系统复杂化,需由专用低频电厂供电,或由变频电站将 国家统一工频电源转变成低频电源再送出,因此没有得到广泛应用,只在少量国

家的工矿或干线上应用。 “工频单相交流制”。这种制式既保留了交流制可以升高供电电压的长处,又仍旧采用直流串激电动机作为牵引电动机的优点,在电力机车上装设降压变压器和大功率整流设备,它们将高压电源降压,再整流成适合直流牵引电动机应用的低压直流电,电动机的调压调速可以通过改变降压变压器的抽头或可控制整流装置电压来达到。工频单相交流制是当前世界各国干线电气化铁路应用较普遍的牵引供电制式。我国干线电气化铁路即采用这种制式,其供电电压为25kV。 在牵引制的发展过程中曾出现过“三相交流制”的形式,但由于供电网比较复杂,必须要有两根(两相)架空接触线和走行轨道构成三相交流电路,两根架空接触线之间又要高压绝缘,造成的困难和投资更大,因此被淘汰。 关于直流制式的电压等级应用情况大致如下:干线电气化铁路的供电电压有3 kV的,电压没有再提高是因为受到直流牵引电动机端电压的限制,其值一般为l.5 kV左右,用 3 kV供电,一般就需要将两台电动机串联联接,再提高供电电压其联接就更复杂,还涉及当时整流装置绝缘水平的问题。这种制式在原苏联和东欧一些国家应用最普遍。 供电电压为1.2~1.5 kV的直流制多用于工矿和部分国家的干线电力牵引,如日本等国家。 城市轨道交通几乎毫无例外地都采用直流供电制式,这是因为城市轨道交通运输的列车功率并不是很大,其供电半径(范围)也不大,因此供电电压不需要太高,还由于直流制比交流制的电压损失小(同样电压等级下),因为没有电抗压降。另外由于城市内的轨道交通,供电线路都处在城市建筑群之间,供电电压不宜太高,以确保安全。基于以上原因,世界各国城市轨道交通的供电电压都在直流550~1500V之间,但其档级很多,这是由各种不同交通形式,不同发展历史时期造成的。现在国际电工委员会拟定的电压标准为:600 V、750 V和1500V 三种。后两种为推荐值。我国国标也规定为750V和1500 V,不推荐现有的600 V。 我国北京地铁采用的是750 V直流供电电压,上海地铁采用的是1500 V直流供电电压。必须根据各城市的具体条件和要求,综合论证决定。

城市轨道交通 供电系统讲义

第二章城市轨道交通供电系统描述 ●第一节供电系统的组成与功能 ●地铁供电系统是为地铁运营提供所需电能的系统,它不仅为地铁电动列车提供牵引用 电,而且还为地铁运营服务的其它设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等。 ●地铁供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照 明供电系统、电力监控系统。其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。 幻灯片26 ●地铁系统是一个重要的用电负荷。按规定应为一级负荷,即应由两路电源供电,当任 何一路电源发生故障中断供电时,另一路应能保证地铁重要负荷的全部用电需要。在地铁供电系统中牵引用电负荷为一级负荷,而动力照明等用电负荷根据它们的实际情况可分为一级、二级或三级负荷。地铁外部电源供电方案,可根据实际情况不同分为集中供电方式、分散供电方式和混合供电方式。 幻灯片27 第二节变电所的分类 ●地铁供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、 降压变电所及牵引降压混合变电所。 ●主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其 降压后以中压供给牵引变电所和降压变电所的一种地铁变电所。 ●降压变电所从主变电所(电源开闭所)获得电能并降压变成低压交流电。 ● 幻灯片28 ●牵引变电所从主变电所(电源开闭所)获得电能,经过降压和整流变成电动列车牵引所 需要的直流电。 ●主变电所:专为城市轨道交通系统提供能源的枢纽。 ●牵引变电所:为列车提供适应的电源。 ●降压变电所(配电变电所):为车站、隧道动力照明负荷提供电源。 幻灯片29 第四节供电系统主要运行方式 ● 1 10kV系统运行方式 ● 1.1 正常运行方式 ●变电所10kV母联开关和开闭所间联络开关均处于打开状态,每座变电所由2回电源供 电,两段10kV母线分列运行。变电所由开闭所按不同的供电分区供电。 1.2 其它运行方式 1.2.1 故障或检修运行方式 开闭所一回10kV外电源退出时的运行方式时,合上开闭所母联开关,由另一回10kV外电源向该开闭所供电范围内所有变电所供电。 非开闭所一回10kV进线电源退出运行时,合上该变电所母联开关,由另一回10kV进线电

电力系统概述

电力系统概述 (一)电力系统的组成和基本特征 电力系统是由发电厂、电力网、用电设备和相应的辅助系统(继电保护、安全自动、测量、调度自动化和通信等装置),按规定的技术和经济要求组成的整体。 火力发电厂、水力发电厂和核电厂发出的电力,按其容量的不同和所需输送距离的不同,分别接入110、220kV和500kV交流电力网以及高压电流输电线路。在电力网的构成中,不同电压的输电线路和配电线路通过相应电压等级的变电所相互连接,在配电网的低压侧接有动力负荷和照明负荷等各种用电设备,这就形成了发电、输电和配电设备,以及用电设备在内的统一的电力系统。 电力系统的基本特征包括电力系统电压等级,电力系统频率、电力网结构和电力系统流量等。 1、电力系统频率 电力系统频率是电力系统中发电厂的同步发电机所产生的交流正弦基波电压的频率。频率质量是电能质量的一个重要指标。在稳态运行的条件下,各发电机同步运行,整个电力系统的频率是相等的。它是电力系统一致的运行参数。世界上,电力系统采用的额定频率有50Hz和60Hz 两种。我国和世界多数国家均采用50Hz电力系统;只有美国、加拿大、古巴、朝鲜等少数国家采用60Hz电力系统;日本的东部地区为50Hz电力系统,中部和西部地区为60Hz电力系统,两种不同频率的电力系统与

直流变频站互联。 电力系统中的发电和用电设备,都是按照额定频率设计和制造的,只有在额定频率附近运行时,才能发挥最好的功能。只有当电力系统中所有发电设备发出的有功功率之总和与电力网中电力负荷吸收和消耗的有功功率相等时,系统频率才能保持不变。 2、电力系统的电压等级 电压等级是电力系统及电力设备的额定电压级别系列,额定电压是指电力系统及电力设备规定的正常工作电压。电力系统各个节点的实际运行电压容许在一定程度上偏离额定电压。在上述容许偏离的电压范围内,各种电力设备和整个电力系统仍能正常运行。 我国国家标准规定的电力系统额定电压等级为分3、6、10、35、 63、110、220、330、500、750 kV。一般认为,在一个电力系统中,相邻两级电压之比取1.7~3.0是比较合理的,因此在上述电压等级中,35kV与63kV,63kV与110kV不宜在同一地区性电力系统中并存。 3、电力网结构 电力网结构与电压等级、电源和负荷点的容量和数目,以及它们之间的地理位置及供电可靠性要求等因素有关。 4、电力系统容量 电力系统容量是指系统中各类发发电厂机组额定容量的总和,也称为系统装机容量。电力系统装机容量和覆盖的地域大小反映了电力系统的规模。到2002年底我国已形成了覆盖全国大部分省区的统一调度或联合调度的6个跨省区域电力系统,即东北、华北、华东、华中、西北和

城市轨道交通供电

城市轨道交通供电系统课程设计报告评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业:电气工程及其自动化 班级:电气1002班 姓名:李宵亮 学号: 201009105 指导教师: 兰州交通大学自动化与电气工程学院 2013年7月12日

1设计原始资料 1.1具体题目 某原始资料如表1所示: 表1 某地铁一号线线路区间长度 站名(简称) 西 朗 A 坑 口 B 花 地 湾 C 芳 村 D 黄 沙 E 长 寿 路 F 陈 家 祠 G 西 门 口 H 公 元 前 I 农 讲 所 J 烈 士 陵 园 K 东 山 口 L 杨 箕 M 体 育 西 路 N 体 育 中 心 O 广 州 东 站 P 站距 (kM) 1.571 0.928 1.321 1.38 0.951 1.135 0.932 0.872 1.177 1.019 1.165 1.316 1.423 0.961 1.874 (1)车流密度:平时N=20对/h,高峰N=30对/h; (2)列车编组:6节/列; (3)列车自重:G=331.6t; (4)列车平均运行速度:V=35km/h; (5)牵引网额定电压:U c=1.5kV; (6)牵引网单位阻抗:r=0.0331Ω/km; (7)列车单位能耗: A=0.07kW·h/t·km; (8)运营时间:18h/day; (9)走行轨单位阻抗:r0=0.013Ω/km; (10)电价:a=0.69元/度。 1.2要完成的内容 试结合所学知识,对该地铁牵引变电所进行布点,并进行牵引供电计算。 2设计内容的分析 牵引变电所的设置取决于:牵引网电压等级、牵引网电压损失,同时应对杂散电流腐蚀防护、线路能耗、电缆敷设、土建造价等加以统筹考虑。牵引变电所分布应尽量均匀,便于牵引整流机组规格统一,便于设备维护管理以及降低维护成本。 2.1布点的基本要求 2.1.1满足直流牵引供电系统运行方式的要求 本设计采用双牵引整流机组双边供电的运行方式,各牵引变电所的两套牵引整流机组均投入运行,牵引网电压质量好,牵引网能耗低,对杂散电流腐蚀防护也是有利的。 1

城轨道交通供电系统研究与设计

科研训练结题报告 城市轨道交通供电系统研究与设计 指导教师:张俊芳 学生姓名:尹兆京梁华斌宁玉可

学号: 1010190456 10101904 一.背景介绍我国城市轨道交通事业正面临着前大力发展城市轨道交通已 成共识。目前,所未有的良好发展环境和难得的发展机遇。初步统计,21世纪,我国城市轨道交通建设将进入快速发展的阶段据。进入已实现运营线路总长度近国内目前已有十几座城市正在建造快速轨道交通工程,。另外还有相当数量的大中城市,正在着手不同类型轨道交通建设的前期筹400 备工作,预计在未来中 国城市发展中,轨道交通的建设速度将会不断加快。二、相关知识简介、城市轨道交通供电系统1由电力系统经高压输电网、主变)( 电所降压、配电网络和牵引变电所降压、换流(转换为直流电)等环节,向城市轨道快速交通线路运行的动车组输送电力的全部供电系统。即对沿线牵引变电所输送电力的城市轨道交通供电系统通常包括两大部分,向动车组换流后,高可靠性专用外部供电系统;以及从直流牵引变电所经降压、电的直流牵引供电系统。其大致的示意图如下: 城市电 主变电高压供电系 牵引变电牵引供电系 接触馈 回流轨 图2-1 地铁供电系统 从发电厂(站)经升压、高压输电网、区域变电站至主降压变电站部分通常被称为牵引供电系统的“外部(或一次)供电系统”。 “牵引及其以后部分统称为(当它不属于电力部门时)从主降压变电站 供电系统”。它应该包括:主降压变电站、直流牵引变电所、馈电线、接触网、

走行轨及回流线等。直流牵引变电所将三相高压交流电变成适合电动车辆应用的低压直流电。馈电线是将牵引变电所的直流电送到接触网上。接触网是沿列车走行轨架设的特殊供电线路,电动车辆通过其受流器与接触网的直接接触而获得电力。走行轨道构成牵引供电回路的一部分。回流线将轨道回流引向牵引变电所。 2、供电制式主要包含电流制、电压等级和馈电方式,世界各国城市轨道交通 均采用直流供电制式,这是因为城市轨道交通车辆功率相对城际列车是很小的,其供电距离较短,对供电电压要求不高。其电压在6001500V之间,我国规定采用750V和1500V两种。牵引网馈电方式分为架空接触网和接触轨两种基本类型。一般750V采用第三轨馈电方式,1500V采用架空接触网馈电方式。采用哪种供电制式必须根据城市具体条件与要求,综合分析论证,经测算采用750V与1500V 供电方式单位工程成本接近,从经济上、运营维护的合理性以及备件的通用性等多方面考虑,选用1500V更有利一些。选择合理的供电制式要依据以下原则:1.要与客流量相适应。城市轨道交通设计的基础为预期乘坐旅客流量。根据预测客流量选择合适的电动客车类型,一般大运量的城市轨道交通系统,多采用1500V电压,架空接触网馈电;中小运量的城市轨道交通系统多采用750V和接触轨馈电方式。比如上海、广州和大连采用1500V接触网馈电;长春轻轨采用750V接触网馈电。 2.供电要求安全可靠。城市轨道交通是城市公共交通系统中的脊梁,一旦发生故障,造成列车停运,就会影响市民生活,引起城市交通混乱。安全可靠是选择供电制式的重要条件之一。 3.牵引网使用寿命长,减少维修工作量,降低轨道交通运营成本。 4.根据城市人文景观、地理环境需要选择合适的牵引网。 5.便于安装和事故抢修。选用的牵引网应便于施工安装以及正常运营后的日常维修维护,一旦发生故障,尽快恢复运营。 3、接触网是城市轨道交通系统中不可或缺的组成部分,占有非常重要的位置, 是传递能量的桥梁。接触网分为柔性接触网和刚性接触网,柔性接触网由接触悬挂、支持装置、定位装置、支柱与基础四部分组成,刚性接触网是通过改革研制的新产品,相对柔性接触网来说具有整体结构简单、无需下锚装置、线叉及锚段关节安装调试方便等优点。柔性接触网暴露于空气,长期面临着外界温度应力变化,处于经常被受电弓抬升摩擦的工作环境中,其电可靠性、安全性及供电质量对城市轨道交通起着相当重要的作用。柔性接触网分类大多以接触悬挂的类型来区分,在一条线路上,为了满足供电和机械方面的要求,把接触网分成若干一定长度且相互独立的分段,这就是接触网的锚段。根据每个锚段结构的不同分为简单接触悬挂和链型接触悬挂。简单悬挂的优点是结构简单、支柱高度低、投资小、施工检修方便;缺点是导线的张力、驰度随温度变化较大,导线弹性不均匀,不利于机车高速受流。单链形悬挂按下锚方式分为未补偿简单链形悬挂、半补偿链形悬挂、全补偿链形悬挂。未补偿简单链形悬挂即下锚处不设补偿装置,又称为硬锚,其接触线、承力索张力驰度随温度变化大,我国很少采用;半补偿链形悬挂即接触线补偿下锚,承力索未设补偿装置;全补偿链形悬挂即接触线承力索都设有张力补偿装置。接触线、承力索张力恒定、弹性较均匀、受流质量较.好。适合高速行车需要,是我国铁路及城轨交通接触悬挂的主要形式。按悬挂链数分分为单链型、双链型及多链型接触悬挂。单链型接触悬挂按其有无弹性吊弦

相关文档
最新文档