焙烧炉结构改进与新型耐火材料的应用

焙烧炉结构改进与新型耐火材料的应用
焙烧炉结构改进与新型耐火材料的应用

焙烧炉结构改进与新型耐火材料的应用

焙烧是预焙阳极生产的关键工序,随着国内预焙阳极铝电解槽的大型化发展,铝电解工艺优化和经济性换极周期阳极高度研究的不断推进,国内按阳极高度550mm设计的窄料箱焙烧炉,制约了大型铝电解槽用和经济性换极周期预焙阳极的生产,都面临再次改造的问题。本文结合预焙阳极生产实际及焙烧炉火道墙大修实践,对按阳极高度550mm设计的窄料箱阳极焙烧炉的结构优化进行了探索和实践,提出窄料箱焙烧炉结构优化改造的实践方法和火道墙新型耐火材料的组合应用。

改造的条件和方案

1.1改造的条件

(1) 在用户现有铝电解装备条件下,阳极理想的换极周期要求在32天及以上。根据换极周期要求,经测算现用户开槽阳极的经济高度在605mm 及以上,相应要求焙烧炉料箱宽度≥740mm。

(2) 焙烧炉火道墙已到大修周期。由于焙烧炉长期连续生产火道墙变形较多,出现部分炉室料箱尺寸较大变化,经常造成装(出)炉阳极碰损、挤坏火道墙,严重的火道墙变形已经影响到料箱的正常生产使用,已到大修期。近几年已安排一定量火道墙的大修,还有相当量的火道墙等待大修。

1.2改造方案

考虑到尽可能降低因火道墙内腔改变对热工工艺的影响,确定改造实施方案为:

(1) 火道墙砖(砌块构件)宽度由110mm改为100mm。

(2) 火道规格为:长5246×宽490X高5440mm;火道墙内腔宽度由310mm减至290mm,相应内腔截面面积减少6.5%。

(3) 料箱规格为:长5246X宽743X高5360mm;相应控制火道墙侧填充料厚度到单侧≥60mm。

(4) 对横墙炉室间连通火道部位进行调整改进,并增加一道竖直插板密封装置。

新型耐火材料的使用

2.1开发使用高强度大规格火道墙砌块

结合焙烧炉火道墙大修废砖的无害化利用,近几年来开发应用以大修火道墙废砖破碎料为骨料,配合耐火充填料和胶质混合剂等材料,设计有不同规格模具,经由高频震动浇注成型,现场预制大规格火道墙砌块构件,从2014年起替换耐火砖在焙烧炉火道墙大修中使用。

预制大规格火道墙砌块构件特点和性能:

(1) 大型化、强度高。预制砌块构件比传统焙烧炉火道墙耐火砖大数倍,在焙烧温度下承重合力提高,抗扭曲能力随之增大。减少了传统焙烧炉火道墙耐火砖,在使用过程中出现下沉、扭曲、开裂等影响使用寿命缺陷,预期可延长火道墙使用寿命。

(2) 不易变形。预制砌块构件经由高频震动浇注成型,其结构比传统火道墙耐火砖更加致密,配置的原材料经1500℃以上高温烧制而成,焙烧温度下其物理性能稳定,使用过程荷重软化温度显著提高,高温蠕变率小,砌块构件不易变形。

(3) 密度高、高温性能好。预制砌块构件采用超特微粉材料作充填料,其流动性、渗透性极强,预制砌块构件密度在2.35-2.45g/cm3,在高温阶段导热系数好于传统火道墙砖。

(4) 砌筑快捷、高效。预制砌块构件砌筑过程,可使用一定的机械配合,省时、省工、施工方便,砌筑更加高效、快捷,能提高火道墙大修速度。

(5) 节能环保。现场浇注预制无需大型机械设备,每生产一吨预制砌块构件只需几度电,不需高温烧结;预制砌块构件用了近50%的大修火道墙废耐火砖破碎料作骨料,回收利用废砖减少了对环境的影响。降低了原料成本。

2.2组合使用火道墙新型耐火材料

除开发应用预制大规格火道墙砌块构件外,还选择使用近几年耐火材料厂家研发的新型耐火材料,来改善火道墙传热及隔热保温不同性能需要,显著提高火道内辐射传热能力和热传递效果,减少炉顶散热损失,延长炉体使用寿命,改善炉顶观察孔气密性,减少高温气体外逸而造成的热量损失等。

2.2.1具有蓄热保温功能的边火道耐火砖

阳极焙烧炉边火道普遍存在温度控制难、焙烧过程火道负压高、燃烧器供气开度大,且温度落后中间火道的现象。分析其原因:主要由于边火道墙单侧受热和边火道墙所用耐火砖的导热率高,造成火道墙内的热能向外墙传递过快,造成边火道能耗高,且温度跟不上中间火道,影响整个炉室火道间运行温度的均衡,对产品均质也有很大的制约。

新型蓄热保温耐火砖采用嵌合结构的设计,其外型结构形状与现使用火道墙砖相仿,沿长度方向的中间部位带有凸凹槽。特点和性能:区别在于新型蓄热保温耐火砖凸凹槽的两边备有一排上下贯通结构的孔洞,利用上下

贯通孔来降低耐火砖导热性能,阻止热能的快速传递。耐火砖上下贯通孔不但可以阻止热能的传递,而且还可以储存热能,起到保温的作用。

2.2.2应用节能型炉顶耐火材料

(1) 火道墙节能炉顶板及双层炉口密封盖

主要针对解决现有火道墙预制块观察孔密封性能差、漏风严重和炉面温度过高、热能损耗大的问题。新型火道墙节能炉顶板及双层炉口密封盖,其特点:主要选用两种耐火材料,上部选用一层体积密度在1.6-1.7g/cm3的高强半轻质保温材料,下部为高强重质耐火材料,制作成为复合保温炉顶板。同时,为了更好的降低炉口热耗损失和漏风现象,把炉口结构改为双层密封结构的炉口盖。使用该种耐火材料后观察孔密封性能大为改善,炉面温度相应地降低,而且移炉操作比三件套组件更加简便,缩短了移炉作业时间。

(2) 高强隔热浇注料盖板砖和耐高温远红外辐射涂料

选用高强隔热浇注料盖板,主要针对火道墙炉面温度过高,热能损耗大的问题所采取的一种节能措施。主要方法是把火道墙上部的原盖板砖改为用体积密度在 1.6-1.7g/cm的高强半轻质保温材料制作的保温盖板,该材料耐火度大于1750℃,可以直接接触火焰,使用温度在1300℃以上。

高强隔热浇注料盖板有一个技术特点是:在其接触火焰的底部涂抹了一层厚度在0.3-1.0mm的高温远红外辐射节能涂料。该涂料是一种用于工业窑炉的高效节能环保新产品,可直接喷涂在各种高温窑炉的耐火材料表面,形成一层坚硬的陶瓷釉面硬壳,能起到有效反射炉膛内红外热能的作用,显著提高炉膛内的热传递效果,减少外壁散热损失,提高炉体气密性,减少高

温气体外逸而造成的热量损失等特点。同时,起到保护炉体、延长火道墙使用寿命作用。

(3) 耐高温远红外辐射涂料

耐高温远红外辐射涂料正常使用温度≥1400℃-1600℃,最高使用温度1700℃。该涂料采用过渡族元素氧化物、氧化锆、高温体系高级耐火材料超细粉体材料、经过高温掺杂形成固溶体,既增加了材料电子的能级,提高热能红外辐射系数,又保持了相应的耐热性能,高强度、耐腐蚀性强、耐磨性能优异,提高了涂层整体强度和致密性。稀土元素氧化物的掺入能提高反应物的活性,同时也是掺杂和稳定涂层结构的优选最佳材料。

该涂料在高温窑炉、炉膛内衬上形成致密陶瓷辐射涂层,并通过涂层红外辐射,改善炉内热交换工况,在同样的加热条件下,由于传热能力的加强,提高了炉膛内燃烧温度及燃烧均匀性,使燃料燃烧更充分,达到增加加热效率,减少能耗、节约能源和延长炉体内衬使用年限。涂料涂层使用最佳寿命为4-5年,因此,每隔4年左右时间在原有的涂料涂层上再喷涂/刷一次,保持涂层的最佳工作状态。

结论

(1) 焙烧炉火道墙结构改进,使装炉料箱宽度由703mm增加到743mm,解决了高度620mm以内经济性阳极生产难题,能生产满足用户32天及以上经济性换极周期高度阳极。

(2) 焙烧炉料箱、火道墙结构调整改进,按火道墙大修形式安排,避免了焙烧炉停产损失,保证了客户正常产品需求供应,为窄料箱焙烧炉料箱扩大改造提供了可以借鉴的路径。

(3) 目前,使用现场预制砌块构件火道墙已占到34室焙烧炉火道墙的近四分之一,最早使用的预制砌块构件火道墙已运行近三年,未出现下沉、弯曲变形等情况。

(4) 火道墙预制砌块构件消化了近50%的大修火道墙废砖,不仅降低了预制砌块构件生产成本,而且为固废的综合利用拓展了新的途径。

(5) 组合使用焙烧炉火道墙新型耐火材料,满足了火道墙传热及隔热保温不同性能的需要,显著提高火道内辐射传热能力和热传递效果,减少炉顶散热损失,延长炉体使用寿命,改善炉顶观察孔气密性,减少高温气体外逸而造成的热量损失等,对降低焙烧过程中的燃料消耗、减少炉面作业人员热辐射起到了好的作用。

环式焙烧炉

环式焙烧炉 (ring type baking furnace) 国内外碳素焙烧炉发展状况 环视焙烧炉是生产碳素制品最关键的大型热工炉窑设备,对一个预焙阳极生产厂而言,环式焙烧炉的基建投资占整个碳素厂总投资的50%~60%,而且焙烧炉设计及技术的先进性对产品的质量单位投资的产能、能耗及能源综合利用、炉子寿命、产品生产成本都有很大的影响,焙烧炉火道墙结构的设计,材质的选择和施工工艺是设计焙烧炉最关键的技术。 碳素生产企业环式焙烧炉火道墙采用砖砌结构,由轻质耐火砖、粘土耐火砖、异型耐火砖砌筑而成。根据焙烧炉火道墙尺寸的不同,每条火道墙重约7~9吨,砖层多打40层。在生产过程中,依照工艺要求反复地升降温(1250℃~1300℃),降温(20℃~30℃),每次装、出炉时,天车夹具、碳素产品都不可避免地会碰撞到火道墙上,这样火道墙就会发生变形,变形达到一定程度,就必须拆除重砌。火道墙主要损坏形式:传统工艺采用耐火砖加耐火泥浆砌筑,采用了卧缝打灰、立缝不打灰的砌筑工艺,这样会出现砖缝泥浆脱落,影响了火道墙的整体结构强度。由于砌砖更多的注重了火道墙的牢固性,但忽视了火焰的流向,不可避免地出现温度死角,对产品的均匀性造成影响。在生产过程中由于产生不均匀热膨胀以及频繁升降温和装出焙烧品的撞击,造成火道墙变形,继而火焰不走正道→温度死角→温差变大→炉箱变形等恶性循环,能耗增大,降低炉体寿命,出现频繁中小修。 目前国内碳素焙烧炉的设计是50年代从国外引进的技术,火道墙采用砖砌筑结构,经历了半个世纪,并为大多数碳素厂所采用。随着生产实践的进一步深入,该技术的一些技术问题也逐渐暴露出来。 (1)边火道墙向外突出或整体倾斜,使料箱变窄,装出炉困难; (2)中间火道向内外凹陷,使火道变窄,影响热流气体的流动和燃烧效果; (3)火道墙裂缝严重,导致漏风漏料,影响产品质量,增大热能损耗,破损比较严重的火道墙必须进行中修、大修,由于火道墙是由小块耐火砖砌筑而成,拆除一条火道墙大约需要7~8小时,重新砌筑需24小时左右,拆除并重砌一条火道墙就必须搬运近17吨的材料,这不仅给修炉工作带来困难,而且给车间的正常生产增加难度。特别是环式焙烧炉是以循环方式作业,留给维修、拆除、重砌火道墙的时间非常紧张,通常在炉温还有80℃~90℃时就必须开始刨修,工作环境极为恶劣,反过来又影响施工质量,形成恶性循环。 我国用在环式焙烧炉上的耐火材料质量与国外同类产品相比,有较大的差距,高温抗蠕变性,荷重软化点,高温热稳定性等理化指标及产品外形尺寸精确度。加之生产管理,操作等方面的影响,我国碳素焙烧炉火道墙的平均使用寿命为80~100炉次,国外焙烧炉一般达到150炉次。 在市场竞争日趋激烈的今天,各类产品都必须以优质廉价来赢得市场,炭素制品也不例外。若焙烧炉火道墙变形严重,势必影响产品的质量,特别是影响产量,增加生产成本,不能满足生产需求,难以取得良好的经济效益。 针对砖砌火道墙存在的上述缺陷,国外多家碳素制品生产公司对火道墙结构的设计,材质的采用及砌筑方式等方面作了大量研究的改进,据有关资料报道,美国贝克莱和利德汗姆公司对火道墙的砌筑方式进行了大胆创新,采用异地预砌墙的方法,整体吊运到现场安装。该技术大大缩短了施工时间,改善了施工环境,减轻了劳动强度,提高了焙烧炉的产量及砖

耐火材料重点

第一章: 1耐火材料的定义;耐火度不小于1580℃的无机非金属 材料分类:按化学成份、矿物组成分类1)氧化硅质2)硅酸铝质3)氧化镁质4)刚玉质5)白云石质MgCa(CO3)2 6)尖晶石质Fe2MgO4 7)橄榄石质Mg2SiO4 8)碳质9)含锆质10)特殊耐火材料 按化学性质分类;1)酸性耐火材料2)中性耐火材料3)碱性耐火材料 3、按制造方法分类块状耐火材料;不定形耐火材料;烧制耐火材料;熔铸耐火材料。 4、按耐火度分类普通耐火材料(1580~1770℃);高级耐火材料(1770~2000℃);特级耐火材料(大于2000℃)。 按密度分:轻质(气孔率45%-85%)、重质 生产过程中的基本知识,如一般生产工艺流程:原料加工→配料→混练→(成型)→干燥→烧成(熔制)→(成型)→检验→成品, 配料(颗粒级配又称(粒度)级配,由不同粒度组成的物料中各级粒度所占的数量,用百分数表示。)混料使两种以上不均匀物料的成分和颗粒均匀化,促进颗粒接触和塑化的操作过程称为混练。等内容; 耐火材料行业存在的问题1)钢铁行业竞争激烈,面临更大的成本压力2洁净钢的生产对耐火材料提出更高要求,除了要求长寿还要对钢水无污染3)研发有待加强,4)应注意可持续发展战略。 存在的差距: 1、通常用耐火材料综合消耗指标来衡量一个国家的钢铁工业与耐火材料的发展水平,我国吨钢消耗水还较高。(见下表) 2、耐火材料生产装备落后,新技术推广慢 3、原料不精,高纯原料的生产有困难。, 发展趋势:当今耐火材料的发展,一极是不定形化,而另一极则是定形耐火材料的高级化,概括起来就是朝着高纯化、精密化、致密化和大型化。着重开发氧化物和非氧化物复合的耐火材料。等。 问题:1合计可用作耐火原料总数为4000余种,其中常用于工业生产的耐火原料只有100种。why? 除了考虑熔点外,还要看它在自然界中存在的数量及分布情况,即作为耐火原料还应该具有来源广,成本低廉。在地球岩石层中,硅酸盐+铝酸盐数量最大占86.5%。金属Pt的熔点为1772℃,可以用作耐火原料,但是太昂贵了 2留意“烧成”与“烧结”的区别! 烧成是陶瓷、耐火材料制品烧成过程中最重要的物理、化学过程。所谓“烧结”,就是指坯体经过高温作用逐渐排出气孔而致密的过程。 第二章: 耐火材料的宏观结构、微观结构方面的知识, 如显微结构的类型;基质连续结构,主晶相连续结构;基质连续结构:液相数量较多或主晶相润湿性良好,主晶相被玻璃相包围起来,形成基质连续,主晶相不连续结构,如粘土砖。主晶相连续结构:液相数量较少或主晶相润湿不良,形成主晶相连续,基质不连续结构,如硅砖。 力学性能中抗折强度:材料单位面积所承受的极限弯曲应力,高温抗折强度:材料在高温下单位截面所能承受的极限弯曲应力、蠕变:材料在恒定的高温、恒定

耐火材料的六大使用性能

耐火材料的六大使用性能 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,

贵州铝厂新型阳极焙烧炉节能探讨

文章编号:1001-8948(2002)04-0045-04 贵州铝厂新型阳极焙烧炉节能探讨 彭 勇 (贵阳铝镁设计研究院,贵阳 550004) 摘要:针对贵州铝厂三期引进的新型阳极焙烧炉节能效果显著、阳极质量好等原因进行分析与探讨。这对以后焙烧炉的设计和改造具有一定的参考价值。 关键词:阳极;焙烧炉;节能;热效率;热源;蓄热体 中图分类号: T Q127.1+1 文献标识码: A RESEARCH INTO SAVE ENERGY OF NEW ANODE BAKING FURNACE IN GUIZHOU ALUMINIUM FACTORY PENG Yong (Guizhou Aluminium M ag nesium Desig n Research Institute,GuiYang550004,China) Abstract:T he new anode w hich in accordance with the Guizhou Alum inium factory im ported thr id periode that the reaso ns such as new anode baking fur nace sav e energ y effect is notable and the anode quality is go od etc.analyzed and ex plo red into.T his to later on design and the impr ovement of baking fur nace fix ed reference value. Key words:an anode;the baking furnace;save energy;thermal efficiency;the heat source;heat storage body 1 前言 从70年代中期开始,世界就着手解决能源的利用问题。强化节能意识、推广节能技术应用已成为全球工业降低生产成本、提高经济效益的重要手段。贵州铝厂三期焙烧炉是新型敞开式阳极焙烧炉。自投产以来,它以节能效果显著、阳极质量好、环境污染小等优点受到国内各大铝厂青睐。 贵州铝厂三期焙烧炉为34室阳极焙烧炉:两个火焰系统;每个炉室有6个料箱7条火道;燃料采用重油;火焰焙烧曲线为168h(火焰周期为28h),冷却曲线为196h;年产量为78840块焙烧阳极。新型敞开式阳极焙烧炉与以往敞开式阳极焙烧炉相比;能耗由502×104~756×104KJ/t焙烧品降至270×104KJ/t焙烧品;填充料烧损由原平均35kg/t焙烧品降至15kg/t焙烧品;阳极产品合格率>98%;阳极在电解槽上使用期较以往延长一天达到27天;出炉烟气量<47000Nm3/h,而国内同产能的焙烧炉的烟气量80000Nm3/h。 收稿日期:2002-05-09 作者简介:彭勇(1972-),男,工程师,1994年毕业于昆明理工大学冶金系热能工程专业,现工作于贵阳铝镁设计研究院。 ?45?  2002年第4期 总第112期 炭 素CAR BO N

阳极焙烧炉节能降耗的对策(1)(1)

阳极焙烧炉节能降耗的对策 唐林、高守磊 (索通发展股份有限公司山东德州251500) 摘要:焙烧炉经过4年以上运行后,炉室密封不好,漏风系数高,造成燃料利用效率低,能耗高,制品温度下降,影响了产品质量。本文从改进焙烧工艺以及焙烧操作等方面采取相应的对策,改善焙烧炉保温措施,降低焙烧炉燃料消耗、提高焙烧产品质量。 关键词:焙烧炉;燃料利用效率;产品质量 METHODS TO IMPROVE FUEL UTILIZATION FOR OPEN TOP ANODE BAKING FURNACES Lin Tang,Shoulei Gao Sunstone Development Co.,Ltd,Shandong Dezhou251500 Abstract t:As a baking furnace ages,cracks and openings develop in the furnace Abstrac which allow outside air to enter.Unless proper corrective actions are implemented, gas consumption can increase,final baking temperatures can decrease,and baked anode properties can deteriorate.In this paper,methods are presented for improving the efficiency of fuel utilization for aging furnaces,and thereby lowering fuel consumption,while maintaining or improving anode finishing temperatures and anode properties. Keywords:Baking furnace,Fuel utilization,Products quality 一、前言 铝用预焙阳极生产过程中,焙烧是最后和最重要的工序之一[1]。通过焙烧,生坯发生一系列的物理化学变化,粘结剂沥青炭化生成的沥青焦把骨料和粉料颗粒结合成为牢固的整体,达到铝电解用户使用的要求。焙烧过程能源消耗大、影响最终产品质量和企业经济效益。 索通发展股份有限公司是国内领先的铝用炭阳极专业生产厂家,经过10多年的发展,目前炭阳极生产能力已经达到27万吨,在建项目阳极产量25吨,90%以上的产品出口到美国、欧洲等世界各地。产品质量受到了国内外用户的好评。 公司2#焙烧炉于2007年投入运行,为38室敞开式环式焙烧炉,每个炉室有7箱8火道,使用2个自动控制燃烧系统,每个系统由3个加热架(HR),一个排烟架(ER),一个测温测压架(TPR)和一个鼓风架(BR)等组成。每个燃烧系统采取6室运行8室冷却。2#焙烧炉经过4年多运行后,炉体、料箱已经变形,破损情况在不断加重,炉室密封不好,漏风系数高,造成焙烧生产燃料利用效率低,能耗高,制品保温时间下降,产品质量受到了影响。 2008年、2009年、2010年2#焙烧炉燃料利用率、制品保温时间、产品电阻率的平均值变化情况,见表1。 作者简介:唐林男1968年出生从事管理工作20年,主要从事炭阳极生产技术管理及技术研发。

耐火材料概论知识点总结

硅砖的应用:是焦炉、玻璃熔窑、高炉热风炉、硅砖倒焰窑和隧道窑、有色冶炼和酸性炼钢炉及其它一些热工设备的良好筑炉材料。 粘土质耐火材料的原料 软质粘土 生产过程中通常以细粉的形式加入,起到结合剂和烧结剂的作用。苏州土和广西泥是我国优质软质粘土的代表。 硬质粘土 通常以颗粒和细粉的形式加入,前者起到配料骨架的作用,后者参与基体中高温反应,形成莫来石等高温形矿物。 结合剂 水和纸浆废液 粘土质耐火材料制品原料来源丰富,制造工艺简单,产量很大,广泛用于各种工业窑炉和工业锅炉上。如隧道窑,加热炉和热处理炉等的全部或大部分炉体,排烟系统内衬用耐火材料,其中钢铁冶金系统是粘土质耐火材料制品的大用户,用于盛钢桶,热风炉、高炉、焦炉等使用温度在1350℃以下的高温部位。 铝矾土的加热变化 a. 分解阶段(400~1200℃) b 二次莫来石化阶段(1200~1400℃或1500℃) 二次莫来石化时发生约10%的体积膨胀 c. 重结晶烧结阶段(1400~1500℃)。 ? 高铝质耐材的应用 ? 由于高铝质耐火材料制品的优良性能,因而被广泛应用于高温窑炉一些受炉气、炉 渣侵蚀,温度高承受载荷的部位。例如高铝风口、热风炉炉顶、电炉炉顶等部位。 ? 硅线石族制品具有较高的荷重软化温度、热震稳定性好、耐磨性和抗侵蚀性优良, 因此适用于钢铁、化工、玻璃、陶瓷等行业,如用作烟道、燃烧室、炉门、炉柱、炉墙及滑板等。在高炉上,为确保内衬结构的稳定性、密封性,避免碱性物的侵入和析出,或风口漏风,在出铁口、风口部位,选择内衬大块型组合砖结构的硅线石族耐火材料,延长了使用寿命。 ? 莫来石制品的抗高温蠕变、抗热震性能力远远优于包括特等高铝砖在内的其它普通 高铝砖 ,广泛应用于冶金工业的热风炉、加热炉、钢包,建材工业的玻璃窑焰顶、玻璃液流槽盖、蓄热室,机械工业的加热炉,石化工业的炭黑反应炉,耐火材料和陶瓷工业的高温烧成窑及其推板、承烧板等窑具。 刚玉耐材的原料 氧化铝 所有熔点在2000℃以上的氧化物中,氧化铝是一种最普通、最容易获 得且较为便宜的氧化物。氧化铝在自然界中的储量丰富。天然结晶的 Al 2O 3被称为刚玉,如红宝石、蓝宝石即为含Cr 2O 3或TiO 2杂质的刚玉。大 232232400~600()H O Al O H O Al O αα-?????→-℃刚玉假象+23222322400~600222H O Al O SiO H O Al O SiO ?????? →?℃+23223229503(2)324SiO Al O SiO Al O SiO ????→?℃+232232 12003232Al O SiO Al O SiO ≥+????→?℃

防火材料的应用

冰火板材料在现代中大型装饰工程中的位置 1、防火等级 常用室内装修材料按照燃烧性能等级分A级不燃性、B1级难燃性、B2级可燃性、B3级易燃性;各部位材料(A级),主要是大理石、水泥制品、石膏板、玻璃、面砖、瓷砖、钢铁、不锈钢制品、铝制品等。主要包括防火装饰板、难燃双面刨花板、防火板、PVC板等等。 2、建筑行业应用 目前全国各个省份城市化进程都在加快,城市建设过程中建筑材料的好坏至关重要,许多城市建筑、公路桥梁后来出现的诸多问题都是由于建设过程中材料选择失当的问题,建筑材料行业长久以来缺乏创新性,后劲不足。江苏金鹏防火板业有限公司经过大量实验研发的有机环保防火板(本公司生产的玻镁板材料成分:活性高纯氧化镁(MgO)、优质氯化镁(MgCl2)、抗碱玻纤布、柔性极佳的植物纤维、不燃质轻的珍珠岩、化学稳定立德粉、高分子聚合物、高性能改性剂)综合性能优越,短板少,无论是防火性能还是后期加工都比传统人造木质板更加优秀,也为建筑防火材料领域注入了新鲜的血液。 3、产品特点 产品特点: 玻镁板具有耐高温、阻燃、吸声、防震、防虫、、防水防潮、轻质防腐、无毒无味无污染、可直接上油漆、直接贴面,可用气钉、直接上瓷砖,表面有较好的着色性,强度高、耐弯曲有韧性、可钉、可锯、可粘,装修方便。还可以与多种保温材料复合制成复合保温板材。

产品用途:可作为墙板,吊顶板,防火板,防水板,包装箱等使用,可替代木质胶合板做墙裙,窗板、门板,家具等室内装饰用具,也可根据需要做调和漆,清水漆,并可加工成各种类型的板面,同时可用于地下室,人防和矿井等潮湿环境的工程,还可以与多种保温材料复合,制成复合保温板材。玻镁板的使用:玻镁板可以通过锯、刨、钉等加工工艺,也可制成各种装饰作品的结构,通过面饰乳胶漆、壁纸、陶瓷墙砖做终饰,完成装饰工程。 4、行业发展趋势 冰火板相比现有技术装饰板,本实用新型基材板为无纤维水泥基材板,不含、甲醛及苯等有害物质,具有高强度、大幅面、轻质、防火、防水、隔音、保温节能等优点,浸胶纸牢固复合在基材板上,所以饰面板表面可以呈现多种艺术效果尤其可仿真木纹或石的纹理效果,且其坚固程度显著地优于以木质人造板为基材的饰面板,更加适宜于在部分对饰面板坚固程度要求较高的场所中使用。

直接还原用耐火材料的特点与应用

直接还原用耐火材料的特点与应用 曹仁锋赵继增张广智徐延庆 (北京利尔高温材料股份有限公司北京, 102211) 1.前言 直接还原铁技术是以气体燃料、液体燃料或非焦煤为能源,在铁矿石(或含铁团块)软化温度以下进行还原得到金属铁的方法。直接还原铁既是废钢的代用品,更重要的是冶炼高级钢种的必须品。在冶炼高级钢种时直接还原铁优于废钢。我国的直接还原铁的生产还处于起步阶段。2007年全球直接还原铁产量达到6722万吨,而我国的年产量约为60万吨,2008年我国全年的直接还原铁进口量在50万吨左右。 钢铁工业的发展离不开耐火材料的进步,由于我国的直接还原铁的生产还处于起步阶段,直接还原铁用耐火材料的生产企业更是稀少。目前的现状是绝大多数直接还原铁生产企业对耐火材料重视程度不够,不了解直接还原铁用耐火材料的特殊要求,一般采用普通耐火材料,寿命普遍不高。 2.直接还原铁用耐火材料的特点及使用要求 直接还原铁用耐火材料与普通耐火材料相比对大的特点就在于工作气氛的不同,一般耐火材料工作气氛为氧化气氛或弱还原气氛,而直接还原铁用耐火材料在强还原气氛下工作。还原性气氛对耐火材料的使用有着决定性的影响,普通耐火浇注料在强还原气氛下易导致施工体开裂甚至崩塌现象(图1,图2)。可以说耐火材料对还原性气氛的适应性即抗CO气体侵蚀性能的好坏直接决定了耐火材料的使用寿命。 图1普通耐火材料经过抗CO实验后开裂现象

图2普通耐火材料经过抗CO实验后崩塌现象 除了必须具备优良的抗CO气体侵蚀性能,直接还原铁用耐火材料在使用过程中还应具备以下性能: 1)高强度:以保证浇注料能经受炉壳的弯曲。 2)高耐磨性:以保证耐火材料能抵抗物料在上面移动时的磨蚀作用。 3)高的化学稳定性:以保证材料能抵抗由铁矿、脱硫剂和媒组成的炉料接触时形成的液体的作用。 4)高的耐热震稳定性:以保证耐火材料在温度发生冷热变化时不被破坏。 3.还原气氛下耐火材料的损毁机理 直接还原铁的基本原理是还原剂还原Fe203成金属Fe。其用固体碳直接还原铁氧化物的反应通常以下式表示: 3Fe203+C=2Fe304+CO Fe304+C=3FeO+CO FeO+C=Fe+CO 而实际上固体碳还原固体Fe203是固相与固相之间的反应,其接触面积很小,其反应速度是非常缓慢的。用固体碳还原氧化铁的反应主要是通过CO的媒介作用进行还原的。其反应由以下二个反应组合起来完成: C+C02=2C0……………(碳的气化反应) FeO+CO=Fe+C02……………(铁氧化物的还原反应) 早期研究结果表明:CO对耐火材料的侵蚀损坏是由于在耐火材料有碳沉积的结果。碳是由2C0=C+CO2反应生成的产物。而且含铁化合物是这个反应的催化剂。 日本对经受CO气体侵蚀变质后的衬砖进行了电子显微镜观察,发现碳素呈丝状,在丝的端部有碳化铁触媒核。这就是说碳素沉积的催化剂不是氧化铁或铁,而是由它们所生成的碳化铁。

焙烧工艺学

一、焙烧的概念和机理 1 焙烧的概念:焙烧是把压型后的生制品装在焙烧炉内、保护介质(填充料)中,在隔绝空气的条件下,按规定的升温速度进行间接加热,使生制品内的黏结剂焦化,并与骨料颗粒固结成一体的热处理过程。 2 焙烧的机理: 炭素生产用的黏结剂一般为煤沥青,是一种由多种多环和杂环芳香族化合物及少量高分子物质组成的混合物。生制品中的骨料已经过1300℃左右的高温煅烧,所以焙烧的过程主要就是黏结剂煤沥青焦化形成沥青焦的过程。 二、焙烧目的 焙烧的主要目的是使黏结剂成为沥青焦,把骨料颗粒结成一个整体,获得最大的残炭量,使制品具有良好的物理化学性能。具体物理化学性能主要有以下几个方面: 1、排除挥发分 2、降低比电阻,提高导电性能 3、固定几何形状 4、黏结剂焦化 5、提高各项物理化学性能 三、焙烧过程的四个不同阶段 1、低温预热阶段 明火温度350℃时,制品温度在200℃左右,黏结剂软化,制品成塑性状态,这段的升温速度要快一些。 2、挥发分大量排除,黏结剂焦化阶段 明火温度在350℃—800℃之间,制品本身温度在200℃—700℃之间,黏结剂开始分解,挥发分大量排除。450℃—500℃时黏结剂焦化成沥青焦。此阶段必须均匀缓慢的升温。 3、高温烧结阶段 明火温度达到800℃—1200℃,制品本身温度达到700℃以上,黏结焦化过程基本结束。此阶段升温速度可以适当加快一些,当达到最高温度后保温15—20小时,这是为了缩小焙烧炉内水平和垂直方向的温差。 4、冷却阶段 冷却过程温度下降太快,会引起产品内外收缩不均产生裂纹废品,也会对焙烧炉炉体带来不利影响,因此,冷却降温速度控制在50℃/h为宜,到800℃以下可使其自然冷却,一般到400℃以下方可出炉。 四、对焙烧过程产生影响主要有以下因素 (一)、升温速度的影响 (二)、压力的影响 (三)、制品收缩的影响 (四)、焙烧炉室温度场分布的影响 (五)、黏结剂迁移的影响 (详细论述省略) 一、填充料的主要作用 1、防止制品氧化 2、固定制品几何形状 3、传导热量 4、阻碍挥发分的顺利排除,同时导出挥发分

54室炭素阳极焙烧炉施工组织设计

54室敞开式阳极焙烧炉砌筑工程 施 工 组 织 设 计 中国***矿**冶集团公司 二○一一年一月二十八日

目录

1、工程概况 焙烧炉的主要作用是将高压成型后的各种炭制品在隔绝空气的条件下,按规定的焙烧温度进行间接加热,以提高炭素制品的机械强度,导电性和耐高温性能。 云南源鑫炭素有限公司五十四室阳极焙烧炉是根据法国彼施涅铝业公司设计,结合国内多年对该炉型的使用而进行改进所设计的炉型。 该炉型的主要特点: 1)火道墙底部设铝钒土滑动层,端墙、隔热墙胀缝处均设陶瓷纤维纸滑动层; 2)中间火道竖缝无灰浆,便於料箱内挥发物进入火道燃烧。 3)炉底采用干砌。 4)连道烟道设钢外壳。 5)隔热墙按不同材质,竖直方向分层,不同材质间无灰浆,整个侧墙用金属拉杆与砼炉壳连接成一体。 6)隔热墙与炉壳间间隙采用轻质保温浇注料。 7)环形烟道直径小,采用外保温。 8)耐火材料种类较多,且对耐火材料的要求较严格和特殊。 焙烧炉的砌筑工程由炉底板、炉侧墙,炉横墙、火道墙、炉顶及连通火道、环形烟道等七个分项工程组成。 阳极焙烧炉的主要结构尺寸根据所生产的炭块尺寸不同而

不同,其设计依据是炭块尺寸、堆放方式、填充焦保护层厚度等。施工过程中主控尺寸有:焙烧炉壳内尺寸、焙烧炉炉底标高、焙烧炉炉顶标高、相邻焙烧室中心距、两行焙烧室纵向中心距 料箱尺寸、一个焙烧室内料箱个数、一个焙烧室内火道墙道数道、火道墙尺寸、相邻火道中心距、炉端墙尺寸、相邻炉端墙中心距、四周隔热墙厚度等。 2、焙烧炉筑炉开工须具备条件 1)焙烧车间厂房建成具有防雨、雪的功能。 2)炉体砼结构及钢结构均已完成并经检查符合设计要求。 3)厂房内的工事天车(或工事天车)安装完毕,并能投入使用。 4)炉体主要部位的预砌筑完毕,各种材料尺寸、规格均符合设计要求。 5)炉体中心、标高均已定位,测设完毕并经复核无误。 6)炉底槽形板安装完毕并经检测合格。 7)筑炉用的耐火材料已基本到齐后,并做好砖的分类、分选工作。 3、平面布置及施工部署 因工程所需材料数量庞大,型号多且须防雨防潮,现场堆放场地有限,故需设立临时耐火材料堆放点,须考虑材料的二次运输,现场炭块库作为临时堆放点,若不够根据现场实际情况定。 具体见施工总平面布置图(附图一)。

耐火材料行业应用解决方案

耐火材料行业应用解决方案 一、耐火材料的简介 耐火度高于1580℃的无机非金属材料。耐火度指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。耐火材料与高温技术相伴出现,大致起源于青铜器时代中期。中国东汉时期已用粘土质耐火材料做烧瓷器的窑材和匣钵。20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时出现了完全不需烧成、能耗小的不定形耐火材料和耐火纤维。现代,随着原子能技术、空间技术、新能源技术的发展,具有耐高温、抗腐蚀、抗热振、耐冲刷等综合优良性能的耐火材料得到了应用。 (一)耐火材料的分类 耐火材料种类繁多,通常按耐火度高低分为普通耐火材料(1580~1770℃)、高级耐火材料(1770~2000℃)和特级耐火材料(2000℃以上);按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。此外,还有用于特殊场合的耐火材料。 现在对于耐火材料的定义,已经不仅仅取决于耐火度是否在1580℃以上了。目前耐火材料泛指应用于冶金、石化、水泥、陶瓷等生产设备内衬的无机非金属材料。 (二)不同耐火材料的化学组成成分 酸性耐火材料以氧化硅为主要成分,常用的有硅砖和粘土砖。硅砖是含氧化硅93%以上的硅质制品,使用的原料有硅石、废硅砖等,其抗酸性炉渣侵蚀能力强,荷重软化温度高,重复煅烧后体积不收缩,甚至略有膨胀;但其易受碱性渣的侵蚀,抗热振性差。硅砖主要用于焦炉、耐火材料熔窑、酸性炼钢炉等热工设备。粘土砖以耐火粘土为主要原料,含有30%~46%的氧化铝,属弱酸性耐火材料,抗热振性好,对酸性炉渣有抗蚀性,应用广泛。 中性耐火材料以氧化铝、氧化铬或碳为主要成分。含氧化铝95%以上的刚玉制品是一种用途较广的优质耐火材料。以氧化铬为主要成分的铬砖对钢渣的耐蚀性好,但抗热振性较差,高温荷重变形温度较低。碳质耐火材料有碳砖、石墨制品和碳化硅质制品,其热膨胀系数很低,导热性高,耐热振性能好,高温强度高,抗酸碱和盐的侵蚀,不受金属和熔渣的润湿,质轻。广泛用作高温炉衬材料,也用作石油、化工的高压釜内衬。 碱性耐火材料以氧化镁、氧化钙为主要成分,常用的是镁砖。含氧化镁80%~85%以上的镁砖,对碱性渣和铁渣有很好的抵抗性,耐火度比粘土砖和硅砖高。主要用于平炉、吹氧转炉、电炉、有色金属冶炼设备以及一些高温设备上。 在特殊场合应用的耐火材料有高温氧化物材料,如氧化铝、氧化镧、氧化铍、氧化钙、氧化锆等,难熔化合物材料,如碳化物、氮化物、硼化物、硅化物和硫化物等;高温复合材料,主要有金属陶瓷、高温

焙烧炉筑炉施工组织设计

54室敞开式焙烧炉筑炉工程 施 工 案

批准: 审核: 编制: 目录 一、工程概况: (4) 二、编制依据 (4) 三、筑炉前应具备的条件 (5) 四、施工法 (5) 五、施工网络计划及保证措施 (13) 六、工程质量保证措施及质量保证体系,预防质量通病措施 (14) 七、安全、文明施工保证措施 (20) 八、主要施工设备及主要施工材料 (22) 九、劳动力安排 (23) 附:焙烧炉筑炉施工网络计划 原材料进场计划

一、工程概况: 五十四室阳极焙烧炉是为焙烧阳极碳块而配备的一座敞开式焙烧炉,主要由炉底、侧墙(侧部、端部)横墙、火道墙、炉顶板及连通烟道、环形烟道等部分组成,由土建工程的砼挡墙分隔成左右两边各二十七室,每室之间以横墙隔开,每个炉室又被火道墙分隔成尺寸相同的九个料箱,全炉共有486个料箱,目前国现有焙烧炉基本情况如下: (1)空气道是用粘土砖砌筑而成的U型空气道,然后铺浇注料预制块,再进入轻质砖砌筑。炉底轻质砖采用湿砌进行砌筑。 (2)侧墙与砼之间的保温是采用填轻质浇注料。 (3)连通火道和环形烟道部均采用喷涂浇注料。 (4)设计尺寸:横墙中心距5712,火道宽560,料箱宽780。 (5)炉顶浇注料块选用预制浇注料块。 二、编制依据 本工程焙烧炉施工案是根据以下文件进行编制的: 1、54室焙烧炉施工蓝图;

2、工业炉砌筑工程施工及验收规(GBJ211-2004); 3、工业炉砌筑工程质量检验评定标准(GB50309-2007); 4、我公司在工程施工中积累的经验及技术总结; 5、我公司现有的经济、技术、人员、装备的实力; 6、建筑安装工程现行施工及验收规、规程、标准; 7、建筑安装工程现行工程质量验收、检验评定标准; 8、现行强制性标准条文; 9、工程现场的实际情况。 三、筑炉前应具备的条件 1、筑炉所在厂房(包括阳极碳块库)应能防雨、防潮; 2、砼炉壳施工完毕,两侧及中间砼挡墙上的盖板应铺设完毕; 3、炉子砼基础底板施工完毕,并经检查符合设计要求标准; 4、焙烧厂房为筑炉服务的行车应能投入使用。 5、筑炉用的耐火材料已基本到齐后,并做好砖的分类、分选工作及部分砌体的预砌筑工作。 四、施工法 4.1.炉体中心线、标高的测设与控制: 4.1.1纵横中心线的设置和控制 炉室纵横中心控制轴线首先用经纬仪投射在炉壳的砼壁上或其它不会产生移动的点上。然后用经纬仪将各横墙中心线测设到侧墙保温砖上,弹好墨线,弹

耐火材料分类及应用

第八章耐火材料 第二节耐火材料产品分类及统计指标结构 (1) 一、耐火材料产品统计指标结构 (1) 二、有关名词解释 (4) 第三节耐火材料产品产量统计 (19) 二、耐火材料产品产量 (20) 三、耐火材料产品产量的统计范围 (31) 第四节耐火材料主要技术经济指标计算方法 (42) 一、耐火材料合格率 (43) 二、耐火材料原料消耗 (57) 三、耐火材料综合能耗 (66) 四、耐火材料工序单位能耗 (71) 五、烧成耐火制品标煤单耗 (79) 六、耐火材料电耗 (86) 七、耐火材料工人实物劳动生产率 (94) 八、压砖机台班产量 (99) 九、烧成窑有效容积利用系数 (107) 十、倒焰窑平均周转时间 (115) 十一、耐火材料成品率 (122)

第二节耐火材料产品分类及统计指标结构 一、一、耐火材料产品统计指标结构 耐火材料产品统计指标如如图 粘土制品 高铝制品 烧成耐火制品硅质制品 镁质制品 其它烧成制品 不烧高铝质砖 不烧耐火制品不烧硅质砖 镁碳砖 耐火材料刚玉制品 氧化铬制品 氧化铝制品 特种耐火材料氧化镁制品 氧化铍制品 ┋ 复吹转炉(电炉)用底吹供气元件 精炼钢包底吹用透气塞 功能耐火材料连铸用滑板 连铸用整体塞棒、长口水、浸入式水口 熔融石英质水口 耐火泥浆料 不定形耐火材料捣打料 可塑料 浇注料 二、有关名词解释 1)烧成耐火制品。将粒状、粉末状耐火原料和结合剂经混练、成型、干燥、高温烧成而制得的耐火材料。 2)不烧耐火制品。采用粒状、粉末耐火原料和合适的结合剂,经成型,但不烧成而直接使用的耐火材料。 3)特种耐火材料。由高熔点氧化物、难熔非氧化物和碳素中的一种或多种复合,经特殊烧烤工艺制成的具有某种特殊性质的耐火材料。 4)不定形耐火材料(散状耐火材料或耐火混凝土)。有合理级配的粒状、粉状耐火原料与结合剂及多种外加剂组成的不经高温烧成,而在现场通过混练、成型和烧烤后直接使用的耐火材料。

耐火材料的发展趋势和新技术

本科课程论文 题目:耐火材料的发展趋势和新技术 学院: 材料与冶金学院 专业: 无机非金属材料工程 学号: 2009021280 学生姓名: 指导教师: 日期: 2012.12.26

摘要 作为现代工业窑炉不可或缺的耐火保温材料,硅酸铝纤维在倡导节能高效的今天显得尤为重要。传统硅酸铝纤维材料主要以定形制品如板、毡、毯为主,受到强度及施工条件的限制,不能广泛的应用于需满足一定强度和施工条件较为复杂的窑炉部位。 本文概述了近年来定型和不定型耐火材料的总体发展趋势和新技术,为耐火材料的研究和使用提供参考。

目录 1 耐火材料的总体发展趋势 (1) 2 定型耐火材料的发展趋势和新技术 (2) 2.1 定形耐火材料的发展趋势 (2) 2.2 定形耐火材料新技术 (2) 3 不定形耐火材料的发展趋势和新技术 (3) 3.1 不定形耐火材料的发展趋势 (3) 3.2 不定形耐火材料新技术 (4) 4 纤维浇注料的强度研究 (5) 4.1 硅酸铝纤维的基本性能 (6) 4.2 骨料对纤维浇注料强度的影响 (8) 4.3 基质对纤维浇注料强度的影响 (9) 4.5 硅酸铝纤维的导热性研究 (12) 5 硅酸铝纤维施工方式的研究 (13) 5.1 模块结构及层铺结构 (13) 5.2 纤维喷涂结构 (13) 6 课题的提出 (13) 参考文献 (14)

1 耐火材料的总体发展趋势 近年来,随着冶炼技术和钢铁工业的快速发展,耐火材料也实现了一系列重大技术变革,正逐步由依赖于天然原料、大批量生产的原始制品群向以多品种、小批量、人工原料、开发和设计等为原则的精密、高级制品系列转变,即由古典耐火材料向多样化的新型耐火材料转变。这些表征着近年来耐火材料总体发展趋势的变革,概括起来可以归结为以下几点: (1)高纯度化 在各国的耐火原料中,那些纯度较低的天然原料,由于所含大量杂质的不良影响和使用性能的不足,其用量正日趋减少,如硅石、粘土等。相应地,那些杂质少、性能优异的高纯度天然原料或经过提纯的天然原料,如锆英石、石墨等,用量正日趋增加。同时,电焙镁石、碳化硅、尖晶石等人工合成原料的开发和应用,也日益受到各研究和应用部门的关注与重视。 (2)致密化 由于使用过程中,对耐火制品的强度和高温性能的要求越来越高,耐火制品,特别是耐火砖,正走向致密化、长尺寸、大型化的方向发展。相应地,高压成型、高温烧成技术也在不断发展。 (3)精密化 随着冶炼技术和钢铁等工业的发展,耐火制品的形状日趋复杂,性能要求也日趋精细。因而,各国耐火材料的配比、性能和生产工艺的设计,甚至施工技术都日趋精密化。其中,连铸用耐火材料是精密化趋势最为集中最为突出的代表;同时还在朝着功能化的方向发展。 (4)含碳耐火材料不断普及 由于炭素材料具有吸收高温下因高强度、热膨胀或急剧温度变化而产生的应力,能防止熔融金属或炉渣浸润的特性,含碳耐火材料在各国都得到了相当程度的普及和应用,而且正在不断发展,其典型代表是镁碳砖、镁钙碳砖。 (5)氧化物与非氧化物复合材料的开发 70 年代后期以来,世界耐火材料发展的一个突出成就是碳结合耐火材料的兴起和迅速发展,如镁碳砖、镁钙碳砖、铝碳材料、铝锆碳材料等。然而,碳结合材料的弱点是抗氧化性和强度较低。综合考虑高温性能,可以发展成为具有优良高温性能的高技术耐火制品,可用于条件复杂、苛刻的特定高温部位的氧化物与非氧化物复合材料的开发,成为耐火材料近年来和今后的又一发展方向。其中,氧化物包括氧化铝、锆刚玉、莫来石、氧化锆、锆英石、氧化镁等;非氧化物包括碳化硅、氮化硼、赛隆、硼化锆等。氧化物与非氧化物复合材料,有直接结合、反应结合和碳结合等不同的工业途径。近年来的开发研究结果表明,与碳结合材

环式焙烧炉讲解

furnace) baking (ring type 环式焙烧炉 国内外碳素焙烧炉发展状况 环视焙烧炉是生产碳素制品最关键的大型热工炉窑设备,对一个预焙阳极生产厂而言,环式焙烧炉的基建投资占整个碳素厂总投资的50%~60%,而且焙烧炉设计及技术的先进性对产品的质量单位投资的产能、能耗及能源综合利用、炉子寿命、产品生产成本都有很大的影响,焙烧炉火道墙结构的设计,材质的选择和施工工艺是设计焙烧炉最关键的技术。 碳素生产企业环式焙烧炉火道墙采用砖砌结构,由轻质耐火砖、粘土耐火砖、异型耐火砖砌筑而成。根据焙烧炉火道墙尺寸的不同,每条火道墙重约7~9吨,砖层多打40层。在生产过程中,依照工艺要求反复地升降温(1250℃~1300℃),降温(20℃~30℃),每次装、出炉时,天车夹具、碳素产品都不可避免地会碰撞到火道墙上,这样火道墙就会发生变形,变形达到一定程度,就必须拆除重砌。火道墙主要损坏形式:传统工艺采用耐火砖加耐火泥浆砌筑,采用了卧缝打灰、立缝不打灰的砌筑工艺,这样会出现砖缝泥浆脱落,影响了火道墙的整体结构强度。由于砌砖更多的注重了火道墙的牢固性,但忽视了火焰的流向,不可避免地出现温度死角,对产品的均匀性造成影响。在生产过程中由于产生不均匀热膨胀以及频繁升降温和装出焙烧品的撞击,造成火道墙变形,继而火焰不走正道→温度死角→温差变大→炉箱变形等恶性循环,能耗增大,降低炉体寿命,出现频繁中小修。 目前国内碳素焙烧炉的设计是50年代从国外引进的技术,火道墙采用砖砌筑结构,经历了半个世纪,并为大多数碳素厂所采用。随着生产实践的进一步深入,该技术的一些技术问题也逐渐暴露出来。 (1)边火道墙向外突出或整体倾斜,使料箱变窄,装出炉困难; (2)中间火道向内外凹陷,使火道变窄,影响热流气体的流动和燃烧效果; (3)火道墙裂缝严重,导致漏风漏料,影响产品质量,增大热能损耗,破损比较严重的火道墙必须进行中修、大修,由于火道墙是由小块耐火砖砌筑而成,拆除一条火道墙大约需要7~8小时,重新砌筑需24小时左右,拆除并重砌一条火道墙就必须搬运近17吨的材料,这不仅给修炉工作带来困难,而且给车间的正常生产增加难度。特别是环式焙烧炉是以循环方式作业,留给维修、拆除、重砌火道墙的时间非常紧张,通常在炉温还有80℃~90℃时就必须开始刨修,工作环境极为恶劣,反过来又影响施工质量,形成恶性循环。 我国用在环式焙烧炉上的耐火材料质量与国外同类产品相比,有较大的差距,高温抗蠕变性,荷重软化点,高温热稳定性等理化指标及产品外形尺寸精确度。加之生产管理,操作等方面的影响,我国碳素焙烧炉火道墙的平均使用寿命为80~100炉次,国外焙烧炉一般达到150炉次。 在市场竞争日趋激烈的今天,各类产品都必须以优质廉价来赢得市场,炭素制品也不例外。若焙烧炉火道墙变形严重,势必影响产品的质量,特别是影响产量,增加生产成本,不能满足生产需求,难以取得良好的经济效益。 针对砖砌火道墙存在的上述缺陷,国外多家碳素制品生产公司对火道墙结构的设计,材质的采用及砌筑方式等方面作了大量研究的改进,据有关资料报道,美国贝克莱和利德汗姆公司对火道墙的砌筑方式进行了大胆创新,采用异地预砌墙的方法,整体吊运到现场安装。提高了焙烧炉的产量及砖减轻了劳动强度,改善了施工环境,该技术大大缩短了施工时间, 砌火道墙的质量。鉴于我国耐火砖型尺寸的精确度及各类碳素厂起重设备受限,实现异地整体预砌、整体吊装难以实现。 我国环形焙烧炉技术共经历两个发展阶段。第一阶段50~70年代环式焙烧炉基本上未跳出苏联援建时的炉型框架,只在局部结构上有所改进,总体上看来,基本上环式炉技术落后。第二阶段,从80年代开始至今是我国环式炉向新环式炉转变时期。

耐火材料项目

耐火材料项目 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

谷城冷江耐火材料有限责任公司年产10000吨优质硅砖节能减排可研报告 谷城县冷江耐火材料有限责任公司 2009年4月 目录 一、公司概况(法人、地址、人员构成、营业执照) 二、本地市场分析 三、改造目标及建设规模 四、能源年耗量 五、改造内容 六、节能改造方案 七、改造前后工艺流程 八、改造前后技术指标对比 九、公司能源管理状况 十、设备清单 十一、环保方案 十二、厂区平面图 十三、土地证 十四、产品成本构成及销售价格 十五、原材料消耗量及来源

一、公司概况(法人、地址、人员构成、营业执照) (一)基本情况 法人:周作礼 地址:谷城县谢湾工业园 人员构成:周作礼阳凤娥杨卫星蒋云波(4大股东) 营业执照:(见附件1) 谷城县冷江硅质耐火材料有限责任公司成立于2003年,短短七年时间,以品质独特的产品、科学的管理、优质的售后服务挤身于中国耐火材料行业前3强。公司所有的工程技术人员和高级管理人才均来自原湖南冷水江耐火材料总厂(中国国内三大着名国营耐火材料厂之一)的要害和关键岗位,管理经验丰富,技术力量雄厚。现有员工150余人,其中工程技术人员35人。工厂占地面积40亩,厂房建筑面积10000平方米,绿化面积3000平方米,拥有固定资产2550万元,流动资产800万元。 我公司采用美国H-W公司高级硅砖制造技术,利用谷城独有的高品位优质硅矿石生产出了畅销的高强度低蠕变特级优质硅砖。与此同时,我公司还与北京建材研究院共同研发了能够与玻璃窑用优质硅砖、普通硅砖、焦炉用硅砖相配套的优质硅质砌筑泥浆、密封料、捣打料、热补料等产品,均受到施工队伍和用户的好评。我公司产品通过了国际ISO9001质量体系认证,是“银行资信AA企业”,拟与湖北工业大学通过技术合作协议建立“生产、学习、科研、教学”基地。 在新产品研发方面,我们响应国家“十一五计划”要求,目前正与北京建材研究院合作,共同研制无氧燃烧技术高密度硅砖。此产品已经成型,正策划进入市场。

相关文档
最新文档