张力控制变频收卷的控制原理

张力控制变频收卷的控制原理
张力控制变频收卷的控制原理

张力控制变频收卷的控制原理

2007年7月23日中国工业设备网

本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

一. 前言 :

用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

二.张力控制变频收卷在纺织行业的应用及工艺要求

2.1 传统收卷装置的弊端

纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。

2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。

(2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。

(3)在加速、减速、停止的状态下也不能有上述情况出现。

(4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。

2.3 张力控制变频收卷的优点

(1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。

(2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。

(3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。

(4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。

(5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。

(6)克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

图1 系统构成及系统框图

张力控制变频收卷的控制原理

2007年7月23日中国工业设备网

三.变频收卷的控制原理及调试过程

3.1 卷径的计算原理

根据V1=V2来计算收卷的卷径。因为V1=ω1*R1, V2=ω2*Rx。因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即L1/Δt=L2/Δt,Δn1*C1=Δn2*C2/i(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比) Δn1*π*D1=Δn2*π*D2/i D2=Δn1*D1*i/Δn2,因为Δn2=ΔP2/P2(ΔP2---收卷编码器产

生的脉冲数、P2---收卷编码器的线数)。Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由霍尔开关产生一个信号接到PLC。那么D2=D1*i*P2/ΔP2,这样收卷盘头的卷径就得到了。 3.2收卷的动态过程分析

要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定。需要进行转矩的补偿。整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系。在不同车速的时候,补偿的系数是不同的。即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴。这样就分析出了收卷整个过程的转矩补偿的过程。总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩。(1)在加速时还要加上加速转矩;(2)在减速时要减去减速转矩。(3)停车时,因为是通过程控减速至设定的最低速,所以停车转矩的补偿同减速转矩的处理。

3.3转矩的补偿标准

(1)静摩擦转矩的补偿

因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了。因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿。

(2)滑动摩擦转矩的补偿

滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的。补偿的大小以收卷电机的额定转矩为标准。补偿量的大小与运行的速度有关系。所以在程序中处理时,要分段进行补偿。

(4)加减速、停车转矩的补偿

补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。

3.4计算当中的公式计算

(1)已知空芯卷径Dmin=200mm,Dmax=1200mm;线速度的最大值Vmax=90m/min,张力设定最大值Fmax=50kg(约等于500牛顿);减速比i=9;速度的限制如下:因为:V=π*D*n/i(对于收卷电机)=>收卷电机在空芯卷径时的转速是最快的。所以:90=3.14*0.2*n/9=>n=1290r/min;

(2)因为我们知道变频器工作在低频时,交流异步电机的特性不好,激活转矩低而且非线性。因此在收卷的整个过程中要尽量避免收卷电机工作在2HZ以下。因此:收卷电机有个最低速度的限制。计算如下:对于四极电机而言其同步转速为:n1=60f1/p=>n1=1500r/min。=>2HZ/5HZ=N/1500=>n=60r/min。当达到最大卷径时,可以求出收卷整个过程中运行的最低速。V=π*D*n/i=>Vmin=3.14*1。2*60/9=25.12m/min。张力控制时,要对速度进行限制,否则会出现飞车。因此要限速。

张力控制变频收卷的控制原理

2007年7月23日中国工业设备网

(3)张力及转矩的计算如下:如果F*D/2=T/I=>F=2*T*i/D对于22KW的交流电机,其额定转矩的计算如下:T=9550*P/n=>T=140N。m。所以Fmax=2*140*9/0.6=4200N。(其中P为额定功率,n为额定转速)。

(4)调试过程:

●先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。

●将编码器的信号接至变频器,并在变频器上设定编码器的线数。然后用面板给定频率和启停控制,观察显示的运行频率是否在设定频率的左右波动。因为运用死循环矢量控制时,运行频率总是在参考编码器反馈的速度,最大限度的接近设定频率,所以运行频率是在设定频率的附近震荡的。

●在程序中设定空芯卷径和最大卷径的数值。通过前面卷径计算的公式算出电机尾部所加编码器产生的最大脉冲量(P2)和最低脉冲量 ( P2 )。通过算出的最大脉冲量对收卷电机的速度进行限定,因为变频器用作张力控制时,如果不对最高速进行限定,一旦出现断纱等情况,收卷电机会飞车的。最低脉冲量是为了避免收卷变频器运行在2Hz以下,因为变频器在2Hz以下运行时,电机的转距特性很差,会出现抖动的现象。

●通过前面分析的整个收卷的动态过程,在不同卷径和不同运行速度的各个阶段,进行一定的转距补偿.补偿的大小,可以以电机额定转距的百分比来设定。

五.真正的张力控制.

5.1 张力控制的定义

所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。

5.2 真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。

六.变频收卷对变频器性能的要求

(1)变频收卷的实质是要完成张力控制,即能控制电机的运行电流,因为三相异步电机的输出转距T=CmφmIa,与电流成正比。并且当负载有突变时能够保证电机的机械特性曲线比较硬.所以必须用矢量变频器,而且必须要加编码器死循环控制。

(2)市场上能进行张力控制变频收卷的变频器主要有: 安川、艾默生、伦次等。艾默生TD3300就是一款收放卷专用的变频器,台达V+系列的变频器正在推出自己的收放卷专用的变频器,总结收放卷专用变频器的很多主要功能和参数并且加入了自己的算法,具有自己的特点,加上台达在全国的联保服务能够解决客户的后顾之忧。应该是客户不错的选择。

参考文献(略)

作者简介:

李强(1978.11-)男中达电通股份有限公司高级技术工程师(FAE)研究方向:向客户提供自动化解决方案,用组态软件、人机、PLC、变频器、伺服完成系统设计。

张力控制变频收卷的控制原理及在纺织机中的应用

张力控制变频收卷的控制原理及在纺织行业的应用 -------作者:中达电通上海分公司 FAE李强 一.前言: 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷 经 是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不 同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动 时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷 时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基 本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客 户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径启动时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 * 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 减速、停车、再启动时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本

薄膜分切机放卷至卷取的张力控制(上)讲解

薄膜分切机放卷至卷取的张力控制 (上) 1.分切机的重要选定要素2.放卷至卷取的张力3.接触辊及接触压力4.卷取张力的自由选择及设定5.在薄膜主要物性条件下所设定的卷取条件1.分切机的重要选定要素在分切机的选定方面最受关注的应该是分切卷取后的产品如何?也就是产品内部品质。从外观上来看,无皱褶、无划痕、端面整齐、卷取表面硬度适当等,这些都应该是基本的。但是,我们认为仅关注这些还不够。因为分切卷取后的产品其内部残留着很大的应力(内部张力),这将会对 1.分切机的重要选定要素 2.放卷至卷取的张力 3.接触辊及接触压力 4.卷取张力的自由选择及设定 5.在薄膜主要物性条件下所设定的卷取条件 1.分切机的重要选定要素 在分切机的选定方面最受关注的应该是分切卷取后的产品如何?也就是产品内部品质。从外观上来看,无皱褶、无划痕、端面整齐、卷取表面硬度适当等,这些都应该是基本的。但是,我们认为仅关注这些还不够。因为分切卷取后的产品其内部残留着很大的应力(内部张力),这将会对后道工序带来各种不利影响,比如说印刷的套印不准等。 这种内部品质的状况如何,将会很大程度地影响到用户的订购量、产品韵价格及用户对制膜厂家的信赖和评价。 而这种选定要素却无法用肉眼看到,因此,对薄膜的张力控制及接触压力的控制是最重要的选定要素。 2。放卷至卷取的张力

分切机的放卷至卷取张力可分为以上3大部分。 2—2放卷张力 2—2—1内部张力 前道工序卷取下来的原膜母卷的内部含有残留应力,这残留应力的大小同生产线的设备性能有关,特别同卷取机的性能有很大的关系。如卷取机的张力过大且张力的变动量也大时,会对分切机的放卷张力的控制带来不利影响。另外,原膜母卷由于熟化的缘故几乎多少都存有偏芯,这就是放卷速度的变化而造成放卷张力变化的原因所在。放卷张力发生变化会使薄膜内部产生应力,将存有内部应力的薄膜从牵引部传送至卷取部,最终肯定会对卷取张力的变动带来影响。 为使放卷张力的变动量降低,放卷部采用浮动辊方式来控制放卷张力。该方式可使原膜母卷的内部应力减少,可吸收放卷速度的变化,实现放卷张力保持稳定。 为使浮动辊的效果更佳,本公司研制开发了2根串联在一起浮动辊方式(已取得专利权),该方式可使放卷张力的变动量降低到最低限度。 2—2—2为实现放卷张力变动量最小而采取的对策 串联浮动辊的控制 偏芯原膜母卷回转时,靠浮动辊的摆动来吸收,但是,浮动辊的质量成为惯性抵抗使薄膜产生松弛,并使张力也增加。由于此惯性抵抗会给每一时间上的变动量及浮动辊的质量本身带来很大的影响。现在,本公司研发开发了把2根浮动辊组合在一起的串联浮动方式,可实现低张力条件下的高速运转。 串联浮动辊的方式相对于1根浮动辊来说,偏芯原膜母卷每回转1次,薄膜偏芯量的1/2通过浮动辊的位置变化来吸收,同时,由于浮动辊及惯性力的变动所产生的作用于薄膜的张力,因每一根浮动辊的质量是原来1根的1/2,可使得总体上放卷张力的变动量减少到原来1根浮动辊张力变量的1/4。

卷取张力原理

直流调速器卷取张力控制原理 卷取张力控制原理卷取机的卷取张力由卷取电动机产生。电动机力矩为: 式中Km——比例系数,常数 ∮——磁通量; I枢——电动机电枢电流。 卷取张力T与电动机力矩的关系为: 式中 D——带卷直径。 带卷速度为: 式中行电——电动机的转速; i——电动机至卷筒的速比。 将式2-2、式2-4代入式2-3得: 电动机电枢电势E为: 或 式中K。——比例系数,常数; ∮——磁通量; n电——电动机转数。 将式2-6代入式2-5则得:

其中: 欲使詈=常数,若E不变,口亦不变,则张力T与电动机电枢电流k成正比。换言之,在保持线速度钞不变的条件下,一定的电枢电流珠表示一定的卷取张力T。张力控制的实质在于,若卷取线速度不变,采用电流调整器使电枢电流保持恒定,就可以保持张力恒定。 怎样才能保持卷取线速度不变呢?由于卷取线速度口与带卷直径和带卷转速的乘积Dn成正比,欲使口不变,随着卷径D的变化,带卷转速必须相应变化。一般采用电势调整器调节电动机的磁通量①,以改变电动机转速,使卷取线速度保持不变,这就是卷取机的速度调节。 卷取机的速度调节除了补偿卷径变化外,还应包括根据工艺要求,对机组速度进行调整。一般来说机组速度的调节,可采用改变电压(降压)的方法,从基数咒基往下调;而卷径变小时,调速则采用改变激磁(弱磁)的方法,从基速孢基往上调。这样就可必最大机组速度'Ornax和最大卷径D。诅x时的转速为基速挖基。因此,调激磁的调速范围应保证满足下式: 式中 nrtmx、咒基——分别为卷筒的最大转速、基速; D、d——分别为带卷的外径、内径。 综上所述,电枢电流j枢与卷取张力T成比例;磁通量①与卷径D成比例。在电器上采用电流调节器和电势调节器来实现恒张力控制。 上述电势电流复合张力调节系统,用改变磁通的方法来适应卷径的变化,以保证卷取线速度,从而实现恒张力控制。卷取机处于弱磁条件下土作,不能充分利用电动机力矩;由于电动机磁通的调速范围往往受到限制,不能满足卷径比的要求,在此情况下不得不增加电动机容量。近年来出现的最大力矩张力调整系统,基本上克服了电势电流复合张力调整系统的缺点。 电动机力矩M为: 电动机电势E为: 电动机功率N为:

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图 2

2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩 3

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

卷取恒张力控制

酸洗线卷取机恒张力控制原理及实现方法 摘要:卷取机张力的稳定性直接影响到清洗线产品的质量,卷取机的恒张力控制是卷绕自动控制系统中的关键技术。本文首先描述了实现恒张力控制的原理,通过分析选取了适合的控制方法。并结合意大利Ansaldo 全数字直流传动装置SPDM给出了一种具体的实现方法,这种方法搭建的系统在实际应用运行稳定,清洗效果良好。 关键词:张力控制最大力矩法全数字直流调速装置SPDM Abstract: The stability of the wind reel’s tension will influence the quality of the acid cleaning‘s product directly. The way of constant tension control to the wind reel is a key technique of the automatic taking-up equipment. At the beginning of this paper, we describe the principle of tension control. Then we choose a better control method based on analyze. And then we give a implement method use the Italian Ansaldo’s whole digit direct current timing equipment SPDM. The acid cleaning system based on this method worked steady and the wash effect is good. Key words: tension control; maximal moment method; whole digit direct current timing equipment SPDM. 1、概述 近年来,市场上对铜带的需求有增无减,国际市场上铜产品价格呈强劲上涨趋势。用户对铜带产品表面的光洁度要求越来越高,同时企业对清洗的效率也提出了更高的要求。传统的清洗方式已不能满足企业的需要。铜带清洗的质量一方面取决于工艺,另一方面也与卷取机张力有密切的关系。一般来说,卷取机张力的稳定性直接影响带材的质量和成品率。尤其在带材被拖动动态升降速的过程中,更要保持张力的恒定以免出现断带。传统的卷取机张力控制装置为模拟系统,其张力控制精度低,大约在±5%左右,而且由于调试困难,实际上往往难以达到。当前普遍采用全数字直流调速装置来实现恒张力控制。意大利Ansaldo 全数字直流传动装置SILCOPAC D在冶金领域有着广泛的应用。它有许多优异的性能如具有电流、速度、电势环的自整定功能,可以通过串行总线进行大量的数据交换,可以通过软硬件设定系统功能,满足用户多种需要等。磁场控制由一个可控硅控制的调压器作为电机的励磁控制,励磁控制模式可以是恒压控制、恒流控制以及自动弱磁升速控制。利用SILCOPAC D可以方便的实现卷取机的恒张力控制。本文的研究基于铜带酸洗线设计,主要讨论使卷取机张力恒定的控制原理并结合Ansaldo直流调速装置(SPDM)说明其实现方法。 2、卷取机恒张力控制原理 保持张力恒定通常采用间接张力控制方式。所谓间接恒张力控制方式,就是只给定张力设定值,不用检测器采集张力的实际值,对张力不形成闭环控制,而是通过对开卷机电流或磁场的控制来间接实现对张力进行恒定控制的方法。 2.1 常用间接张力控制法 通常采用的间接张力控制方式有2种:比例控制方式和最大力矩控制方式。为了说明这两种方式的差别,进行以下推导。下图为卷取机示意图:

变频器在自动分条机上的张力控制

变频器在自动分条机上的张力控制 摘要:本文主要介绍了分条机的用途、工艺要求、控制方式、控制难点以及实现的方法、调试过程。重点介绍了如何用台达V系列的变频器实现张力控制。应用V系列变频器实现转矩控制时应该注意的调试步骤、过程及参数的设定。 关键字:台达机电分条机张力控制变频器 1引言 胶带、保护膜生产设备主要包括各种胶粘制品及无胶纸类、布类、皮革类、多种塑料制品类物料的上胶、多层贴合、分条、复卷、分切、冲型机械等。其中分条机在生产过程中根据不同需要对材料进行切边、分切等。其中分条机(图1)主要用于将宽幅卷材分切成窄幅卷材。分条工艺包括放卷和收卷两个过程。放卷和收卷的张力控制是分条机的关键自动化环节。本案例的方案特点是在原有电控系统的基础上选用变频器实现收放卷转矩控制,达到了理想的效果,在原来的基础上提高机器工作性能,使机器在高速运转中更趋稳定,操作方便,安全可靠,耐用性强,减轻了劳动强度。 二.系统构成 1.硬件组成 2.系统框图 (1).设备图片 多功能贴合复卷分条机

(2).系统控制框图 图1 三.工艺要求及控制原理 1.工艺要求: (1). 恒张力控制:张力的给定通过张力控制器。张力控制器控制的原理是通过检测收卷的线速度计算卷径,负载转距=F*D/2(F为设定张力,D为当前卷径),因此当设定了张力的大小,因为当前卷径通过计算已得知,所以负载转距就算出来了。张力控制器能够输出标准的0~10V的模拟量信号,对应异步电机的额定转距。所以我们用该模拟量信号接入变频器,选择转距给定。这样在整个收卷的动态过程中,能够保证张力的恒定。 (2).转距模式下,对速度进行限制。在张力控制模式下,不论直流电机、交流电机还是伺服电机都要进行速度限制,否则当电机产生的转距能够克服负载转距而运行时,会产生转动加速度,而使转速不断增加,最终升速到最高速,就是所谓的飞车。如图1所示,收放卷的速度是通过主轴B系列变频器的模拟量输出AFM而限定的,也就是将主轴B系列的变频器上3—05(模拟信号输出选择)参数设

商业轮转机的张力控制详解

商业轮转机的张力控制详解 前言:随着商业印刷市场的扩展,商业轮转机在商业印刷中表现出来了越来越重要的作用,但也给商业轮转机印刷质量和精度提出了更高的要求。轮转印刷过程中通常由于张力的影响使印刷品套印和折页不准,给印刷带来很多不良品,从而影响生产成本和市场的信誉。下文以桑拿C800为例分析商业轮转印刷张力控。 C800商业轮转印刷的显著特点是纸带从开卷到进入折页滚筒都是在绷紧状态下完成的,套准、烘干、冷却、加湿及裁切等前后纸带长度上百米,因此纸带张力稳定是保证正常印刷的首要条件现从五个方面分析纸带的张力控制。 送纸部分:送纸部分从纸的入口到印刷单元包括了一次张力和二次张力,一次张力采用的是轴制动方式,在纸卷芯部轴端设置刹车片和刹车盘,通过气压方式加载制动力,即气动式张力控制系统。保证纸卷以平稳的速度放纸,并通过浮动机构及张力检测电路,消除或减轻由于纸卷不圆、偏心、一头松、一头紧等本身原因造成的张力波动,并可在印刷过程中对纸卷不断变小引起的张力变化进行自动调整。如(图一) 图一:1纸筒也是张力控制器所在、2和4导纸棍、3浮动机构 电器控制原理图如(图二)

分析:供纸部的张力控制部分由刹车片、制动器、浮动辊等组成,为了使纸带张力保持恒定,纸卷制动器必须能够根据纸带张力的波动情况自动进行调整以保证纸带匀速、平稳地进入印刷装置。在机器平稳运行过程中,应保证纸带张力稳定在给定值上,在启动和刹车时防止纸带过载和随意松卷。在印刷过程中,随着纸卷直径不断减小,为保持纸带张力的恒定,需要对制动力矩进行相应的调整。在印刷过程中,纸带的线速度保持不变,而纸卷的角速度却随着纸卷直径的减小不断增大。在不考虑由角加速度产生的惯性力矩和阻力矩的前提下,为保证纸带稳定运行,应该满足下面的条件:F X R= T X r F为纸带张力,R为纸卷半径,T为纸卷轴芯的制动力,r为纸卷轴芯制动力半径。可以看出,随着纸卷半径的减小,如果不改变制动力的大小,纸带所受到的张力会越来越大,最终会使纸带被拉断。因此,在保持纸带张力稳定的前提下,随着纸卷半径的减小,制动力必须按照一定的规律随之减小。简而言之,就是刹车片与刹车盘接触后产生一定的摩擦力,从而使纸带具有一定的张力,浮动辊在张力的作用下产生摆动,通过一个电子检测元件将张力的变化转化为电信号,控制刹车盘电压,从而达到控制摩擦力大小的目的,实现纸带张力的自动控制。刹车片与刹车盘的间距应在1?2mm之间。 二次张力为无级变速控制:无级变速控制是通过电机的转速来控制张力的大小其控制原理图如(图三) 图三中:1铬棍、2电机传动的胶棍(又叫送纸棍)、3和4导纸棍、5浮动

张力控制收卷

辽宁科技学院 本科生毕业设计(论文)任务书 题目:张力控制变频收卷的控制系统 专题: 系别:电信与信息工程学院 专业:测控技术与仪器 班级:测控BG08 学生姓名: 学号: 指导教师:丁英丽 2011年12月22日

一、设计(论文)的主要任务与内容(含专题) 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小 到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、 加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能 使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 具体要求如下: 1.学习掌握西门子PLC编程设计和变频器的相关技术知识。 2.查阅相关技术资料,结合工况完成PLC的选型。 3.提出设计系统的具体方案 4.选择合适的变频器,设计出西门子S7-300的程序,构成张力控制系统。 5.给出设计的主要设计思想,完成软件的总体流程设计。 6.学会相关资料的检索,翻译一篇与课题内容相关的英文资料。 二、设计(论文)的基本要求 1.利用图书馆、网络等途径进行必要的文献检索,完成本次设计所需的器件的选型, 进行规范的理论设计,方案论证合理。 2.培养自身的灵活实际应用能力和创新精神,例如,可在收卷之前加一些剪切材料 的设计,剪刀类型可自行选择。 3.在设计中应有一定的实际工作体现,例如方案设计,硬件独创的论证与设计等。 4.论文工作量要足够,符合学校有关规定。 5.翻译一篇与课题内容相关的英文资料。 三、推荐参考文献(一般4~6篇,其中外文文献至少1篇) [1]《可编程序控制器原理及应用》钟肇新彭侃编华南理工大学出版社2001 [2] 《电气与可编程序控制器技术》汤以范主编机械工业出版社2004 [3] 《电工电子选训教程》董儒胥主编上海交通大学出版社2006 [4] 《机床电气及可编程序控制器实验、课程设计指导书》郁汉琪主编高等教育出版 社2001 [5] 《矢量闭环控制恒张力收放卷系统及其在工业上的应用》姚晴洲湖州职业

张力控制变频收卷的控制原理(汇编)

张力控制变频收卷的控制原理本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。

卷曲张力控制

变频限转矩功能在收卷和主从控制中的应用 发表时间:2009-3-27 来源:仪众国际网 关键字:变频器收卷主从控制限转矩 信息化应用调查我要找茬在线投稿加入收藏发表评论好文推荐打印文本 对于收卷而言,随着卷径的逐渐增大,限转矩的值也随之增大,变频器输出的速度将随之减少,符合收卷的基本原理,同时张力也在控制之中;而对于主从控制中的从传动而言,只要将其转矩限定值跟随主传动,就能保证两者之间的同步匹配。本文将主要讨论矢量变频器的限转矩功能在收卷控制和主从控制中的应用。 1、前言 矢量控制的变频器是通过对电机磁通电流和转矩电流的解耦控制,实现了转矩的快速响应和准确控制,可以很高的控制精度进行宽范围的调速运行。 如图1所示为矢量控制变频器的基本工作原理,频率指令和实际速度的比较值通过一个速度调节器ASR后再进行转矩限定,最后来控制变频器的输出转矩。该控制图分为2个闭环(速度环和电流环),限转矩的作用就是用来限定速度调节器输出的转矩电流,将直接限制变频器的输出频率。设定转矩的方式一般有2种:变频器参数设定和模拟量输入设定。 对于收卷而言,随着卷径的逐渐增大,限转矩的值也随之增大,变频器输出的速度将随之减少,符合收卷的基本原理,同时张力也在控制之中;而对于主从控制中的从传动而言,只要将其转矩限定值跟随主传动,就能保证两者之间的同步匹配。 本文将主要讨论矢量变频器的限转矩功能在收卷控制和主从控制中的应用。 图1 限转矩工作简图 2、限转矩功能与中心收卷 在工业生产中,通常都需要进行卷取控制,以生产符合要求的卷材,如造纸行业的卷筒纸、冶金行业的带钢材、印刷行业的包装材料卷筒等。目前成熟的收卷只要是被动收卷(以高速造纸和塑料收卷居多)或是以直流调速器控制的中心收卷(以冶金行业居多),而交流变频器在中心收卷中的应用并没有象在其他行业(如风机等)那么普及,究其原因在于收卷的控制难度和复杂性。

变频器的远程控制及调速原理.

变频器远程控制及调速原理 -----唐玉龙 一、变频器的远程控制 什么是变频器远程控制器在许多变频器的应用现场,电机与操作室距离较远。如将变频器安装在现场,不便于工人的观察与操作;如安装在操作室内,则动力线拉的距离太远,成本高,且对变频器本身及系统中其他设备造成干扰。针对上述应用情况,我们开发研制了变频器远程控制器产品。变频器远程控制器是一种实现变频器远程操作的智能仪表,通过RS485网络远程控制变频器的启动、停止、加速、减速、正反转,并实时显示变频器的工作频率、转速等运行状态信息。单机通讯距离可达1200米(9600bps),有效减少变频器的干扰。这样就可将变频器安装在电动机附近,通过屏蔽通讯线接到远端操作室内仪表盘上的变频器远程控制器上,在操作室内就能观察和操作变频器的运行状态。另外,变频器远程控制器还可接外置操作按钮,有手动/自动切换及监听等功能,可接入计算机控制系统,便于工程使用。二、变频器远程控制器的种类和功能我们研发的变频器远程控制器根据变频器的不同可分为标准型和加强型;根据通讯方式的不同可分为有线通讯、无线通讯;根据不同的通讯协议也分别有相应的产品。如果没有通讯接口或无法知道其通讯协议的变频器,可在变频器一端接上我们的远端转换器,将模拟信号和开关信号通过485网络传送到远程控制器上。这样对没有通讯口或无法知道通讯协议的变频器也都能使用,真正实现变频器万能远程控制器的功能。 二、交流异步电动机变频调速原理 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

什么是张力控制

什么是张力控制? 最佳答案 1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且

SIMOVERT卷取机张力控制系统

控制工程C ontrol Engineering of China Mar .2005V ol.12,N o.2 2005年3月第12卷第2期 文章编号:167127848(2005)022******* 收稿日期:2004208209; 收修定稿日期:2004210210 作者简介:马美娜(19682),女,辽宁东港人,工程师,硕士,主要从事工业企业自动化等方面的研究工作。 SIMOVERT 卷取机张力控制系统 马美娜 (本溪钢铁公司热连轧厂,辽宁本溪 117000 ) 摘 要:论述了西门子SI M OVERT M ASTER DRI VE 在本钢热连轧厂平整分卷机组卷取机控 制上的应用,重点分析了SI M OVERT M ASTER DRI VE 交流矢量控制中卷取机张力恒定控制原理及自动转矩控制特点。在卷取张力控制中,由于采用了西门子全数字多处理控制系统SI M A 2DY N D 与主传动相联的SI M O LI NK 网络,通过Profibus DP Lan 网络联接的P LC S imatic S7系统以及与管理系统相联接的以太网通讯完成各种数据快速传输,使得SI M OVERT M ASTER DRI VE 高精度高质量的转矩动态控制效果满足了精品板材的生产工艺要求。关 键 词:张力;自动转矩控制;矢量控制中图分类号:TP 273 文献标识码:A SIM OVERT Reel T ension C ontrol System MA Mei 2na (H ot S trip M ill of Ben G ang ,Benxi 117000,China ) Abstract :The application of SI M OVERT M ASTER DRI VE for reel tension control is discussed.The princple for the constant tension control in the SI M OVERT AC vector control and the automatic torque control are analyzed in detail.The high quality and accuracy dynamic torque is satis fied for the need of the fine strip because of all data quick delivery by SI M ADY N D ,including SI M O LI NK,Profibus and ETHERNET 1K ey w ords :tension ;automatic torque control ;vector control 1 引 言 本钢热连轧厂于2002年6月引进的平整分卷机组是由意大利MI NO 公司设计安装的。其电气自动控制部分由意大利E DM 公司完成,采用西门子的“SI MOVERT MASTER DRI VE ”可调速矢量控制传动系统。 平整分卷机组从工艺上是对板材的再加工,一方面可以根据用户需求生产出大小不同的钢卷;另一方面是对钢卷的平整重卷,使生产出来的钢卷更具精品质量。在生产过程中,卷取机与开卷机之间必须保持恒张力。特别是进行平整时,由于带材存在弹性变形,很可能因为张力的波动,影响带材断面尺寸改变或使带材产生波浪形裂边,严重时断带。张力波动,还可能造成带材在卷筒上的层间串动。可见,卷取机张力控制系统调节品质的好坏,直接影响带材的产品质量。 SI MOVERT MASTER DRI VE 卷取机,除了具有 高动态响应精度及在每个方向上精确的电机速度控制外,其恒张力控制的良好效果保证了板材平整及分卷的质量。 2 控制原理和特点 1)张力控制原理 平整分卷机组中,卷取机 采用SI MOVERT MASTER DRI VE 交流调速矢量控制方式。矢量控制原理的出发点是,考虑到异步机是一个多变量、强耦合、非线性的时变参数系统,很难直接通过外加信号准确控制电磁转矩,但若以转子磁通这一旋转的空间矢量为参考坐标,利用静止坐标系到旋转坐标系之间的变换,可以把定子电流中的励磁电流分量I sd 与转矩电流分量I sq 变成标量独立开来,进行分别控制。这样异步机与直流电动机有相同的转矩产生机理,即回到磁场与其相垂直的电流I sq 的积为转矩这一基本原理进行张力分析。 张力T 和电动机转矩之间关系为 M =DT Π2i (1)

张力控制解释

张力控制变频收卷的控制原理 2007年7月23日 中国工业设备网 本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 (6)克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

汇川变频器在金属分条机张力控制系统方案word参考模板

汇川变频器在金属分条机张力控制系统方案 摘要在分条机控制中采用张力变频调速做恒张力控制。该专用变频器具备卷经计算、惯量补偿、摩擦系数补偿、张力锥度控制。非常方便以低成本方式实现高性能、高可靠性的自动恒张力控制系统方案。 关键词汇川变频器张力控制自动恒张力恒线速张力锥度 一、系统组成 所谓分条机,就是将大幅宽带材纵切成若干所需规格的小幅宽的带条的一种机械设备。其大概的传动示意图如下,在主牵引的驱动下,带材由放卷辊向收卷辊的方向运动,切刀辊上装有若干把切刀,带材在经过切刀辊时分切成若干的窄幅宽的带条,将分切后的带条收卷在收卷辊上,收卷方式为中心收卷。其中放卷部分由磁粉离合器控制张力,主牵引和收卷辊分别用汇川MD380和MD330变频器驱动。 二、改造方案 主牵引使用汇川通用变频器MD380驱动,工作在开环矢量速度模式控制下,控制分条机的运行速度,用电位器R1来调节速度的大小,其AO1端口作为运行频率的输出,作为收卷变频器的线速度给定; 收卷辊使用汇川张力专用变频器MD330驱动,工作在张力开环转矩控制模式下,该工作模式下,电机需安装编码器。MD330是一种可以实现恒张力控制的变频器,变频器通过接收来自主牵引MD380变频器AO1端口输出的线速度信号

后进行内部的计算,可以获得料卷的实时卷径,通过算出的卷径控制变频器的输出力矩来获得恒张力控制。系统的收卷张力通过电位器R2来调节;

MD330变频器为了避免在收卷时出现菜心状(尤其是薄膜和纸张),在内部计算时加入了一定的锥度计算,张力会随着卷径的变大而相应的衰减,这会是分条后的产品幅宽随着卷径的变大而越来越宽,为了避免这种情况,PLC通过通讯的方式从MD380读取料卷的当前卷径,然后根据卷径的逐渐变化线性的补偿这一部分衰减的张力,使张力保持恒定。 三、方案优势 1、和原系统相比,切削尺寸精度由 0.5mm 提高到0.2mm; 2、引入线性张力补偿,提高分条产品的质量稳定性; 3、系统简洁,调试简单,恒张力控制基本不受速度影响; 4、分条过程张力恒定,无需人为调节张力; 5、克服了磁粉收卷固有的弱点,可实现高速分条,同时提高了设备的可靠性 四、客户现场图片

张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。有较强的实用性和理论指导性。 关键词: 张力变频矢量转矩卷径 引言: 在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。其控制性能已能和直流控制性能相媲美。由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。 张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。 速度模式下的张力闭环控制 速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。 同步匹配频率指令的公式如下: F=(V×p×i)/(π×D) 其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径 变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。 这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。 转矩模式下的张力控制 一、转矩模式下的张力开环控制

PLC变频器张力控制

作者:中达电通股份有限公司上海浦东分公司李强 摘要:本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 关键词:变频收卷张力控制闭环矢量卷径计算 1 前言 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 2 张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统,系统框图如图1所示。

图1 系统构成及系统框图 2.2 张力控制变频收卷的工艺要求 (1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤; (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱; (3)在加速、减速、停止的状态下也不能有上述情况出现; (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作; (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩

相关文档
最新文档