热处理

热处理
热处理

名词解释

非平衡相变:若加热或冷却速度很快,上述平衡相变将被抑制,固态材料可能发生某些平衡相图上不能反映的转变并获得被称为不平衡或亚稳态的组织,这种转变称为非平衡相变。

平衡相变:在缓慢加热或冷却时所发生的能获得符合平衡相图的平衡组织的相变称为平衡相变。

过烧:淬火加热温度太高、使奥氏体晶界出现局部熔化或者发生氧化的现象。

共格应变能:在所形成的共格界面附近产生应变能,称为共格应变能。体积差应变能:固态转变时必将发生体积变化,新相受到周围母相的约束以致不能自由涨缩,因此两者产生体积差应变能。

孕育期:所谓孕育期是指从等温开始至转变开始的这段时间。

组织遗传性:对粗大的非平衡组织进行加热时,在一定的加热条件下,新形成的奥氏体晶粒有可能继承和恢复原粗大奥氏体晶粒,这种现象被称为组织遗传性。

珠光体团:若干大致平行的铁素体与渗碳体片组成的一个珠光体区域,称为珠光体团。

珠光体片层间距:珠光体中渗碳体θ与铁素体α片厚之和称为珠光体的片层间距。

板条马氏体:每个单元的形状为窄而细长的板条,许多板条总是成群地相互平行地聚一起,故称为板条状马氏体。

片状马氏体:立体形状是双凸透镜片状,与试样表面相截成针状或竹叶状,称为片状马氏体。

形状记忆效应:形状记忆效应是指当热弹性马氏体在低于As的温度下变形后,加热到Af以上温度,通过马氏体的逆转变,使试样恢复到变形前形状的现象。

粒状贝氏体:粒状贝氏体由块状铁素体与富碳奥氏体所组成,其形态为在铁素体基体上分布着小岛状的奥氏体。

无碳化贝氏体:钢中含有一定量的硅或铝时,贝氏体组织由板条铁素体束及富碳的残留奥氏体组成,在铁素体之间为富碳的奥氏体,在铁素体与奥氏体内均无碳化物析出,故称为无碳化物贝氏体,是贝氏体的一种特殊形态。

回火:淬火后将钢件加热到低于临界点A1的某一温度,保温一定时间,然后冷却到室温的热处理操作。

回火屈氏体:钢的组织由饱和的α相和细小片状的渗碳体组成,这种组织称为回火屈氏体。

回火索氏体:一般将得到的等轴状铁素体与尺寸较大的渗碳体的混合物称为回火索氏体。

TTT曲线:转变开始和终了时间、转变产物的类型以及转变量与温度和时间的关系等。由于等温转变图通常呈“C”形状,所以又俗称为C曲线,亦称为TTT图。

CCT曲线:综合反映了过冷奥氏体在连续冷却时的转变温度、时间和转变量之间的关系(即反映了过冷奥氏体在不同的冷却速度下转变的转变开始时间、转变终了时间、转变产物类型、转变量与转变温度、转变时间的关系)。

临界淬火速度:临界淬火速度Vc是得到完全马氏体组织(包括残余奥氏体)的最低冷却速度,代表钢接受淬火的能力,是决定钢件淬透层深度的主要因素,也是合理选用钢材和正确制定热处理工艺的重要依据之一。

调幅分解:指过饱和固溶体在一定温度下分解成结构相同、成分不同两个相的过程。

回火脆性:随回火温度上升,冲击韧性反而下降的现象称为回火脆性。过热:钢在热处理时,由于加热不当(如加热温度过高或保温时间过长)而引起奥氏体实际晶粒粗大,以至在随后淬火或正火时得到十分粗大的组织,从而使钢的力学性能显著恶化(如冲击韧性下降,断口呈粗晶状等)的现象称为过热。

脱碳:钢在脱碳性介质中加热时,钢表层中的固溶碳和碳化物中的碳与介质发生化学反应,生产气体逸出钢外,使钢的表层碳浓度降低的现象叫脱碳。

氧化:钢在氧化性介质中加热时,铁和合金元素原子便会被氧化,在钢的表面生成氧化膜,使工件尺寸减小,表面粗糙度增高,并严重影响淬火冷却速度,使淬火后表面出现软点、硬度不足等缺陷。

退火:将钢加热到临界点以上(某些退火也可在临界点以下)保温一定时间,然后缓慢冷却(一般为随炉冷却),以获得接近平衡状态的热处理工艺。

正火:正火是把零件加温到临界温度Ac3或Accm以上30~50℃,保温一段时间,然后在空气中冷却的热处理工艺。

淬透性:指钢在淬火时获得马氏体的难易程度,是钢本身的固有属性,它取决于钢的淬火临界冷却速度的大小,也就是钢的过冷奥氏体的稳定性,而与冷却速度、工件尺寸大小等外部因素无关。

淬硬性:淬硬性表示钢淬火时的硬化能力,是指钢在淬成马氏体时所能够达到的最高硬度,它主要取决于钢的碳含量,确切地说,取决于淬火

加热时奥氏体中的碳含量,与合金元素关系不大。

淬透层深度:淬透层深度是钢在淬火时获取淬硬层深度的能力,也叫淬硬层深度。

理想临界直径:假设淬火介质的淬冷烈度H为无穷大,即试样淬入冷却介质时其表面温度可立即冷却到淬火介质的温度,此时所能淬透的最大直径称为理想临界直径。

碳势:指渗碳气氛与钢件表面达到动态平衡时钢表面的碳含量,碳势高低反映了渗碳能力的强弱。

氮势:工程上定义为氮势。

离子渗氮:离子渗氮又称为辉光离子渗氮或等离子渗氮,是利用辉光放电现象,将含氮气体介质电离进行渗氮的工艺。

形变热处理:形变热处理是将形变强化和热处理强化有机结合在一起的复合强化工艺。

控制轧制:采取空冷或控制冷却,以获得铁素体加珠光体或贝氏体组织。这种工艺也称为“控制轧制”。

铅浴淬火:铅浴淬火是将高碳钢经奥氏体化后,现在Ar1以下适当温度的铅浴中等温,获得索氏体组织。

热应力:工件冷却时由于表层与心部收缩的不均匀性而造成的内应力。组织应力:由于工件表层和心部发生马氏体转变的不同时性而造成的内应力。

简答题

1. 说明固态相变的分类方法及其类型。

1、按相变过程中原子的运动特点分类:1)扩散型相变;2)非扩散型相变。

2、按平衡状态分类:1)平衡相变;2)非平衡相变。

3、按热力学分类:1)一级相变;2)二级相变。

4. 金属固态相变的阻力有哪些?并说明其阻力比液-固结晶阻力大的

原因。

金属固态相变的阻力:界面能和弹性应变能。

跟液态金属的结晶相比,固态相变的阻力由于增加了弹性应变能这一项而变大。

5. 共析钢连续加热时奥氏体的形成有哪些基本过程?

包括奥氏体晶核的形成、晶核的长大、残余渗碳体溶解和奥氏体成分均匀化等四个阶段。

6. 连续加热时奥氏体的形成有哪些特点?

1)转变在一个温度范围内完成;2)转变速度随加热速度的增加而增加;3)奥氏体成分不均匀性随加热速度增大而增大;4)奥氏体起始晶粒大小随加热速度增大而细化.

7.钢加热奥氏化时,影响奥氏体晶粒大小的因素有哪些?

晶粒长大过程受加热速度、加热温度、保温时间、钢的成分,未溶粒子的性质、数量、大小和分布,以及原始组织等因素的影响。

8. 简述钢的原始组织对奥氏体形成速率的影响。

1.钢中碳含量越高,奥氏体形成速度越快。

2.在钢的化学成分相同的情况下,原始组织中碳化物的分散度越高,铁素体/渗碳体相界面越多,形核率便越大;同时,碳化物分散的越高时,珠光体片间距离减小,奥氏体中碳浓度梯度越大,扩散速度便加快。因此,钢的原始组织越细,奥氏体形成速度越快。

9. 试以共析钢为例,讨论为什么在α相消失瞬间,还有部分渗碳体未

溶解。

按相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有部分碳化物残留,只有继续加热保温,残留碳化物才能逐渐溶解。

奥氏体晶核形成后将不断的向α铁素体和Fe3C中长大,但长大速度不同,通常向Fe3C中长大速度较低。因此在铁素体全部消失后将残留一部分Fe3C,同时在奥氏体中还存在C的不均匀性。随着保温时间的延长,残留的Fe3C将继续溶入奥氏体。

14. 马氏体转变有哪些特点?

1)表面浮凸效应和共格切变;2)无扩散相变;3)M转变具有一定的位向关系及惯习面;4)马氏体的亚结构。5)马氏体转变的可逆性。16.钢中马氏体的转变动力学有几种类型?各有何特点?

1)变温(降温)转变

特点:变温形成;瞬间形核(无孕育期);高速长大(长到极限尺寸)2)等温转变

特点:M核可等温形成,核的形成有孕育期,形核率随过冷度↗,先↗后↘。

3)爆发式转变

特点:自促发形核,爆发式长大

17. 贝氏体转变有哪些基本特征?

1)贝氏体转变有上、下限温度;2)转变产物为非层片状;3)贝氏体转变通过形核及长大方式进行;4)转变的不完全性;5)转变的扩散性;6)贝氏体转变的晶体学;7)贝氏体铁素体也为碳过饱和固溶体。

23.试述不可逆性回火脆性的特征。

特征:不可逆;与回火后的冷速无关;断口为沿晶脆性断口

24. 试述可逆性回火脆性的特征。

特征:与冷速有关(快冷不产生);可逆性;断口为沿晶断裂。

30. 钢中碳化物由片状变为球状后有何优点?

1)硬度降低,使钢的可加工性得到改善;2)加热时球状碳化物融入奥氏体较慢,奥氏体晶粒不易长大,故有较宽的淬火加热温度范围;3)淬火后得到隐晶马氏体,残留奥氏体较少,并保留一定量细小均匀分布的球状碳化物,淬火开裂倾向小;4)塑性、韧性较好,冷成形加工性能得到改善。

31. 有一共析钢试样,其显微组织为粒状珠光体。怎样才能使其组织

分别转变为细片状珠光体、粗片状珠光体和比原组织细小的粒状珠光体?

获得片状珠光体工序:正火:将粒状珠光体钢完全奥氏体化,然后在空气中冷却至室温。

获得粗片状珠光体工序:完全退火:将粒状珠光体钢完全奥氏体化,然后在随炉缓慢冷却至室温。

获得更小的粒状珠光体工序:调质(淬火+高温回火):将粒状珠光体钢完全奥氏体化,淬火成马氏体组织,再将马氏体组织钢加热到一定温度回火使马氏体分解、析出细粒状渗碳体,得到针状铁素体加细粒状渗碳体的粒状珠光体组织

32. 某厂对高锰钢制碎矿机颚板进行固溶处理时,经1100℃的加热

后,用冷拔钢丝绳吊挂由起重吊车送往淬火水槽。行至中途,钢丝绳突然断裂。这条钢丝绳是新的,事先经过检查并无疵病。试分析钢丝绳断裂的原因。

于颚板经过1100加热固溶处理,所以在吊运过程中,高温颚板对冷拔钢丝绳起到了加热作用,当钢丝绳温度超过其再结晶温度时,则会发生再结晶现象,导致钢丝绳强度显著下降,致使颚板重力对钢丝绳产生的应力超过了钢丝绳的强度,导致钢丝绳断裂。

34.示意画出理想淬火介质的冷却曲线,并作简要说明。

理想淬火介质应在650 ℃以上的高温区冷却缓慢以减少变形,在650~400 ℃的中温区冷却很快以避免不稳定奥氏体的分解,在400℃以下的低温区冷却缓慢以避免工件变形和开裂,这是选择淬火介质的依据。

P166

36.将φ10mm的45钢(退火状态)加热到下列温度并水冷,分析所获得的组织。

(1)700℃(2)760℃(3)840℃(提示:45钢的Ac3约为780℃)

(1)700℃:因为它没有达到相变温度,因此没有发生相变,组织为铁素体和珠光体。

(2)760℃:它的加热温度在Ac1~Ac3之间,因此组织为铁素体、马氏体和少量残余奥氏体。

(3)840℃:它的加热温度在Ac3以上,加热时全部转变为奥氏体,冷却后的组织为马氏体和少量残余奥氏体。

(4)1100℃:因它的加热温度过高,加热时奥氏体晶粒粗化,淬火后得到粗片状马氏体和少量残余奥氏体。

37. 为什么钢件淬火后需要进行回火处理。

稳定工件组织和尺寸;减小或消除淬火应力;获得强韧性的适当配合。

44、钢件渗碳后缓冷,由表向里分为几个区?并说明其组织。

自表面至心部:过共析区(珠光体+网状渗碳体);共析区(珠光体);亚共析区(珠光体+铁素体,且铁素体的量由内向外不断增加)47. 为什么说渗氮前的热处理十分重要,而渗碳后必须淬火?

1)弥散强化;调质处理

2)细化心部组织,消除表层网状碳化物使渗层;获得细小粒状碳化物和隐晶马氏体,残留奥氏体量也会适当减少;可以显著提高渗碳后钢的疲劳强度。

51.什么是可控气氛?

可控气氛(controlled atmosphere),加热金属时为了保护金属表面和调节金属表面化学成分而使用的成分可以控制的气体。

52. 真空热处理有哪些特异效果?

(1)表面保护作用与净化作用;(2)脱脂作用;(3)脱气作用;(4)元素的蒸发现象。

53. 简述钢件淬火时热应力的变化规律及其导致的变形特征。

冷却初期:表面冷速快,表面收缩,产生拉应力;

心部冷速慢,不收缩,产生压应力;

冷却后期:表面冷速慢,表面不收缩,产生压应力;

心部冷速快,收缩,产生拉应力;

热应力使工件沿着最大尺寸方向收缩,沿最小尺寸方向胀大。

54.简述钢件淬火时组织应力的变化规律及其导致的变形特征。

冷却初期:表面发生马氏体相变,表面体积膨胀,产生压应力;

心部冷速慢牵制表面膨胀,产生拉应力;

冷却后期:心部发生马氏体相变,心部体积膨胀,产生压应力;

表面牵制心部膨胀,产生拉应力;

组织应力使工件沿着最大尺寸方向伸长,沿最小尺寸方向收缩。

解答题

1. 试述钢加热奥氏体化过程中晶粒长大的实质;以及影响奥氏体晶

粒大小的因素。

晶粒的长大过程是界面能下降的过程

影响因素:

1、加热温度和保温时间的影响

加热温度越高,保温时间越长,奥氏体晶粒就越粗大。

2、加热速度的影响

加热速度越大,奥氏体形成温度越高,奥氏体形核率与长大速度之

比随之增大,因此快速加热时可以获得细小的起始晶粒度。加热速度越快,奥氏体起始晶粒度越细小。

3.碳含量的影响

加热温度及保温时间一定时,奥氏体晶粒的大小在一定范围内随钢中碳含量的增加而增大,之后又随碳含量的增加而减小,出现极大值。极大值与加热温度有关。

4.合金元素脱氧剂的影响

钢中加入适量的能形成难溶化合物的合金元素,如Ti、Zr、V、Al、Nb、Ta等都能强烈阻止奥氏体晶粒长大,使奥氏体晶粒粗化温度显著提高。用Al脱氧的钢奥氏体晶粒长大倾向小,属于本质细晶粒钢。而用Si、Mn脱氧的钢奥氏体晶粒长大倾向大,一般属于本质粗晶粒钢。

5、原始组织的影响

原始组织细小,相界面积大,奥氏体形核率大,则起始晶粒细小,但晶粒长大倾向大,即过热敏感性增大,不可采用过高的加热温度和长时间保温,宜采用快速加热、短时保温的工艺方法。

2. 试述钢加热奥氏体化过程中晶粒长大的驱动力;以及工艺因素和

钢的原始组织对奥氏体晶粒大小的影响。

答:驱动力:界面能。

2)工艺因素

原始组织的影响

原始组织细小,相界面积大,奥氏体形核率大,则起始晶粒细小,但晶粒长大倾向大,即过热敏感性增大,不可采用过高的加热温度和长时间保温,宜采用快速加热、短时保温的工艺方法。

3. 什么是回火稳定性?提高钢的回火稳定性有什么意义?

回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。

高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。

4.比较过共析钢的TTT曲线(如图1)和CCT曲线(如图2)的异同点。为什么在连续冷却过程中得不到贝氏体组织?和亚共析钢CCT曲线中Ms线有何不同点,为什么?

1)、(1)共析碳钢的CCT图只有高温的珠光体转变区和低温的马氏体转变

区,而无中温的贝氏体转变区;(2)合金钢连续冷却转变时组织多变;(3)合金钢与碳钢的连续冷却转变曲线都处于等温转变曲线的右下方

相同点:1、都具有渗碳体的先共析线;2、相变都有一定的孕育期;3、曲线中都有一条相变开始线和一条相变完成线。

不同点:1、CCT曲线中无贝氏体转变区;2、CCT曲线中发生相变的温度比TTT曲线中的低;3、CCT曲线中发生相变

2)、原因:

由于碳含量较高,使贝氏体相变需要扩散更多的碳原子,转变速度太慢,从而在连续冷却条件下,转变难以实现。

母相奥氏体的碳含量较高时,奥氏体的屈服强度也较高,导致切变阻力增大,难以按切变机制实现点阵改组。

(在过共析钢的奥氏体中,碳浓度高,使贝氏体孕育期大大延长,在连续冷却转变时贝氏体转变来不及进行便冷却至低温。)

3)、MS 线发生曲折

有部分贝氏体相变时,贝氏体铁素体先析出,提高了A中的碳含量,MS ↓,向下曲折。

有部分珠光体相变时,渗碳体是领先相,使A的C%↓,MS ↑,向上曲折。

Ms线的不同点及原因:

不同点:亚共析钢的CCT曲线中的Ms线右端呈下降趋势,而过共析钢的CCT曲线中的Ms线右端呈上升趋势。

原因:这是因为在亚共析钢中由于先共析铁素体的析出和贝氏体转变,造成周围奥氏体的富碳,从而导致Ms线下降。而过共析钢由于先共析渗碳体的析出,而且在连续冷却过程中也无贝氏体转变,使周围奥氏体贫碳,导致Ms线上升。

5.图3是45钢的CCT图,试分别说明按a,b,c三种冷却速度冷却时过冷奥氏体的转变过程,以及室温的组织和性能。

6.图4是40钢的CCT图,试分别说明按a,b,c三种冷却速度冷却时过冷奥氏体的转变过程,以及室温的组织和性能。

7.什么是过冷奥氏体的稳定性?试述影响过冷奥氏体稳定性的因素。

说明过冷奥氏体的稳定性与TTT曲线、CCT曲线、淬透性之间的关系。

8.图5为常用的淬火冷却工艺方法,说出其名称和工艺特点等。

9.试述亚共析钢和过共析钢淬火加热温度的选择原则。为什么过共析钢淬火加热温度不能超过Accm线?

为了防止奥氏体晶粒粗化,一般淬火温度不宜太高,只允许超出临界点30-50℃,亚共析刚Ac3+30~50°C;过共析钢Ac1+30~50°C 若加热到Accm 线以上,会带来一些不良后果:(1)由于渗碳体全部融入奥氏体,使淬火后钢的耐磨性降低(2)Ac1~Accm之间,存在未溶二次渗碳体,反而阻碍奥氏体晶粒长大,能够细化晶粒,从而使形成显微裂纹的倾向减小,(3)由于奥氏体中碳含量显著增高,使Ms点降低,淬火后残余奥氏体量增多,从而降低钢的硬度(4)加热温度高,使钢的氧化.脱碳加剧,也使淬火和开裂倾向增大,同时也缩短炉子的使用寿命

各种热处理工艺介绍

第4章热处理工艺 热处理工艺种类很多,大体上可分为普通热处理(或叫整体热处理),表面热处理,化学热处理,特殊热处理等。 4.1钢的普通热处理 4.1.1退火 将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。 退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。 退火的目的: z降低钢的硬度,提高塑性,便于机加工和冷变形加工; z均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备; z消除内应力和加工硬化,以防变形和开裂。 退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。 一、退火方法的分类 常用的退火方法,按加热温度分为: 临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火 临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火 碳钢各种退火和正火工艺规范示意图: 1、完全退火 工艺:将钢加热到Ac3以上20~30 ℃℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全A化)。 完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。低碳钢完全退火后硬度偏 低,不利于切削加工;过共析钢加热至Ac cm以上A状态缓慢冷却退火时,Fe3C Ⅱ

会以网状沿A晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。 目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。 亚共析钢完全退火后的组织为F+P。 实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。 2、等温退火 完全退火需要的时间长,尤其是过冷A比较稳定的合金钢。如将A化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。 工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使A?P然后空冷至室温的热处理工艺。 目的:与完全退火相同,转变较易控制。 适用于A较稳定的钢:高碳钢(w(c)>0.6%)、合金工具钢、高合金钢(合金元素的总量>10%)。等温退火还有利于获得均匀的组织和性能。但不适用于大截面钢件和大批量炉料,因为等温退火不易使工件内部或批量工件都达到等温温度。 3、不完全退火 工艺:将钢加热到Ac1~Ac3(亚共析钢)或Ac1~Ac cm(过共析钢)经保温后缓慢冷却以获得近于平衡组织的热处理工艺。 主要用于过共析钢获得球状珠光体组织,以消除内应力,降低硬度,改善切削加工性。球化退火是不完全退火的一种 4、球化退火 使钢中碳化物球状化,获得粒状珠光体的一种热处理工艺。 ℃℃温度,保温时间不宜太长,一般以2~4h 工艺:加热至Ac1以上20~30 为宜,冷却方式通常采用炉冷,或在Ar1以下20℃左右进行较长时间等温。 主要用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。过共析钢经轧制、锻造后空冷的组织是片层状的珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,在以后的淬火过程中也容易变形和开裂。球化退火得到球状珠光体,在球状珠光体中,渗碳体呈球状的细小颗粒,弥散分布在铁素体基体上。球状珠光体与片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易粗大,冷却时变形和开裂倾向小。如果过共析钢有网状渗碳体存在时,必须在球化退火前采用正火工艺消除,才能保证球化退火正常进行。 目的:降低硬度、均匀组织、改善切削加工性为淬火作组织准备。 球化退火工艺方法很多,主要有: a)一次球化退火工艺:将钢加热到Ac1以上20~30 ℃℃,保温适当时间,然后随炉缓慢冷却。要求退火前原始组织为细片状珠光体,不允许有渗碳体网存在。

ASME 热处理工艺卡(模拟)

X X X 热处理工艺卡 Heat Treatment Instruction 工艺卡编号 Doc. No.HTI12-01 第 Page 1 1 页共 of 1 1 页 工程项目名称Project Name / 产品编号 Product No GJ12-02 图号/修改号 Dwg./Rev. No. HCHM35.3.3 产品名称 Product Name 高过出口集 箱 件号Part No.NA 零部件名称 Part Name NA 规格 Dimension 219×16 数量 Quantit y 1 重量 kg Weight 506.035 材料Material 15CrMoG 最大厚度 mm Max. THK. 12 热处理类型 Type of H.T. 制造后热处理 Post Fabrication H.T. 热处理方法 Method of H.T. 整体炉内 Heating as a whole in c losed furnace 工艺规程编号 Procedure No. HZWY0903- 2009 说明: Detail: Sketch 1. 按XXX 0901-2009 压力容器热处理规 程操作。 2. 应安装由 2 个窄条固定的 6 支铠装热 电偶。窄条厚 3mm,宽 40mm,见右图。 3. 窄条由螺栓锁紧和固定,每个窄条上 所安装的 3 个铠装热电偶头,被紧固 在容器的上、中和下部,如右图所示。 1. The heat treatment is Performed in compliance with XXX0901- 2009(Heat treatment for pressure vessels). 2. 9 armoured thermocouple shall be fixed by 2 strips separately, Thickness is 3mm width is 40mm,See the sketch on right. 3. The strips are fixed and tightened by bolts.Three heads of the armoued thermocouple shall be placed and fixed at备注: Remark:

不锈钢管道焊后稳定化热处理作业指导书

不锈钢管道焊后稳定化热处理作业指导书 QDICC/QB110-2002 1、适用范围 本工艺标准适用于不锈钢管道焊缝焊后稳定化热处理。 2、施工准备 2.1 施工用材料及机具要求: 2.1.1 热处理所用保温材料应为无碱超细玻璃棉,其氯离子含量不得超过25PPm。且应有质量证明书或合格证,捆扎热电隅的材料必须用不锈钢丝。 2.1.2 热处理设备为可自动控制温度的固定盘柜式控制柜或手提式控制箱,并应配有自动打点记录仪,加热器采用绳式红外线加热器,热电偶为K型,其连接线为补偿导线。 2.1.3 热处理设备应经检查合格,温度指示仪表及热电偶校验准确。 2.1.4 挡雨、雪的遮盖物准备齐全。 2.2 作业条件 2.2.1 热处理操作者应熟悉专业标准以及工艺、设备、测量仪表的使用。 2.2.2 热处理前应对焊缝进行确认,确认项目包括: a)焊接工作已完成。 b)焊缝外观符合质量标准。 c)其它要求检验项目已检验合格,并取得检验合格通知。

2.2.3 热处理设备及指示仪表检查合格。 3、操作工艺 3.1 工艺流程: 施工准备→热电偶及加热器安装→热处理→铁素体含量检测→资料整理 3.2 热电偶及加热安装 3.2.1 每道焊口对称安装两只热电偶,热电偶安装在靠近焊缝边缘的30mm内,管材与热电偶端部接触处应用砂轮机打磨露出金属光泽,热电偶安装采用不锈钢丝捆扎,为保证所测温度为管材实际温度,在热电偶与加热器之间垫小块保温玻璃布以进行隔离。 3.2.2 电加热缠绕宽度为焊缝两侧各100-125mm,一根加热器缠绕多道焊缝时,必须保证热处理部位的相似性,即:同材质,同规格,缠绕的圈数及宽度相同。 3.2.3 加热器安装完毕后用无碱超细玻璃棉进行保温,保温厚度100-150mm,为降低温度梯度,加热器外部100mm范围内应予以保温。 3.3 热处理工艺 3.3.1 300℃以下不控制升温速度,300℃以上升温速度为5125/δ℃/h,且不大于220℃/h。(δ为管壁厚度,单位mm) 3.3.2 热处理温度见下表:

热处理选择方法

1.退火与正火:主要用于预备热处理,只有当工件性能要求不高的时候才作为最终热处理。 退火目的:调整硬度,便于切削加工,消除残余应力,防止在后续加工或热处理中发生变形和开裂.细化晶粒,提高力学性能或做为最终热处理作组织准备。 正火目的:正火比退火冷却速度大,SO正火组织比退火组织细,强度和硬度也比退火组织高。对于低、中碳的亚共析钢而言,正火和退火目的相同。对于过共析钢而言,正火是为了消除网状二次渗碳体,为球化退火做准备。对于普通结构件而言,正火可以增加珠光体并细化晶粒,提高强度、硬度和韧性,作为最终热处理。 总结:从改善切削加工性能角度出发,低碳钢宜采用正火;中碳钢可采用退火,也可采用正火;过共析钢在消除网状渗碳体后采用球化退火。 2.淬火:淬火目的就是为了获得马氏体,提高钢的力学性能。淬火是钢的最重要强化方法,也是应用最广的热处理工艺之一。 选择方法:对于截面尺寸较大、形状复杂的重要零件以及承载较大、要求截面力学性能均匀的零件,eg:螺栓、连杆、锻模、锤杆等应选用高频淬火的钢制造并要求全部淬透。 而承受弯曲和扭转的零件,eg轴类、齿轮等,由于其外层受力大,心部受力小可选用淬透性较低的钢,不必全部淬透 3.回火:将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用于减小或消除淬火钢件中的内应力,或者降低其硬度和强度,以提高其延性或韧性 ⑴减少或消除淬火内应力,防止工件变形或开裂。 ⑵获得工艺要求的力学性能。 ⑶稳定工件尺寸。 ⑷对于某些高淬透性的钢,空冷即可淬火,如采用退火则软化周期太长,而采用回火软 化则既能降低硬度,又能缩短软化周期。 对于未经淬火的钢,回火是没有意义的,而淬火钢不经回火一般也不能直接使用。为避免淬火件在放置过程中发生变形或开裂,钢件经淬火后应及时进行回火。

热处理特殊工序过程确认规定

热处理特殊工序是指气体渗碳、重加热淬火及感应淬火工序,特殊工序过程必须通过相关标准实施过程能力确认,确保设备能力保证过程能力;通过具备相应资格的操作人员,有效控制适宜的工艺参数保证过程能力;通过完善的质量记录为过程提供证据;并通过定期的再确认实现有效的持续改进。 1.对特殊工序的设备能力的确认 热处理特殊工序的设备包括RJJ-90,RQ2-90,RQ3-90井式炉,RH-105转底式保护气氛加热炉,HIC-48密封箱式多用炉,KGPS200/4感应加热淬火机床;Y15-Ⅱ淬火油槽及107等温分级淬火油槽。 井式炉能满足热处理正火、退火、调质、渗碳、碳氮共渗、软氮化等热处理工艺。能处理最大工件尺寸950×?700㎜、装炉量≤500Kg。 RH-105转底式保护气氛加热炉能满足光亮退火、碳氮共渗、保护气氛加热淬火等热处理工艺。能处理最大工件尺寸500×500×350㎜,加热工位8个。 密封箱式多用炉能满足光亮退火、碳氮共渗、调质、渗碳等热处理工艺。能处理最大工件尺寸1200×700×700㎜,装炉量≤1000Kg。 1.1.4Y15-Ⅱ快速光亮淬火油槽能满足中大模数齿轮、轴的淬火要求;107等 温 分级淬火油能满足中小模数齿轮及变形量要求小的零件的淬火要求。 为保证特殊工序过程能力,实施特殊工序的设备应具如下性能: 密封性能良好。实施渗碳、碳氮共渗、软氮化工艺时炉内气氛压力≥10㎜ 水柱。用U型应力计进行检查。 炉温均匀性应达到各型炉子的要求。用标准热电偶检查: a.井式炉温度均匀性≤±15℃ b.RH-105转底炉,HIC-48密封箱式多用炉温度均匀性≤±10℃。 安全性能保证。各型炉子的废气排放口应畅通;风扇系统冷却水应保证正常供给。 设备科负责定期(每年一次)对特殊设备的各项性能、运行状况、完好程度能否满足热处理的产品质量要求进行确认。 2.对特殊工序工艺参数的确认 根据用户提供的零件图纸所描述的需要达到的技术要求,技术科所辖的热处理工艺组应结合本厂的设备能力及设备性能,分析该零件实施特殊工序的可行性。然后编制该零件的特殊工序的工艺方案,编写特殊工序的试制工艺卡。报送技术科确认后方可实施。并通过试制总结验证后,报送技术科审核,由总工程师批准,形成特殊工序正式工艺文件。工艺文件应符合如下要求: 热处理前的零件状态应合理,变形量要求小的锻、铸件应经过正火、退火、消除应力;切削量大的机加工件应消除应力。 应最大限度避免产生热处理缺陷,实现工艺流程短、工人易掌握、操作简单,产品质量稳定。 充分体现现有条件,合理设计工装;充分利用各类加热设备特点,满足不同零件的加热要求。 工艺卡应明确规定产品挂具、代替产品检查的试样规格及放置方法。 工艺卡应明确代替产品检查的试样的检验技术要求:包括金相组织、渗层深度/有效硬化层深度或淬硬层深度、表面硬度、心部硬度及变形要求。 热处理工艺过程的主要工艺参数:温度、时间、渗碳剂或保护气氛名称及用量

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。 1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。 图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制

常用材料热处理及热处理代号

常用金属材料及热处理代号 硬度 材料牌号 图纸热处理标注 HB HRc 热处理目的 Q235-A ─ 不热处理 16Mn─ 不热处理 渗碳淬硬S-C59 表面≥59表面耐磨,心部韧性高,去碳处可钻孔 20 20Cr 渗碳高频淬硬 S-G59 表面≥59表面耐磨,心部韧性高,不淬硬处可钻孔正火Z ≤230 组织均匀化,消除应力 调质T235 220~250提高性能,改善组织 调质T265 250~280提高性能,改善组织 淬硬C35 30~40 变形小,硬度略提高 淬硬C42 40~45 提高强度和耐磨性,有一定的韧性 淬硬C48 45~50 提高强度和耐磨性,有一定的韧性高频淬硬G48 表面45~50表面耐磨,心部韧性高,变形小 45 40Cr 高频淬硬G52 表面50~55表面耐磨,心部韧性高,变形小 调质T265 250~280提高性能,改善组织 38CrMoAlA 氮化D900 HV≥850 提高表面硬度及耐磨性,耐疲劳,耐腐蚀性能 退火Th ≤230 降低硬度 65Mn 60Si2MnA 50CrVA 淬硬C42 40~45 提高强度和弹性 退火Th ≤230 降低硬度 GCr15 淬硬C59 ≥59 提高硬度和耐磨性 退火Th ≤230 降低硬度 T8A 淬硬C58 55~60 提高硬度和耐磨性 退火Th ≤230 降低硬度 T10A T12A 淬硬C62 ≥62 提高硬度和耐磨性 退火Th ≤255 降低硬度 9SiCr Cr12MoV W18Cr4V 淬硬C62 ≥62 提高硬度和耐磨性 HT100 HT200 HT250 热时效去应力 QT400-15 QT600-3 热时效去应力 ZG200-400 ZG270-500 正火Z ZCuSn5Pb5Zn5 ─不热处理 ZAlSi7Mg ─不热处理 T2 ─不热处理 H62 ─不热处理 L2 ─不热处理

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

碳钢的热处理及非平衡组织观察

实验二碳钢的热处理及非平衡组织观察 一、实验目的 1. 了解退火、正火、淬火及回火等普通热处理的基本工艺与生产。 2. 认识碳钢典型的热处理组织,了解不同加热温度、不同冷却速度及不同回火温度对所得组织的影响。 二、实验内容 实验一中我们研究了铁碳合金的平衡组织,即缓冷后的组织。它完全符合铁碳状态图所得出的结果,而非平衡组织,通俗的理解就是在较快的冷速下所得到的组织,除退火外,正火、淬火或回火所得的组织都为不平衡组织。 1. 状态图可决定热处理的加热温度和可以进行哪一类热处理。但热处理后的产物尚需视冷却速度而定,这样就需要运用过冷奥氏体等温转变曲线(C曲线)来决定。而钢的回火后组织又必须结合钢的回火相变原理去理解。图1为共析钢由TTT曲线推测过冷奥氏体连续冷却所获转变产物。 A1为临界线(727℃),Ms为马氏体转变开始温度。以不同冷却速度进行冷却。根据冷却曲线和“C”曲线相交的位置可以判断出奥氏体转变产物是什么组织。 V k——表示转变为马氏体的最小冷速。

V1——相当于退火冷速(炉冷),产物为片状珠光体。 V2——相当于正火冷速(空冷),产物为索氏体,索氏体也是α+Fe3C的机械混合物,与珠光体不同的是其片状较细,在放大倍数较高的显微镜观察时可以分辨清楚(一般800~1000倍) V3——相当于在油中冷却,产物为屈氏体+马氏体。屈氏体也是α+Fe3C的机械混合物只是片状更细,故要在更高放大倍数下才能分辨。普通金相显微镜分辨不清,呈黑色团块状。 V4——相当于在水中冷却(淬火),产物为马氏体+残余奥氏体。马氏体(M)是碳在α—Fe中的过饱和固溶体,其组织特征呈亮白色针状。针与针之间的夹角一般为60°或120°,针的粗细与原来γ的晶粒度有密切的关系。若选取热处理加热温度过高,则由于γ晶粒很粗大,淬火后的M针也粗大。这种情况下钢的韧性很低。正常淬火温度下,M针应很细,呈隐针状。钢在淬火后常保留某些未转变的奥氏体,称为残余奥氏体,它与一般的奥氏体没有什么区别。 下面是一些钢种热处理后的显微组织。 45钢退火处理(100×):基体组织为珠光体及铁素体。铁素体沿奥氏体晶界呈网络状分布。片状珠光体的体积分数约占基体总体积分数的55%,由此可以推算出钢中W(C)为45%。同时,从网络状分布的铁素体可以看出,此钢退火温度不高;故其晶粒细小。这种钢在退火状态下强度是偏低的,为了充分发挥材料的潜力,通常于采用调质或正火处理。 45钢860℃加热保温后淬火(500×)。针状淬火马氏体,其针叶大小中等。

模拟热处理作业指导书

一、适用范围 该要求适用于制造核电设备紧固件用棒材。 二、引用文件 GB/T228-2002 金属材料室温拉伸试验方法 GB/T229-2007 金属材料夏比摆锤冲击试验方法 GB/T230.1-2004 金属洛氏硬度试验第一部分:试验方法(A、B、C、 D、E、F、G、H、K、N、T标尺) GB/T231.1-2002 金属布氏硬度试验第一部分:试验方法 GB/T4338-2006 金属材料高温拉伸试验方法 三、核电紧固件用棒材模拟热处理技术要求 核电紧固件用棒材在入厂化学成分复验后,紧固件生产之前需进行模拟热处理。涉及材料42CrMo4(42CrMoE)、42 CDV4(40CrMoV)、X12Cr13(12Cr13)、X6CrNiCu17-04(05Cr17Ni4Cu4Nb)、X6NiCrTiMoVB25-15-2(06Cr15Ni25Ti2MoAlVB)660、C45E/C45R(45)。 1、取样 每批(同一钢厂、同一炉罐号、同一规格直径)钢棒采购量的4%(至少2根),截取后送热处理车间进行模拟热处理。 一批钢棒数量不超过500支,作两组试验(直径φ≥16mm,截取540mm 样棒2根,直径φ<16mm,截取340mm样棒2根) 一批钢棒数量超过500支,做四组试验(直径φ≥16mm,截取540mm 样棒4根,直径φ<16mm,截取340mm样棒4根) 截取样棒时应随机抽取 2)模拟热处理

具体要求按下表1进行 3)车样(热处理后的样棒) 试样应按以下规定截取: 试样轴线应与棒材轴线平行,其轴线与表面的距离应为: φ≤25 mm 时,在棒材轴线处: 25 mm<φ≤50mm时,距表面12.5 mm处: φ>50mm时,位于d/2半径处。 试样上与试验有关的部位应与样棒端部保持一定距离,该距离不得小于钢棒直径。 4)试验项目 a、室温拉伸试验 b、高温拉伸试验 拉伸试样和高温拉伸试样采用GB/T228-2002中规定的d=10mm的圆形横截面比例试样 c、冲击试验 冲击试样采用GB/T229-2007中规定的标准夏比V型缺口冲击试样,冲击试样为三块一组,试样应并排截取,试样缺口轴线垂直于钢棒表面。对于奥氏体钢棒,试验温度为室温(20℃);对碳钢、低合金钢和马氏体不锈钢棒,试验温度为0℃。 若该批钢棒直径小于等于15mm,则不进行冲击试验。 d、硬度试验 硬度试验在每根试样的不同位置进行测定,为验证每批钢棒的均匀性,每根试样测六组数据,硬度最高的钢棒与最低的钢棒的布氏硬度值

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

钢的热处理组织

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为m-a 组织。 8.无碳化物贝氏体-板条状铁素体单相组成的组织,也称为铁素体贝氏体。形成温度在贝氏体转变温度区的最上部。板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却过程中也有类似上面的转变。无

C-9 CQI-9 特殊过程:热处理系统评审

CQI-9特殊过程:热处理系统评审(第3版)培训课程 培训背景: 热处理系统评审CQI-9:Special Process: Heat Treat System Assessment(HTSA)由美国汽车工业行动集团AIAG的热处理工作小组开发,AIAG于2006年3月发布;2007年8月发布了第二版;2011年10月发布了第三版。 HTSA提出的热处理要求是来自顾客和产品标准的附加要求。热处理系统评审适用于评审一个组织满足HTSA的要求及顾客要求、政府法规要求和组织自身要求的能力;也适用于对供应商的评审。 HTSA的目标是在供应链中建立持续改进,强调缺陷预防,减少变差和浪费的热处理管理系统。HTSA与国际认可的质量管理体系以及适用的顾客特殊要求相结合,规定了热处理管理系统的基本要求。旨在为汽车生产件和相关服务件组织建立热处理管理体系提供一个通用的方法。 美国戴姆勒克莱斯勒、福特、通用三大汽车公司在其顾客特殊要求中均对热处理系统评审提出要求,凡是热处理供应商都必须按CQI-9做过程审核。 培训目标: ?全面了解热处理管理系统的相关要求; ?识别和满足顾客特殊要求; ?获得有效实施CQI-9的方法和思路; ?学习热处理过程控制的有效方法; ?识别热处理过程失效模式并采取预防行动; ?降低热处理产品的风险。 培训对象: ?热处理工厂中高层管理人员; ?质量管理体系管理人员; ?热处理产品设计师; ?工艺工程师; ?现场质量控制工程师。 培训课程大纲 第一部分:金属学,热处理基础知识 ——金属材料的物理性能、化学性能、机械性能、工艺性能及影响 ——金属学基础知识:常见晶格类型、铁-碳合金状态图特性点、特性线及典型金相组织

常用热处理分类

常用热处理的分类 1 表面淬火 表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。 表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。 表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。 2 表面淬火和回火 将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。 3 物理气相沉积 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在

基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 4 化学气相沉积 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 整体热处理 1 退火 退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。 2 正火 正火,又称常化,是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化,去除

稳定化处理工艺参数对预应力

稳定化处理工艺参数对预应力 钢绞线性能的影响 王福新袁康秦术宝朱龙 (北京科技大学) (天津市第二预应力钢丝有限公司) 摘要通过对预应力(PC)钢绞线稳定化处理及随后的破断、应力松弛 试验,分析了处理前后强度、塑性、松弛率指标的变化趋势,得出了工艺温度、张应力对性能指标的影响规律,进而提出了稳定化处理的最佳工艺参数。 关键词稳定化处理工艺参数钢绞线性能 EXPERIMENTAL STUDY ON EFFECT OF STABILIZING TREATMENT PARAMETERS ON PROPERTIES OF PC STEEL STRAND WANG Fuxin YUAN Kang (University of Science and Technology Beijing) QIN Shubao ZHU Long (Tianjin No.2 Concrete Co.,Ltd.) ABSTRACT The change in strength,plasticity and relaxation rate of PC steel strand before and after stabilizing has been analyzed by means of fracture and stress relaxation tests.The effect of treatment parameters and tensile stress on the properties was obtained and optimum parameters of stabilizing treatment were also proposed. KEY WORDS stabilizing treatment,process parameter,strand,property 1 前言 目前,国内依靠引进能生产低松弛、高强度预应力(PC)钢丝、PC钢绞线的厂家已达20余家,生产能力30万t以上。但由于我国此类产品的生产、应用起步较晚,产品同欧美国家的实物水平相比,存在较大差距,主要表现在[1]:①松弛值不稳;②伸直性不良;③产品通条均质性差。因此,有必要系统地研究钢绞线生产中对产品性能起关键性作用的

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

中级热处理工模拟试题A

卷) Page 1 of 3 中级热处理工(A 卷) 一、单项选择题(将正确答案前的字母填入括号内。每题2分,满分40分) 1.亚共析钢加热到AC 3点时( )。 A 、铁素体开始自奥氏体中析出 B 、开始发生奥氏体转变 C 、铁素体全部溶入奥氏体中 D 、铁素体自奥氏体中析出完毕 2.渗碳体的合金结构为( )。 A 、间隙固溶体 B 、置换固溶体 C 、机械混合物 D 、金属化合物 3.含碳量1.2%的钢,当加热至AC 1~ACm 时,其组织是( )。 A 、奥氏体 B 、铁素体和奥氏体 C 、珠光体和奥氏体 D 、奥氏体和二次渗碳体 4.与40钢相比,40Cr 钢的特点是( )。 A 、C 曲线左移,Ms 点上升 B 、C 曲线左移,Ms 点下降 C 、C 曲线右移,Ms 点上升 D 、C 曲线右移,Ms 点下降 5.碳原子和氮原子溶入铁原子晶格中形成的固溶体类型( )。 A 、前者为置换式,后者为间隙式 B 、前者为间隙式,后者为置换式 C 、两者均为间隙式 D 、两者均为置换式 6.过冷奥氏体转变为马氏体是以( )方式进行的。 A 、铁原子的扩散 B 、碳原子的扩散 C 、共格切变 D 、铁和碳原子的扩散 7.黄铜是以( )为主的合金。 A 、Cu ,Pb B 、Cu ,Zn C 、Cu ,Al D 、Cu ,Sn 8.调质钢经调质后的组织为( )。 A 、回火马氏体 B 、回火索氏体 C 、珠光体 D 、回火贝氏体 9.工件在水中淬火冷却的过程中会依次出现( )阶段。 A 、蒸汽膜、沸腾、对流 B 、蒸汽膜、沸腾、传导 C 、沸腾、蒸汽膜、传导 C 、沸腾、蒸汽膜、对流 10.灰铁中的石墨是以( )形式存在的。 A 、球状 B 、蠕虫状 C 、团絮状 D 、片状 11.渗碳层从表面到心部依次由过共析层、共析层、亚共析层构成,其中( )又称为过渡层。 A 、亚共析层 B 、共析层 C 、过共析层 D 、共析层+亚共析层 12.根据珠光体片层间距大小,常将其分为( )三类组织。 A 、珠光体、魏氏组织、莱氏体 B 、珠光体、索氏体、屈氏体 C 、珠光体、索氏体、莱氏体 D 、珠光体、索氏体、魏氏组织 13.淬火钢在回火过程中的组织转变可划分为回火马氏体形成,( ),应力消除,碳化物聚集长大等四个阶段。 A 、回火马氏体长大 B 、碳化物形核 C 、残余奥氏体分解 D 、剩余部分奥氏体 14.热处理炉的有效加热区指( )符合热处理工艺要求的装料区域。 A 、炉膛尺寸 B 、炉温波动幅度 C 、炉温均匀性 D 、升温速度 15.任何化学热处理过程都是由介质分解,活性原子被吸收,( )等三个基本过程构成的。 A 、形成置换固溶 B 、渗入原子扩散 C 、形成间隙固溶 D 、形成化合物 16.过共析钢的室温平衡组织是( )。 A 、铁素体加一次渗碳体 B 、珠光体加一次渗碳体 C 、铁素体加二次渗碳体 D 、珠光体加二次渗碳体

常用材料热处理

常用材料热处理

材料热处理中的特性: 淬透性(可淬性):指钢接受淬火的能力 零件尺寸越大,内部热容量也越大,淬火时冷却速度越慢,因此,淬透层越薄,性能越差,这种现象叫做“钢材的尺寸效应”。但淬透性大的钢,尺寸效应不明显。 由于碳钢的淬透性低,在设计大尺寸零件时用碳钢正火比调质更经济。 常用钢种的临界淬透直径De mm 常用材料的工作条件和热处理 渗碳钢:(含碳量0.1~0.25%) 10、15、20、 15Cr、20Cr、20Mn2、20CrMn、20CrMnVB 25MnTiB、18CrMnTi、20CrMnTi、20CrMnMo 30CrMnTi、20Cr2Ni4A、12CrNi3A、18Cr2Ni4W A

渗碳钢在高温下长时间保温,晶粒易于长大,恶化钢的性能。 表面含碳量在0.85~1.05%,表层硬度≥56~65(HRC) 心部含碳量在0.18~0.25%,HRC30~45 含碳量在0.3%时,HRC30~47 常用渗碳钢渗碳后的硬度 调质钢(含碳量0.25~0.5%) 40、45、40Cr、50Mn2、35CrMo、30CrMnSi、 40CrMnMo、40MnB、40MnVB、40CrNiMoA 38CrMoAlA 碳素调质钢淬透性低。 常用调质钢的调质硬度 调质钢对表面耐磨性要求较高时还需高频淬火,要求耐磨性更高时则需渗氮。

弹簧钢含碳量:碳素弹簧钢0.6~0.9% 合金弹簧钢0.45-0.7% 弹簧钢的选用: 钢丝直径<12~15mm 65、75 弹簧≤25mm 65Mn、55Si2Mn 60Si2Mn、70Si3MnA 钢丝直径≤30mm 50CrVA、50CrMnVA 重要弹簧 60Si2CrVA、65Si2MnVA 弹簧钢的热处理一般是淬火加中温回火 热处理的硬度一般为 HRC41-48 对于一般小弹簧(钢丝截面D<10mm)不淬火,只作250~300去应力处理。 65Mn淬硬性好,硬度≥HRC59。 轴承钢含碳量0.95~1.10% 含铬量0.5~1.65% GCr9 GCr15 GCr15SiMn GsiMnV GMnMoVRE GSiMnMoV GSiMnVRE GSiMnMoVRE GMnMoV 轴承承受高压集中周期性交变载荷,由转动和滑动产生极大的摩擦。 轴承钢一般首先进行球化退火—淬火—低温回火,硬度为HRC61-65。

相关文档
最新文档