二元一次方程知识点及经典例题

二元一次方程知识点及经典例题
二元一次方程知识点及经典例题

二元一次方程知识点及经典例题

知识点1二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

注:1。①方程中有且只有一个未知数。②方程中含有未知数的项的次数为1。③方程为整式方程。(三个条件完全满足的就是二元一次方程)

2.①含有未知数的项的系数不等于零,且两未知数的次数为1。即若ax m+by n=c是二元一次方程,则a≠0,b≠0且m=1,n=1例1:下列方程中是二元一次方程的是()

A.3x-y2=0 B.2

x +1

y

=1 C.

3

x-5

2

y=6

D.4xy=3

例2 :已知关于x,y的二元一次方程(2m-4)x -3 +(n+3)y|n|-2 =6,求m,n的值

知识点2二元一次方程组的定义:由两个二元一次方程所组成的方程组叫二元一次方程组(不必记)

m2

注:①方程组中有且只有两个未知数。②方程组中含有未知

数的项的次数为1。③方程组中每个方程均为整式方程。

例1下列方程组中,是二元一次方程的是( )

①228423119 (23754624)

x y x y a b x B C D x y b c y x x y +=+=-=??=??????+=-==-=???? 知识点3方程的解的定义:使方程左右两边的值相等的未知

数的值。方程组的解的定义:方程组中所有方程的公共解叫方程

组的解。

例1已知12x y =??

=-?是关于x,y 的二元一次方程组2635ax y x by -=??-=-?的解,求2a+b 的值.

例2已知方程组44ax y -=??

?,(1)2x+by=14,(2)由于甲看错了方程①中的a 得到方程组的解为

26x y =-??=?,, 乙看错了方程②中的b 得到方程组的解为44.

x y =-??=-?,若按正确的a 、b 计算,

求原方程组的解.

知识点4求二元一次方程的特殊解

例2:求二元一次方程2x+5y=30的①正整数解.②非负整数解

方法:1、从系数最大(绝对值最大)的未知数从小到大开始取值,并求出相应的另一未知数的值,直至另一未知数不再有符合条件的对应值为止。2、从取值中选出正整数解,或非负整数解。

知识点5:二元一次方程的变形:用一个未知数表示另一个未知数

例:已知二元一次方程5x-2y=10 ①将其变形为用含x的代数式表示y的形式。②将其变形为用含y的代数式表示x的形式

知识点6:用代入消元法解二元一次方程组。

步骤1、选择一个未知数系数较简单的方程变形为用一个未

知数表示另一个未知数的形式。步骤2、将其代入到另一个方程

中消去一个未知数并求出另一个未知数的值。步骤3、将求出的

未知数的值代入方程中求出另一个未知数的值。

例1:解下列二元一次方程组

3410,490;x y x y +=??+-=? 3(1)5,5(1)3(5);x y y x -=+??-=+?

6,234()5() 2.

x y x y x y x y +-?+=???+--=?

例2 解下列二元一次方程组。

1949x+1999y=119440 5x+2y=3x+6y=12 x : y=2 : 3

1999x+1949y=117440

2x-3y=-10

已知?

??=-+=+-032502z y x z y x 求:z

y x z y x 23324+--+的值

例3:已知关于x 、y 的二元一次方程组 4x+y=5 和 3x-2y=1 有相同的解。求m 、n 的值。

mx+ny=3 nx-my=1

相关练习:

1.方程x+y=5的解有

( )

A .1个

B .2个

C .3个

D .无数个

2.下列方程组中,不是二元一次方程组的是

( )

A .112x y =??-=?,

B .13x y x y +=??-=?,

C .2104x y xy +=??=?

, D .21

x y x y =??-=?, 3.方程5x+4y=17的一个解是

( )

A .13x y =??=?

, B .21x y =??=?, C .32x y =??=?, D .41

x y =??=?, 4.若关于x 、y 的方程2211a b a b x y -++-=是二元一次方程,那么a 、

b 的值分别是( )

A .1、0

B .0、-1

C .2、1

D .2、-3

5.若x :y=3:2,且3x+2y=13,则x 、y 的值分别为

( )

A .3、2

B .2、3

C .4、1

D .1、4

6.某班共有学生49人.一天,该班某男生因事请假,当天的男

生人数恰为女生人数的一半.若设该班男生人数为x ,女生

人数为y ,则下列方程组中,能正确计算出x 、y 的是

( )

A .()4921x y y x -=???=+??

, B .()4921x y y x +=???=+??, C .()4921x y y x -=???=-??

, D .()4921x y y x +=???=-??, 7.在方程2x -y=1中,若x=-4,则y=________;若y=-3,

则x=________.

8.写出满足二元一次方程x+2y=9的非负整数解

_____________.

9.若一个二元一次方程的一个解为21x y =??=-?

,,则这个方程可以是_______.(只要求写出一个)

10.若二元一次方程组23521x y x y +=??

-=?,的解是方程8x -2y=k 的解,则k=___________.

11.解下列方程组:

(1)4519323m n m n +=-??-=?

,; (2)32123x y x y ++==

(3) 1998x+1996y=2 (4) 1996x+1998y=-2

12.已知关于x 、y 的方程组??

?=-=+53ny mx y x 与方程组???=-=-5

12y x my nx 同解,求m 、n 的值. 13.已知3x-4y-z=0,2x+y-8z=0,求xz

yz xy z y x 2222++++的值.

14.某班共有60名学生,准备租车去动物园游玩,已知大车有15个座位,小车有10个座位,若要求租车方案中既不会有多余的座位又不会有学生没有座位,你能设计出几种租车的方案

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

一元一次方程经典题型(推荐文档)

一元一次方程经典题型 1.以y 为未知数的方程c b ay 52=()0,0≠≠b a 的解是 ( ) A .a bc y 10= B .c bc y 52= C .a bc y 25= D .c bc y 10= 2.要使415+ m 与??? ??+415m 互为相反数,那么m 的值是 ( ) A .0 B .203 C .201 D .20 3- 3.已知05432=+-n x 是关于x 的一元一次方程,则.____________=n 4.若79b a x 与12437---y x b a 是同类项,则.___________,__________==y x 5.若2-是关于x 的方程a x x -= +243的解,则._________1100100=-a a 6、若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是 . 6、已知:()2135m --有最大值,则方程5432m x -=+的解是 . 7、方程456,x y -=用含x 的代数式表示y 得 ,用含y 的代数式表示x 得 。 3、解方程20.250.1x 0.10.030.02 x -+=时,把分母化为整数,得 。 2、方程23(1)0x -+=的解与关于x 的方程 3222k x k x +--=的解互为倒数,求k 的值 。 7. .222 .01.05.0=+-x x 6.3.1从实际问题到方程 一、本课重点,请你理一理 列方程解应用题的一般步骤是: (1)“找”:看清题意,分析题中及其关系,找出用来列方程的____________; (2)“设”:用字母(例如x )表示问题的_______; (3)“列”:用字母的代数式表示相关的量,根据__________列出方程; (4)“解”:解方程; (5)“验”:检查求得的值是否正确和符合实际情形,并写出答案; (6)“答”:答出题目中所问的问题。 二、基础题,请你做一做 1. 已知矩形的周长为20厘米,设长为x 厘米,则宽为( ). A. 20-x B. 10-x C. 10-2x D. 20-2x 2.学生a 人,以每10人为一组,其中有两组各少1人,则学生共有( )组. A. 10a -2 B. 10-2a C. 10-(2-a) D.(10+2)/a

(完整)七年级数学二元一次方程经典练习题及答案

二元一次方程组练习题100道(卷一) (范围:代数: 二元一次方程组) 一、判断 1、?????-==312y x 是方程组???????=-=-9 10326523y x y x 的解 …………( ) 2、方程组? ??=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 4、方程组???????=-++=+++25323 473523y x y x ,可以转化为???-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2 +(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组???=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组?? ???=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组? ??=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组???=+=-3 513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………( ) 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x += ( ) 二、选择: 13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解; 14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)公式法:平方差: 完全平方: (3)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

(完整版)一元一次方程经典题型(可编辑修改word版)

4 一元一次方程经典题型 1.以y 为未知数的方程2ay = 5c (a ≠ 0, b≠ 0)的解是() b A.y =10bc a B. y = 2bc 5c C. y = 5bc 2a D.y =10bc c 2.要使5m +1 与 ? + 1 ? 互为相反数,那么m 的值是() 5 m ? 4 ?? A.0 B.3 20 C.1 20 D.-3 20 3.已知4x 2n-3+ 5 = 0 是关于x 的一元一次方程,则n =. 4.若9a x b7与- 7a3x-4b 2y-1是同类项,则x =, y =. 5.若- 2 是关于x 的方程3x + 4 =x -a 的解,则a100- 2 1 =. a100 6、若关于x 的方程mx m-2-m + 3 = 0 是一元一次方程,则这个方程的解是. 6、已知:1-(3m-5)2有最大值,则方程5m - 4 = 3x + 2 的解是. 7、方程4x - 5 y= 6, 用含x 的代数式表示y 得,用含y 的代数式表示x 得。 2x 0.25 -0.1x 3、解方程+= 0.1时,把分母化为整数,得。 0.03 0.02 2、方程2 -3(x +1) = 0 的解与关于x 的方程 7.0.5x - 0.1 + 2x = 2. 0.2 k +x 2 -3k - 2 = 2x 的解互为倒数,求k 的值。 6.3.1从实际问题到方程 一、本课重点,请你理一理 列方程解应用题的一般步骤是: (1)“找”:看清题意,分析题中及其关系,找出用来列方程的;(2)“设”:用字母(例如x)表示问题的; (3)“列”:用字母的代数式表示相关的量,根据列出方程; (4)“解”:解方程; (5)“验”:检查求得的值是否正确和符合实际情形,并写出答案; (6)“答”:答出题目中所问的问题。 二、基础题,请你做一做 1.已知矩形的周长为20 厘米,设长为x 厘米,则宽为(). A. 20-x B. 10-x C. 10-2x D. 20-2x 2.学生a 人,以每10 人为一组,其中有两组各少1 人,则学生共有()组. A. 10a-2 B. 10-2a C. 10-(2-a) D.(10+2)/a 三、综合题,请你试一试

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案) 类型一:列二元一次方程组解决——行程问题 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 解:设甲,乙速度分别为x,y千米/时,依题意得: (2.5+2)x+2.5y=36 3x+(3+2)y=36 解得:x=6,y=3.6 答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。 【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。 解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有: 20(x-y)=280 14(x+y)=280 解得:x=17,y=3 答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时, 类型二:列二元一次方程组解决——工程问题 【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由. 解: 类型三:列二元一次方程组解决——商品销售利润问题 【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩? 解:设甲、乙两种蔬菜各种植了x、y亩,依题意得: ①x+y=10 ②2000x+1500y=18000

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

七年级一元一次方程经典题型计算题道

经 典 题 型 一、解方程(等式的性质)20分 1、x x 232-=- 2、463127.253.13?-?-=-+-x x x x 3、x x 21-=- 4、x 355-= 5、15=-x 6、1835+=-x x 7、x x 237+= 8、x x x 58.42.13-=-- 9、26473-=+-x x x 10、x x x 910026411-=-+ 11、x x x x 43987--=+- 12、x x x 25.132-=+- 13、x x 3.15.67.05.0-=- 14、3.05.064-=-+-x x x 15、15 2+-=-x x 16、35 36+-=-x x 17、3 223=x 18、168421x x x x x ++-+ = 19、4 32214+=-x x 20、x x x 3 212-=- 二、解方程(去括号)30分

1、4)1(2=-x 2、5)1(10=-x 3、95)3(+=--x x 4、)12(1)2(3--=+-x x x 5、)15(2)2(5-=+x x 6、)4(3)2()1(2x x x -=+-- 7、1)1(234+-=+x x 8、x x x 31)1(2)1(-=--+ 9、)1(3)14(6)2(2x x x -=--- 10、)1(9)15(3)2(4x x x -=--- 11、)12(3)32(21+-=+-x x 12、x x x 31)1(2)1(-=--+ 13、)9(76)20(34x x x x --=-- 14、)3()2(2+-=-x x 15、)1(72)4(2--=+-x x x 16、)43(23)165(2--=+-x x x 17、)12(41)2(3--=+--x x x 18、)4(12)2(24+-=-+x x x 19、)1(9)14(3)2(2x x x -=--- 20、)1(9)14(3)2(2y y y -=--+ 21、)9(76)20(34x x x x --=-- 22、17}20]8)15(4[3{2=----x 23、2)]}4(8[2{3]5)4(3[2----=-+--x x x x x x 24、)1(32 )1(2121-=??????--x x x 25、1122(1)(1)223 x x x x ??---=-????

二元一次方程超经典题目

初一下数学二元一次方程超经典题目21题 (活用特值思想、方程思想) 1.方程2x - 1y =0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是() A .1个 B .2个 C .3个 D .4个 2.如果方程组1x y ax by c +=??+=?有唯一的一组解,那么a ,b ,c 的值应当满足() A .a=1,c=1 B .a ≠b C .a=b=1,c ≠1 D .a=1,c ≠1 3.已知x ,y 满足方程组45x m y m +=??-=? ,则无论m 取何值,x ,y 恒有关系式是() A .x+y=1 B .x+y=-1 C .x+y=9 D .x+y=9 4.关于x 、y 的方程组? ??=-=+15x y ay x 有正整数解,则正整数a 为(). A .1、2B .2、5 C .1、5 D .1、2、5 5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店() A 、赔8元 B 、赚32元 C 、不赔不赚 D 、赚8元 6.由12 3=-y x ,可以得到用x 表示y 的式子() A. 322-=x y B. 3132-=x y C. 232-=x y D. 322x y -= 7、已知x 、y 满足方程组? ??=+=+7282y x y x ,则x +y 的值是(). A 、3 B 、5 C 、7 D 、9 8、若4a -3b=0,则=+b b a _________.

9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代 数式表示x 为:x=________. 10.若2x 2a -5b +y a -3b =0是二元一次方程,则a=______,b=______. 11,方程mx -2y=x+5是二元一次方程时,则m________. 12、若方程组275x y k x y k +=+??-=? 的解x 与y 是互为相反数,求k 的值。 13,满足方程组???=++=+m y x m y x 32253的x , y 的值的和等于2,求m 的值. 14.已知y=3xy+x ,求代数式 2322x xy y x xy y +---的值. 15,满足方程组???=++=+5 32153y x k y x 的x 、y 值之和为2,求k 的值。

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

一元二次方程经典考题难题

一元二次方程经典考题难题 用适当的方法解下列方程 16)5(42=-x 0)12(532=++x x 04222=-+x x 22)3(4)12(+=-x x 9)32(4)32(122++=+x x 11.02.02=+x x 0)2(2)2)(1(3)1(222=---+++x x x x 6)53)(43(22=++++x x x x x x x 9)1(22=- 20)7)(5)(3)(1(=++++x x x x

1、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2 -=△和完全平方式2)2(b at M +=的关系式() A △=M B △>M C △<M D 大小关系不能确定 2、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______ 3、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______ 4、在实数范围内因式分解:=--742x x __________________ 5、已知03442=+--x x ,则=-+31232x x __________________ 6、m mx x ++24是一个完全平方式,则m=________________________ 7、已知,)2 1(822m x a x ax ++=++则a 和m 的值分别是__________________ 8、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程? 9、关于x 的方程032)4()16(2 2=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。 10、已知012=--x x ,则2009223++-x x 的值为__________ 11、已知012)()(22222=-+++y x y x ,则22y x +=_______ 12、试证明关于x 的方程012)208(22=+++-ax x a a ,无论a 取何值,该方程都是一元二次方程

(完整word)一元一次方程典型应用题汇编(精选题型含答案),推荐文档

一元一次方程的应用 1、列方程解应用题的基本步骤和方法: 注意: (1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上. (2)解方程的步骤不用写出,直接写结果即可. (3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题. 2、设未知数的方法: 设未知数的方法一般来讲,有以下几种: (1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况; (2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用. (3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.

模块一:数字问题 (1)多位数字的表示方法: 一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +. 一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++. (2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数). (3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+. 【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把 一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少? 【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量. 设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ?+-+=,解之得4x =. 于是28x =.所以正确答案应为48. 【答案】48 【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比 原四位数的2倍少6,求这个年份. 【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为 21000x ?+,根据题意可列方程:()1022210006x x +=?+-,解得499x = 【答案】2499年 【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个 四位数. 【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +, 则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758 【答案】8758

相关文档
最新文档