柴油机的着火过程

柴油机的着火过程
柴油机的着火过程

第六章柴油机的着火过程

第一节燃烧化学反应动力学的基础理论

一.分子运动和碰撞柴油机的着火过程是复杂的物理化学过程,化学过程是激烈的热——链化学反应,要进行化学反应,必须经过它们分子之间的相互碰撞,并且符合碰撞要求才可实现。燃烧化学反应中分子运动和碰撞的基本理论归纳如下:

A.参加化学反应的物质,分子必须相互碰撞。

B.分子的碰撞是杂乱无章的。

C.合适的方

向上碰撞才有可能起化学作用。 D.运动能量超过最低能量。E?最低能量称为活化能。F温度

越高,化学反应速度越大。G压力与密度越大,碰撞频率越高,反应速度加快。

二.活化络合物理论

活化络合物理论(过渡态理论)的基本内容是:进行化学反应时候,分子不仅需要相互撞击,还需

要适当能量,在适当的方位上撞击,以便获得形成一个不稳定,过度的,瞬态活化络合物。活化能E 就是

把初态反应物提高到络合物所需能量。反应关系表达为:

反应物——活化络合物——终产物

三.键能及其在化学反应中的作用。

物质内部相邻原子间或离子间产生的相互结合或相互作用的称为化学键。可分为离子键,

共价键,和金属键等几种类型。正负离子通过静电引力形成的化学键为离子键。物质内部相邻原子或者

原子团通过共用电子对形成的称为共价键。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合

而成金属键。

物质起化学变化时,需要从外界吸收能量,达到破坏原子间或者离子间所必须吸收的能量,这种能

量称为键能。

第二节着火前燃料的物理——化学过程(焰前反应)一。着火的分类和含义按照火源性质,分为压缩自然和外源点火。按化学反应性质分为热式着火,链式着

火,和热—链式着火。链式着火通过支链反应而自身积累活性中心并积聚能量。按着火阶段分,有高温单阶段着火和中低温多阶段着火。多阶段着火指历经冷焰,蓝焰到热焰的几个阶段着火。

二.着火前的物理过程必须先将反应物质(空气和烃类)能互相充分气相混合,并相互撞击,同时,

需要一定的初始能量。这就需要有进气过程,喷射过程,喷注的破碎和雾化过程,以至形成可燃混合气,并达到足够温度和压力的过程。这些都是着火前的物理准备过程。

三.着火前的化学准备工作

(1)着火的温度条件外源供热,获得热—链反应所必需的能源,是反应物具有足够的活化能以克服烃分子

化学键断裂的阻抗。

(2)着火的压力条件压力影响本质上是空气密度,分子运动自由程度大小和碰撞频率对着火的影响。

(3)着火的浓度条件混合气浓度对着火的影响也是决定性的。可燃混合气的着火只能在一定的浓度范围内进行,超出极限范围,不管温度和压力多高,也难于着火。

― ■ ■ ■ I I -

----- 丄 . ■

o Cff

10Q

c.% 图6-13晟类压力亠浓度着火界蔗曲线 (祜殆和面療一定?匚2.氛4一同團GTS Pn- 能着火的最低扱跟压力,

阴影区杲能着火区》

第三节 柴油机的滞燃期及其影响因素

一?滞燃期

滞燃期(AB )段:在压缩过程末期,在上止点前 A 点喷油器针阀开启,向气缸喷入燃

料,这时气缸中空气温度高达 600 C,远远高于燃料在当时压力下的自燃温度,

但燃料并不 B 点才开始着火燃烧,压力才开始急剧升高,气体压力曲 从喷油开始( A 点)到压力开始急剧升高时(B 点)为止,这一

的雾化、加热、蒸发、扩散与空气混合等物理准备阶段以及着火前的化学准备阶段。

?影响滞燃期的因素

1.温度对滞燃期的影响处于第一位。滞燃期分为冷焰诱导期和蓝,热焰诱导期。冷焰诱导期

,而是稍有滞后,即到

在滞燃期内, 喷入气缸的燃料经历一系列物理化学变化过程, 包括燃料

随温度的升高而降低。温度越低,冷焰诱导期愈长,而且冷焰光越强蓝,热焰诱导期也越长。2压力对滞燃期的影响。其他条件相同时,燃烧室内的压力增加,则滞燃期缩短。压力越大, 混合气密度增加,分子平均自由程缩短,反应物分子碰撞频率增加,反应速率加快。

3?压缩比对滞燃期的影响。压缩比增加,使得压缩压力和压缩温度同时增加,对滞燃期双重影响,滞燃期明显缩短。

4?进气温度对滞燃期的影响。增加进气温度能使压缩终点温度约成正比增加。滞燃期随进气温度升高而下降。

5?进气压力对滞燃期的影响。气缸内温度和压力随进气压力的增加而增加,因而滞燃期缩短。6?喷油提前角对滞燃期的影响。喷油提前角对滞燃期的影响是温度,压力和反应物焰前反应时间对滞燃期的综合影响。滞燃期随喷油提前角的增加而急剧增加。

7?喷油压力对滞燃期的影响。喷油压力升高,则滞燃期缩短,但是缩短的量不大,因为喷油压力对缸内的温度,压力这两个主要因素的影响较小。

8?转速对滞燃期的影响。转速n增加后,每个循环缸内漏气和散热的时间减少,因而漏气量和散热量减少,缸内热力状态提高,缩短滞燃期。

9?负荷和循环喷油量的影响。每循环的喷油量增加和发动机负荷增加后,会使整个压缩过程

的热力状态提高,滞燃期会有些下降,但不明显。

10?混合气浓度对滞燃期的影响。当过量空气系数增大时,缸内混合气浓度变稀,滞燃期增加。

11.喷孔数,喷孔直径,和喷孔总面积对滞燃期的影响。在同样循环喷油量下,喷孔数目越多,喷孔直径越小,滞燃期缩短。

第五节滞燃期对燃烧过程和柴油机性能的影响

滞燃期对燃烧过程和柴油机性能有着极为重要的影响,要控制燃烧过程和柴油机的各种

性能,其重要手段之一就是通过改变滞燃期来实现。混合气的形成方式不同,则滞燃期对燃

烧过程的影响程度也不同。雾化混合型燃烧的滞燃期对燃烧过程和发动机性能的影响最大,而油膜混合型燃烧的滞燃期对燃烧和性能的影响较小。

一,滞燃期对燃烧过程的影响

1?滞燃期对最高燃烧压力的影响

滞燃期越长,则滞燃期内喷入缸内的油愈多。着火经历的准备时间越长,以至于气缸内累积起来的,达到可燃程度的燃料量越多。从而使得在速燃期一爆而起的预混合燃烧的燃油量增多,放热量增加,放热速度和加速度增加,放热峰值加高,最后导致最高燃烧压力和最高燃烧温度随着滞燃期的增加而升高。

图6弋9最髙範蜒压力几随滞燃期卜的变化(附持凯捉供)

5 B 10 1? Lt 2

6 民

ffle so杲高燃堤压如用凰大压升串(窪)

葩滞燃期5的塹化〔閃〕

(哈野堡克提供〉

2?滞燃期对最大压力升高率的影响

最大压力升高率随着滞燃期的延长而迅速增长。若是着火性能差的燃料,在喷油提前角

过大,或进气温度和压力过低时,最大压升率可能超过1MP/CA,这对保证零部件强度来说

是不允许的。

3?滞燃期对示功图图形的影响

当喷油提前角不同时,即喷油时气缸内的温度和压力不同时,则喷油提前角B大时,

示功图图形大。最大压力升高率高。有时甚至发生燃烧压力震荡,如图峰值区域有毛刺即是。

图卜&3沸燃期財示功圉图形的影响

f作者试验结果)

{咦池提前角不同,燃料托同)

4?滞燃期对放热规律的影响

滞燃期较长导致滞燃期内存在的,做好了物理-化学准备的可燃混合气量较多,导致预

混合燃烧的放热峰值较高,相应的,其扩散燃烧的放热曲线稍低。所以,其预混合燃烧放热峰值较低,相应的,其扩散燃烧阶段的放热曲线稍高。

图「66滞燃期对平均有效压力的影剧O

二,滞燃期对平均有效压力和功率的影响

各种柴油机有着自己的最佳滞燃期,长于或者短于这个滞燃期时,平均有效压力均降低。滞燃期过短,最高燃烧压力在上止点前过早出现,从而压缩过程中消耗的负功过大,散热损失增加。反之,示功图的位置在上止点后过迟出现,燃烧过程推迟。

第七章柴油机的燃烧和放热过程柴油机的燃烧过程有广义和狭义两方面,广义,包括工质的准备过程,工质的流动过程,燃烧的时空条件,燃烧的进程以及燃烧产物的形成排出。狭义,燃烧始点(着火)至燃烧终点的燃烧进程。

第一节燃烧过程的分段和始终点的确定

柴油机燃烧过程中的放热速度(即燃烧速度)是极不均匀的,存在多处折点,因此,根据燃烧进程中的各个特点,科学的进行分段,对正确认识燃烧,无疑是有裨益的。

分段原则是,各段既有确切的物理—数学含义,又能用现代的仪器测量出各段的明显标志,并且符合燃烧进程的各阶段。

一按燃烧速度分段

分为滞燃期,速燃期,缓燃期,后燃期,四个阶段。

1 滞燃期,从喷油始点到着火始点,称为滞燃期,滞燃期是燃料在气缸内进行物理- 化学准备的过程。

2 速燃期,从着火始点,到气缸压力最高值所在曲轴转角,称为速燃期。速燃期特征是在滞燃期内混好的可燃混合气全部急剧烧完。一般在12~20 度曲轴转角。

3 缓燃期,是它从最高燃烧压力所在曲轴角位到最高燃烧温度所在角位。在缓燃期内,燃烧速度比速燃期要低,但仍保持相当的值。

4 后燃期,后燃期是从出现最高燃烧温度开始直到燃烧终点。后燃期内气缸内新鲜空气大为减少,而燃烧产物充满缸内零散的未燃燃油与新鲜空气相遇和反应的条件较差。燃烧缓慢进行,甚至直到排气开始。

二按燃烧时可燃混合气制备情况分

分为滞燃期,预混合燃烧期,扩散燃烧期,后燃期。主要适用于高速柴油机的燃烧过程。

1 滞燃期,从喷油始点到着火始点,称为滞燃期。

2 预混合燃烧期的起点是着火点,终点是放热规律图形中两个峰值中间的谷点。其物理意义是,在滞燃期内和部分预混合燃烧期内已经混合好了的可燃混合气全部烧完,使放热率达到很高的值。

3 扩散燃烧期的起点就是预混合燃烧期的终点,其终点可视为整个燃烧的终点。扩散燃烧期内燃烧的特点是:燃油边蒸发,边混合,边燃烧。

扩散燃烧期对柴油的经济性,排烟,排污至关重要。

第二节燃烧的进程

一,焰区的温度及其计算焰区的温度比气缸内的平均温度高得多,该图表明,燃料滴的火焰圈内,近中部区的

温度最高,在大气温度下燃烧时为1500~1700 ° C。而向外延伸时,火焰温度迅速下降。这

主要与所在部位的混合气浓度有关。向液滴方向,则浓度过大;向外围方向,则浓度过稀,

上述温度场形态上大致也适用于柴油气缸内油滴周围火焰区的温度场形态。 对值比此高

得多。

1*17-18燃料櫥焰区的温度场。9)(甲酶}

1 一呻滴:一掖滴火培圈 自液画心向饨向的胆离

第三节放热规律计算及有关参数的确定和误差影响 一,传热系数的确定及对放热

规律的影响

内燃机气缸内燃气向缸体壁面传热主要是对流传热,

其次是辐射传热。辐射传热量大约 是燃气向缸壁总传热量的 20%~30%。其中最大值适用于增压强化柴油机。由于是以对流传

热形式来表达整个传热状态,

而把油蒸发吸热以及辐射传热放在传热系数中统一考虑, 所以 传热系数在相当程度上是经验型的。

二,比热容和比热容比的确定及对放热规律的影响

比热容是单位物质作单位温度变化时所吸收或者放出的热量。 气体的比热容吸热或者放

热的具体条件不同而各异。所以内燃机的燃烧过程中比热容与工质的过程或者状态有关。 三,燃烧室壁温的确定及其对放热规律的影响

燃烧室壁温随时间和空间的不同而不同。不同部位可以相差

50~80。。为了计算方便, 视壁温为常数,即取平均壁温。如果选择的平均壁温高于实际值, 则燃气向缸壁的散热量比

真实值减少,从而使放热率和放热百分率的计算值偏低。但是总的来说,影响并不明显。 四,上止点误差对放热规律的影响

上止点的精确测定是极为重要的。如果上止点比真实的上止点加 1 ° CA ,即由360° CA 移至359° CA ,则示功图的正功(膨胀功)增加,同时负功(压缩功)减少。这就使放 热规律曲线和放热百分率曲线明显提° CA 高。反之,如上止点减 1° CA ,即360° CA 改

为361° CA ,则上述两线明显下降。上止点误差土 1° CA ,则放热峰值可差10~15% ;放热 百分率可相差7~9%。

第四节 各种柴油机放热规律图形的比较与分析 当然,其温度绝

柴油发动机的燃烧解读

柴油发动机的燃烧解读

项目四柴油机混合气形成与燃烧 学习目标: 掌握柴油机两种混合气的形成方式及特点,掌握直接喷射式和分隔式两大类柴油机燃烧室的结构及性能特点;了解柴油机供油系统的组成和喷射过程,掌握柴油机的燃烧过程及影响因素,掌握电控柴油喷身系统的组成、分类、电子控制功能,并在学习过程中随时注意对柴油机和汽油机进行比较。 任务一柴油机混合气形成 与汽油机工作原理相比,只有一个行程即作功行程中,柴油机由于用的柴油粘度比汽油大、不易蒸发,且自然温度又较汽油低,所以采用的是压缩自燃式点火。 任务二柴油机的燃烧过程

柴油机燃烧过程非常复杂,为了便于分析和揭示燃烧过程的规律,通常将这一连续的燃烧过程分为四个阶段,即着火延迟期(又称为滞燃期)、速燃期、缓燃期和补燃期,如图所示。 (一)着火延迟期 从柴油开始喷入气缸起到着火开始为止的这一段时期称为着火延迟期。 着火延迟期内,燃烧室内的混合气进行着物理和化学准备过程。 物理准备过程:燃油的粉碎分散、蒸发汽化和混合。 化学准备过程:混合气的先期化学反应直至开始自燃。 特点:压力没有偏离压缩线。

影响着火延迟期长短的主要因素是: 喷油时缸内的温度和压力越高,则着火延迟期越短。 柴油的自燃性较好(十六值较高),着火延迟期较短。 燃烧室的形状和壁温等。 喷油提前角:开始喷油到活塞到达上止点所对应的曲轴转角为喷油提前角。 (二)速燃期 速燃期:从开始着火(即压力偏离压缩线)到出现最高压力. 特点:压力急剧上升,压力达到最高(有可能达到13MPa以上)

一般用压力升高率λp〔kPa/(o)曲轴〕表示压力急剧上升的程度。 式中:△p——速燃期始点和终点的气体压力差(kPa); △θ——速燃期始点和终点相对于上止点的曲轴转角差(CAo)。 特点: (1)压力升高率很高,接近等容燃烧,工作粗暴。 (2)达到最高压力(6~9MPa)。 (3)继续喷油。 压力升高率过大,则柴油机工作粗暴,燃烧噪音大;同时运动零件承受较大的冲击负荷,影响其工作可靠性和使用寿 命; 压力升高率大,燃烧迅速,柴油机的经济性和动力性会较好。 压力升高率应限制在一定的范围之内,柴油机的压力升高率一般应不大于0.4~0.5 MPa/(o)曲轴。与汽油机相比,柴油机的压力升高率较大。 控制压力升高率的措施: 减小在着火延迟期内准备好的可燃混合气的量

汽车发动机原理第4章 练习题

第4章练习题 一、解释术语 1、不规则燃烧 2、点火提前角 3、空燃比 二、选择题 1.提高汽油机的压缩比,要相应提高所使用汽油的() A、热值 B、点火能量 C、辛烷值 D、馏程 2.汽油机的燃烧过程是() A、温度传播过程 B、压力传播过程 C、热量传播过程 D、火焰传播过程 3、汽油机混合气形成过程中,燃料()、燃料蒸汽与空气之间的扩散同步进行。 A、喷射 B、雾化 C、蒸发 D、混合 4、下面列出的()属于汽油机的燃烧特点。 A、空气过量 B、有时缺氧 C、扩散燃烧 D、混合气不均匀 5、汽油机爆震燃烧的根本原因是远端混合气() A、自燃 B、被火花塞点燃 C、火焰传播不到 D、被压缩 6、汽油机的火焰速度是() A、燃烧速度 B、火焰锋面移动速度 C、扩散速度 D、气流运动速度 7、提高压缩比使汽油机的爆震倾向加大,为此,可采取()的措施。 A、减小喷油提前角 B、减小点火提前角 C、加大喷油提前角 D、加大点火提前角 三、填空题 1、根据汽油机燃烧过程中气缸压力变化的特点,可以将汽油机燃烧过程分为、和三个阶段。 2、汽油机混合气的形成方式可以分为和两种。 3、压缩比是发动机热效率的重要因素。但高压缩比会给汽油机增加的趋 势。

4、对液态燃料,其混合气形成过程包括两个基本阶段: 和。 5、燃油的雾化是指燃油喷入_________________后被粉碎分散为细小液滴的过程。 6、发动机转速增加时,应该相应地____________点火提前角。 7、在汽油机上调节负荷是通过改变节气门开度来调节进入气缸_______________的多 少。 四、简答题 1、P—φ图上画出汽油机正常燃烧,爆震燃烧和早燃的示功图,并简要说明它们的区别? 2. 用示功图说明汽油机点火提前角过大、过小,对燃烧过程和发动机性能的影响。 3. 汽油机燃烧室组织适当的紊流运动的作用有哪些?

第五章习题

五、柴油机混合气的形成与燃烧 一、名词解释 1、喷油泵速度特性 2、供油提前角 3、喷油提前角 4、喷油延迟 5、喷油规律 二、选择题 1、柱塞式喷油泵的速度特性是()。 A、油泵喷油量随转速升高而增加 B、油泵喷油量随转速升高而减少 C、油泵喷油量随负荷加大而增加 D、油泵喷油量随负荷加大而减少 2、使用柱塞式喷油泵的柴油机发生“飞车”的根本原因是()。 A、油泵喷油量随转速升高而增加 B、油泵喷油量随转速升高而减少 C、油泵喷油量随负荷加大而增加 D、油泵喷油量随负荷加大而减少 3、使用柱塞式喷油泵的柴油机出现不正常喷射的各种原因中包括()。 A、高压油管过细 B、油管壁面过厚 C、喷油压力过高 D、喷油数量过多 4、柴油机间接喷射式燃烧室类型中包括下面列出的()。 A、半开式燃烧室 B、开式燃烧室 C、统一室燃烧室 D、预燃室燃烧室 5、传统柴油机的喷油时刻与供油时刻()。 A、同步 B、提前 C、滞后 D、没有联系 6、柴油机的供油始点用()表示。 A、喷油提前角 B、供油提前角 C、雾化提前角 D、着火提前角 7、评价速燃期的重要指标中有()。 A、温度升高率 B、最大压力出现时刻 C、最高温度 D、压力升高时刻

8、柴油机的理想喷油规律是()。 A、均匀喷油 B、先慢后快 C、先快后慢 D、先快后慢再快 9、下面列出的()属于柴油机燃烧特点。 A、缺氧 B、空气过量 C、扩散燃烧 D、混合气预先形成 10、柴油机混合气形成过程中,存在燃料燃烧、燃料()、燃料与空气之间的扩散同步进行现象。 A、燃烧 B、凝结 C、蒸发 D、混合 三、填空题 1、柴油机燃烧过程是否完善,取决于、和三者的合理配 合。 2、油束的几何特性可以用、和三个参数来描述。 3、柴油机燃烧室基本要求是、、和。 4、柴油机燃烧过程包括、速燃期、和。 5、对液态燃料,其混合气形成过程包括两个基本阶段:和。 6、燃烧放热规律三要素是________________、燃烧放热规律曲线形状和燃烧持续时间。 7、燃油的雾化是指燃油喷入_________________后被粉碎分散为细小液滴的过程。 8、现代电控柴油机喷射系统的基本控制量是循环供油量和_____________________。 9、柴油机内不均匀的混合气是在高温、高压下多点_______________着火燃烧的。 10、喷油泵的速度特性是油量控制机构位置固定,_____________随喷油泵转速变化的关系。喷油 泵速度特性的校正有正校正和________________两种。 四、判断题 1、柴油机缸内的不均匀混合气是在高温、高压下多点自燃着火燃烧的。 [ ] 2、柴油机一般用压力升高率代表发动机工作粗暴的程度。 [ ] 3、在柴油机中,燃料成分在燃烧室空间的分布是均匀的。 [ ] 4、孔式喷油器主要用于分隔式燃烧室。 [ ] 5、为了控制压力升高率,应增加着火延迟期内准备好的可燃混合气的量。 [ ] 五、简答题 1、柴油机燃烧室结构形式的要求是什么?

柴油机燃烧系统

低温燃烧(LTC) 一、低温燃烧(LTC)的优势: 1.减少污染物(主要为NOx、碳烟)排放。如下图,LTC的燃烧温度较低,且 过量空气系数较高,可以达到既减少NOx又减少碳烟的目的。 2.燃烧较平稳,最高燃烧温度降低,对NOx排放起到抑制作用。 二、实现低温燃烧的方法: 实现低温燃烧主要靠控制EGR和喷油提前角实现。两者结合使用,能够使燃烧更加平稳,避免缸内温度升高率过大;且能够提供较长时间进行油气混合,减少碳烟生成。在一定的控制范围内,并不会引起THC和CO的大幅增加。对减少排放有很好的效果。另外由于燃烧平稳,发动机的最高爆发压力和压力循环波动也降低,发动机的振动和噪声得到减小。 2.实验及实验结论 实验在一台福特彪马四缸共轨柴油机上进行。实验装置如下图。The balance three cylinders are operated in the conventional combustion mode to motor the research cylinder with a non-motoring eddy current dynamometer used for speed control and power dissipation. The research cylinder has independent intake and exhaust systems equipped with surge tanks. The details of the instrumentation of the single cylinder and its separation from the rest of the engine have been reported previously.(实验装置设置不太懂。) 实验结果: 1.在EGR率一定的情况下(进气氧含量17%),CA50的变化对发动机的影响。下图表示发动机主要排放物的变化: 蓝色点表示喷油持续时间不变;而橙色方块表示为弥补发动机功率下降而延长喷油时间。可以看出在上止点前燃烧开始,NOx和碳烟增加,THC和CO无太大变化。随着点火提前,碳烟降低,NOx上升,这是因为:1.点火越提前,则燃烧前缸内温度越低,油气混合时间加长,是碳烟下降;2.点火提前,则燃烧时放热速率加快,导致NOx急剧增加。THC和CO没有很大变化,表明这种燃烧方式可以使燃烧完全。 在上止点后燃烧开始,NOx和碳烟均下降;在适当的范围内,THC和CO 没有很大变化,但燃烧过于延迟,会导致二者急剧增加。这一方式有几个优点:1.燃烧在膨胀冲程中进行,放热平缓,燃烧延长,使得NOx排放下降;2.在膨胀

柴油机的着火过程

第六章柴油机的着火过程 第一节燃烧化学反应动力学的基础理论 一.分子运动和碰撞柴油机的着火过程是复杂的物理化学过程,化学过程是激烈的热——链化学反应,要进行化学反应,必须经过它们分子之间的相互碰撞,并且符合碰撞要求才可实现。燃烧化学反应中分子运动和碰撞的基本理论归纳如下: A.参加化学反应的物质,分子必须相互碰撞。 B.分子的碰撞是杂乱无章的。 C.合适的方向上碰撞才有可能起化学作用。 D.运动能量超过最低能量。 E.最低能量称为活化能。 F.温度越高,化学反应速度越大。 G.压力与密度越大,碰撞频率越高,反应速度加快。 二.活化络合物理论 活化络合物理论(过渡态理论)的基本内容是:进行化学反应时候,分子不仅需要相互撞击,还需要适当能量,在适当的方位上撞击,以便获得形成一个不稳定,过度的,瞬态活化络合物。活化能E就是把初态反应物提高到络合物所需能量。反应关系表达为:反应物——活化络合物——终产物 三.键能及其在化学反应中的作用。 物质内部相邻原子间或离子间产生的相互结合或相互作用的称为化学键。可分为离子键,共价键,和金属键等几种类型。正负离子通过静电引力形成的化学键为离子键。物质内部相邻原子或者原子团通过共用电子对形成的称为共价键。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成金属键。 物质起化学变化时,需要从外界吸收能量,达到破坏原子间或者离子间所必须吸收的能量,这种能量称为键能。 第二节着火前燃料的物理——化学过程(焰前反应)一。着火的分类和含义 按照火源性质,分为压缩自然和外源点火。按化学反应性质分为热式着火,链式着火,和热—链式着火。链式着火通过支链反应而自身积累活性中心并积聚能量。按着火阶段分,有高温单阶段着火和中低温多阶段着火。多阶段着火指历经冷焰,蓝焰到热焰的几个阶段着火。 二.着火前的物理过程 必须先将反应物质(空气和烃类)能互相充分气相混合,并相互撞击,同时,需要一定的初始能量。这就需要有进气过程,喷射过程,喷注的破碎和雾化过程,以至形成可燃混合气,并达到足够温度和压力的过程。这些都是着火前的物理准备过程。 三.着火前的化学准备工作 (1)着火的温度条件 外源供热,获得热—链反应所必需的能源,是反应物具有足够的活化能以克服烃分子化学键断裂的阻抗。 (2)着火的压力条件 压力影响本质上是空气密度,分子运动自由程度大小和碰撞频率对着火的影响。 (3)着火的浓度条件 混合气浓度对着火的影响也是决定性的。可燃混合气的着火只能在一定的浓度范围内进行,超出极限范围,不管温度和压力多高,也难于着火。

习题第五章答案

《汽车发动机原理》作业题库 第五章 5-1 柴油机燃烧初期的预混合燃烧阶段与汽油机的预混合燃烧有何异同? 解:同:都是燃烧开始前油气先混合的燃烧过程。 异:柴油机的预混相比于汽油机不够均匀,且柴油机的燃烧过程是多点自燃,而汽油机则是火花点火,火焰传播的过程。 5-2 柴油机燃烧过程滞燃期包括哪些物理和化学过程?与低温多阶段着火过程是什么关系? 解:物理过程:雾化、蒸发、扩散和与空气混合等。化学过程:低温多阶段着火。 5-3 试述直喷式柴油机喷油规律、混合气形成速率(气流与喷雾)和燃烧放热规律之间的相互关系?并由此说明控制柴油机放热规律的主要手段有哪些? 解:柴油机喷油规律会影响混合气的形成速率。一般初期喷油快且喷油压力高的预混合气的量就多。混合气形成速率影响燃烧放热规律,燃烧开始前形成混合气的速率越快,初期放热率就越高。燃烧过程中混合气的形成速率决定了放热持续期的长短,混合快的放热时间短。 5-4 直喷式柴油机燃烧中为什么会出现“双峰”放热现象?若喷油规律相同,“双峰”形状随柴油机负荷不同会怎样变化?为什么? 解:dQ B/dφ曲线的双峰,第一个峰对应速燃期的预混合燃烧阶段,而第二个峰则对应缓燃期的扩散燃烧阶段。 负荷变化会引起形状的变化,小负荷时,第二个峰不明显,因为负荷小时,扩散燃烧阶段的放热量减少。 5-5 分析柴油机的几何供油规律和实际喷油规律的主要差别;说明形成这些差别的主要原因是什么。 解:供油规律早于喷油,供油最高速率要大于喷油最高速率。喷油时间大于供油时间,且喷油量小于供油量。 燃油的可压缩性;压力波的传播滞后;压力波动;高压容积变化。 5-6 比较柴油机空间雾化混合方式与壁面油膜混合方式的原理差异;简述促进空间雾化混合的基本原则。 解:空间雾化将燃油喷射到空间进行雾化,通过燃油与空气的相对运动和扩散,在空间形成可燃混合气。因此混合能量主要来源于喷油射束,空气被动参与混合,油找气的方式。混合一般不够均匀。壁面油膜蒸发混合方式在燃烧室壁面上形成很薄的薄膜,在强烈涡流作用下,油膜边蒸发变燃烧。 采用多空高压喷油,合理组织涡流。 5-7 柴油机燃烧室中形成可燃混合气时一般会利用哪几种气流形式?如何产生和控制这些气流运动? 解:进气涡流,压缩涡流,挤流和逆挤流,湍流。 进气涡流:通过设计进气道的形状产生进气涡流。通过改变流通面积和角度来改变强

柴油机燃烧过程的FIRE仿真分析

柴油机燃烧过程的仿真分析 北京理工大学机械与车辆工程学院 计算机应用与仿真中心 Au. Tiger (运用Fire进行燃烧过程分析时,对于与燃烧有关的参数的设置,这里的分析将有一定的指导意义。这里所描述的,既可以说是参数对燃烧过程的影响,也可以说是运用Fire进行燃烧过程分析的指南。) 基本操作 Fire自带的网格划分工具可以划分质量很高的六面体网格,但是数量巨大;如果和Hypermesh结合可以达到较好的效果,详细过程参见仿真论坛中关于FIRE的讨论版。 由于本人对Fire本身建模、划网格的功能不十分熟练,因此大多在ProE或IDEAS中建模、在IDEAS中划网格,然后导出.unv格式的网格供Fire使用。网格的局部细化等在Fire 中使用Mesh Tools中的Refine工具完成。ICEM-CFD划分网格的功能也很强大,比I-DEAS 显得稍微快一些,而且适合划分复杂结构的六面体网格,结束后可以导出Nastran格式的网格供Fire使用。 个人认为,较好的网格标准是:尽量是六面体单元(一个六面体单元最少可以分成五个四面体单元,一般是分成六个四面体单元,也就是说采用六面体单元能够显著降低计算规模,从而减少计算机时);单个六面体单元的长宽高之间的比例越接近1愈好,不要超过10;单个六面体单元的棱与棱之间的夹角越接近90度越好,夹角不要低于15度,也就是说正方体是最好的六面体单元;单个四面体单元中最好的正四面体,实际要求就是面容比越小越好;对于整个模型,要求相邻的单元之间大小(长宽高)不能相差太大,一样大小最好,必要时要均匀过度。 Check中的distance工具可用于获取节点坐标、测量节点之间的距离。Fire中的默 Geo 认单位为国际单位。 模型导入Fire中后,需要作适当的处理,原因是:流体计算是很费计算机时的运算,因此网格数量越小越能够很快得到结果,尤其是初期的趋势分析中(后期的精确计算需要较密集的网格保证精度);模型中可能存在疏密不一致的情况——相邻两层网格的大小相差很大;模型中网格大小可能不适合所模拟的情况,例如含喷油的计算中网格大小大约是喷孔大小的4到6倍为佳,因此需要调整网格大小;……导入的网格最好是在划分网格的工具中就检查好没有坏单元的,如果有最好处理掉再导入。导入后,首先就是利用Fame工具中的Mesh Tools下的refine工具细化或粗化网格,我以为Redimension是最好用的,它可以很方便地改变网格的层数。其中有个Compression Factor,是指后选的那层网格是先选的那层网格高度的多少倍,可以是任何正数。 任何网格变动后,都要记得用Mesh Tools下的Connect中的Conform connect连接一下,方法是在主窗口点选修改过的模型,然后点击Calculate default自动计算最小间距,不选Selection based方式,然后点击Conform即可。这一步是必须的,否则计算中会因网格问题出错。如果模型已有Selection,只要与之相关的网格没有任何变动,就还会保持原状。 如果使用distance工具测量节点距离、或者使用Redimension工具选择单元时,偶尔发现无论点击哪里都选择的是同一个节点或同一个单元,原因可能是因为没有选中模型。 网格修改完后,就可以在模型的边界面上建立Face类型的Selection了——用于施加边界条件。如果要作动网格,还需要建立Cell类型的Selection。动网格的实质就是,有一块

柴油机新型燃烧方式

柴油机新型燃烧方式 在能源和环境的双重压力下,柴油机低温燃烧(low temperature combustion,LTC)策略成为国内外的研究焦点。该技术能够在保持低排放的同时显著拓宽发动机的负荷范围,是满足现在和将来日益严格的排放法规的核心技术。控制缸内温度是实现LTC 的关键所在。 近年来国内外在柴油机低温燃烧方面的研究成果主要有两类:①基于EGR 技术和喷油策略,如采用中高EGR 率和燃油晚喷策略的“MK”燃烧,“HCLI”燃烧和“HPLI”燃烧;采用燃油早喷策略的“smokeless”系统。它们通过采用EGR 来降低缸内温度,抑制碳烟生成,从而使混合气在较浓的条件下实现低碳烟排放。 ②基于可变气门定时和升程。通过改变气门参数(相位、升程)来改变发动机的有效压缩比,从而有效控制缸内温度和压力的变化历程。国外传统的低温燃烧采用大EGR率(EGR>60%)和高涡流比(?≥5 )的方法,在得到较好的NOx和碳烟排放折中的同时,尚存在一些问题。首先,采用大的EGR 率,需要使用更多的冷却能量,从而减少有用功的输出;其次,使用大的EGR率会使CO、UHC排放大幅增加,热效率降低;第三,大EGR 率使得发动机运行工况的范围受到限制,其适用范围仅限于中低负荷;第四,高的涡流比会造成发动机制造工艺上的困难.笔者在之前的研究中提出的MULINBUMP 复合燃烧技术将燃油多脉冲喷射形成的预混燃烧与BUMP 燃烧室内主喷射形成的稀扩散燃烧相结合,在中低负荷范围内实现了高效清洁燃烧。但随着负荷的增加,拓宽发动机运行范围亦受到限制。课题组在前期研究的基础上,提出了高密度-低温燃烧策略,实验研究表明,这种策略具有在高负荷和满负荷工况下实现高效低排放燃烧的潜力。本文主要针对高密度-低温燃烧机理,采用数值模拟的手段对高密度-低温燃烧中的影响因素(氧浓度,充量密度)进行研究,重点分析了充量密度的多重作用。 高密度-低温燃烧的热力学分析 内燃机燃烧过程中主要有害排放产物的生成都需要满足特定的混合气浓度和燃烧温度范围。只要合理控制缸内的混合气体积分数( ? )和燃烧温度(T),避开NO x和碳烟形成区,就有可能实现超低排放。燃烧过程的控制可通过控制燃烧路径的斜率实现。定义为当量比的变化(混合率的变化)与温度变化的比值。根据热力学第一定律,可得 式中:Q HR是一个短小时间间隔内的放热量;?U、?W、Q wall 分别是相应时间间隔内缸内工质所吸收的内能、对外作功和壁面传热量。可以看到,提高充

柴油机燃烧室的特点

柴油机燃烧室的特点? 柴油机是用柴油作燃料的内燃机。柴油机属于压缩点火式发动机,它又常以主要发明者狄塞尔的名字被称为狄塞尔引擎。 柴油在工作时,吸入柴油机气缸内的空气,因活塞的运动而受到较高程度的压缩,达到500~700℃的高温。然后燃油以雾状喷入高温空气中,与空气混合形成可燃混合气,自动着火燃烧。燃烧中释放的能量作用在活塞顶面上,推动活塞并通过连杆和曲轴转换为旋转的机械功。 法国出生的德裔工程师狄塞尔,在1897年研制成功可供实用的四冲程柴油机。由于它明显地提高了热效率而引起人们的重视。起初,柴油机用空气喷射燃料,附属装置庞大笨重,只用于固定作业。二十世纪初,开始用于船舶,1905年制成第一台船用二冲程柴油机。 1922年,德国的博施发明机械喷射装置,逐渐替代了空气喷射。二十世纪20年代后期出现了高速柴油机,并开始用于汽车。到了50年代,一些结构性能更加完善的新型系列化、通用化的柴油机发展起来,从此柴油机进入了专业化大量生产阶段。特别是在采用了废气涡轮增压技术以后,柴油机已成为现代动力机械中最重要的部分。 柴油机可按不同特征分类:按转速分为高速、中速和低速柴油机;按燃烧室的型式分为直接喷射式、涡流室式和预燃室式柴油机等;按气缸进气方式分为增压和非增压柴油机;按气体压力作用方式分为单作用式、双作用式和对置活塞式柴油机等;按用途分为船用柴油机、机车柴油机等。 柴油机燃料主要是柴油,通常高速柴油机用轻柴油;中、低速柴油机用轻柴油或重柴油。柴油机用喷油泵和喷油器将燃油以高压喷入气缸,喷入的燃油呈雾状,与空气混合燃烧。因此柴油机可用挥发性较差的重质燃料或劣质燃料,如原油和渣油等。 在燃用原油和渣油时,除须滤除杂质和水分外,还要对供油系统进行预热保温,降低粘度,以便输送和喷射。柴油机如采用某种合适的燃烧室也可燃用乙醇、汽油和甲醇等轻质燃料。为了改善轻质燃料的着火性,可加入添加剂提高十六烷值,或与柴油混合使用。一些气体燃料,如天然气、液化石油气、沼气和发生炉煤气等也可作为柴油机的燃料,但这时通常以气体燃料为主,以少量柴油引燃,这种发动机称为双燃料内燃机。 柴油发动机的燃烧过程一般分为着火延迟期、速燃期、缓燃期和后燃期四个阶段。 着火延迟期是指从燃料开始喷射到着火,其间经过喷散、加热蒸发、扩散、混合和初期氧化等一系列物理的和化学的准备过程。它是燃烧过程的一个重要参数,对燃烧放热过程的特性有直接影响。 在着火延迟期内喷入燃烧室的燃料,在速燃期内几乎是同时燃烧的,所以放热速度很高,压力升高也特别快。 缓燃期阶段中燃料的燃烧取决于混合的速度。因此,加强燃烧室内的空气扰动和加速空气与燃料的混合,对保证燃料在上止点附近迅速而完全地燃烧有重要作用。 柴油机的混合和燃烧时间很短,以致有些燃料不能在上止点附近及时烧完,而拖到膨胀行程的后期放出的热量不能得到充分利用,因此应尽量避免燃料在后燃期燃烧。 燃烧室的优劣对柴油机的性能有决定性的作用,因此是柴油机设计的关键。燃烧室按组织燃烧过程的特点和结构不同分为开式、半开式、预燃室式和涡流室式四类。前两类属于直接喷

柴油机复习重点总结

柴油机复习重点 1.什么是柴油机 P1 将一种能量转变为机械能的机器称为发动机,按照转变能量的不同,发动机可以分为热力发动机、电力发动机、水力发动机、风力发动机和原子能发动机。燃料在发动机内部燃烧的热力发动机叫做内燃机。 柴油机即是一种以柴油为燃料,并在发动机内部燃烧的活塞式热力发动机。 2.压缩比 P3 气缸总容积与燃烧室容积的比值称为压缩比,用符号ε表示,即 c h c h c c a V V V V V V V +=+==1ε 压缩比表示了活塞从下止点移动到上止点时,气体在气缸内被压缩的程度。压缩比越大,表示气体在气缸内受压缩的程度越高,压缩终点气体的压力和温度就越高。柴油机压缩比一般为11~16. 3.多缸柴油机曲柄排列与发火顺序 P9 假设四冲程多缸柴油机有i 个气缸,则各做功冲程的间隔角度应为 i ?=720ξ(发火间隔角) ①四冲程偶数缸(两缸除外)柴油机发火顺序,不仅与曲柄排列有关,而且与配气相位有关,曲柄图出现重叠现象;②四冲程奇数缸无曲柄重叠现象,曲柄排列确定后,发火顺序仅一种。 5.活塞材料 P20 制造活塞的材料主要有三类:铝合金、铸铁(球墨铸铁)和耐热钢 要求:(1)有足够的刚度和强度(2)有足够的耐热性导热性(3)重量要轻(4)有良好的减磨性 6.活塞顶部 P22 活塞顶面的形状与选用的燃烧室形式有关。柴油机活塞的顶面一般有各种各样的凹坑,凹坑的形状是根据柴油机燃烧室的特点、混合气的形成方式、喷油器和气门的位置等要求而设计的。 通常活塞顶部设计成随半径的加大而增厚,使顶面吸入热量中的大部分能够较容易的传到各活塞环,并由它们传导给气缸壁,由流过气缸外壁的冷却介质带走。一些强化程度高、热负荷高的柴油机活塞,在顶部有冷却油道或冷却油腔,使通过连杆杆身油道来的压力机油强制进入活塞内部循环,从而带走一部分进入活塞内的热量。这种活塞叫做油冷活塞。机车柴油机是热负荷较高的柴油机,其活塞一般都采用机油冷却。 7.柴油机的型号编制规则 P18 2,5 ? =120?1,6 3,4 ω 四冲程6缸柴油机曲柄图 发火次序: ①1—5—3—6—2—4—1√ ②1—2—3—6—5—4—1 ③1—5—4—6—2—3—1 ④1—2—4—6—5—3—1 发火间隔角:?ξ =?=120 可见曲柄数:2 3i q ==

柴油机燃烧特性曲线

内燃机特性曲线 1. 额试述汽油机外特性的意义和制取的条件。 2. 试额分析外特性曲线上功率曲线主要与哪些因素有关?分析其历程的变化。 3. 额指明汽车发动机的工作范围,它与固定式发动机、船用发动机的工况有何区别? 4. 额何谓标定功率?说明汽车发动机用15分钟功率作为标定功率的依据。 5. 额为什么轮式拖拉机的标定功率与履带拖拉机的标定功率也可不同? 6. 额功率储备与转矩储备各有何意义? 7. 额柴油机的全负荷速度特性的曲线历程与汽油机有何不同?为什么? 8. 额何谓调速特性?调速率?在什么条件下制取? 9. 额比较汽油机、柴油机负荷特性的异同点。 10. 额从使用角度如何从负荷特性分析汽车柴油机省油的理由? 11. 额为什么汽油机节流时经济性变坏?说明当其怠速时比油耗最大的原因。 12. 额发动机的功率、油耗为什么要修正?如何修正? 13. 额何谓内燃机的万有特性?如何制取与整理?试说明汽车发动机合适的特性曲线形状。 14. 额试比较柴油机负荷特性曲线上 a) 循环供油量g b b) 过量空气系数a φ c) 指示效率ηi t d) 机械效率ηm e) 排气烟度R B 15. 试比较汽油机负荷特性曲线上 A 、 B 两点,下列参数的大小并说明为什么? a) 充气效率c φ b) 过量空气系数a φ c) 指示效率ηi t d) 机械效率ηm e) 点火提前角θ 16. 试比较汽油机总功率特性曲线上A 、B 两点,下列参数的大小并说明为什么? a) 充气效率c φ b) 机械效率ηm c) 过量空气系数a φ d) 点火提前角θ e) 平均有效压力p me 17. 额恩恩额额额额额额 额额额 额额 在柴油机调速特性上,试比较A a) 循环供油量g b b) 过量空气系数a φ be be

影响柴油机燃烧的几个因素

影响柴油机燃烧过程的主要因素 1 概述 燃料在发动机气缸中的燃烧过程,就是燃料与空气中的氧发生剧烈氧化并产生大量热的过程。为了使燃料能够充分燃烧,必须要有足够的空气。理论上,1 kg柴油完全燃烧需要空气14.3kg,故对柴油机而言,空燃比为14.3的可燃混合气可称为理论混合气。若可燃混合气的空燃比小于14.3,则意味着其中柴油含量有余,空气含量不足,可称为浓混合气。同理,空燃比大于14.3的可燃混合气则可称为稀混合气。对于不同的燃料,其理论空燃比的数值是不同的。通用的可燃混合气成分指标是过量空气系数,无论使用何种燃料,凡过量空气系数α=1的可燃混合气即为理论混合气;α<1的为浓混合气;α>1的则为稀混合气。 柴油机的过量空气系数比汽油机大,这是因为柴油机混合气是在气缸内部形成的,混合气形成的过程较汽油机短,柴油机中的柴油微粒还来不及与空气均匀地混合就开始燃烧。所以柴油机的过量空气系数要大些,以便有充足的空气保证柴油燃烧较完全。一般柴油机α=1.3~1.7,汽油机α=0.85~1.15。 一般柴油机的燃烧过程,也包括混合气的形成过程,这是因为在燃烧室内,混合气的形成过程与燃烧过程是交织在一起的,无法将这两个过程截然分开。柴油机的燃烧过程为:当压缩冲程接近终了时(一般在上止点静10°~30°),柴油开始喷入气缸,从喷油开始到喷油结束,有一段延续时间(约为15°~35°),每个油粒都依次经过喷射雾化,受热蒸发,与空气混合,以致最后氧化燃烧,但是每个油粒所经历的这些过程,并不是同时进行的。因此,燃烧室内的情况是相当复杂的。2影响燃烧过程的主要因素 影响燃烧过程的因素很多,这里我们仅对喷油时间、柴油机温度和压缩比、柴油机负载、转速、喷油质量及供油规律进行分析,了解它们对燃烧过程的影响,以便正确使用、维修柴油机。2.1 喷油时间

柴油发动机的燃烧解读

项目四柴油机混合气形成与燃烧 学习目标: 掌握柴油机两种混合气的形成方式及特点,掌握直接喷射式和分隔式两大类柴油机燃烧室的结构及性能特点;了解柴油机供油系统的组成和喷射过程,掌握柴油机的燃烧过程及影响因素,掌握电控柴油喷身系统的组成、分类、电子控制功能,并在学习过程中随时注意对柴油机和汽油机进行比较。 任务一柴油机混合气形成 与汽油机工作原理相比,只有一个行程即作功行程中,柴油机由于用的柴油粘度比汽油大、不易蒸发,且自然温度又较汽油低,所以采用的是压缩自燃式点火。 任务二柴油机的燃烧过程

柴油机燃烧过程非常复杂,为了便于分析和揭示燃烧过程的规律,通常将这一连续的燃烧过程分为四个阶段,即着火延迟期(又称为滞燃期)、速燃期、缓燃期和补燃期,如图所示。 (一)着火延迟期 从柴油开始喷入气缸起到着火开始为止的这一段时期称为着火延迟期。 着火延迟期内,燃烧室内的混合气进行着物理和化学准备过程。 物理准备过程:燃油的粉碎分散、蒸发汽化和混合。 化学准备过程:混合气的先期化学反应直至开始自燃。 特点:压力没有偏离压缩线。

影响着火延迟期长短的主要因素是: 喷油时缸内的温度和压力越高,则着火延迟期越短。 柴油的自燃性较好(十六值较高),着火延迟期较短。 燃烧室的形状和壁温等。 喷油提前角:开始喷油到活塞到达上止点所对应的曲轴转角为喷油提前角。 (二)速燃期 速燃期:从开始着火(即压力偏离压缩线)到出现最高压力. 特点:压力急剧上升,压力达到最高(有可能达到13MPa以上)

一般用压力升高率λp〔kPa/(o)曲轴〕表示压力急剧上升的程度。 式中:△p——速燃期始点和终点的气体压力差(kPa); △θ——速燃期始点和终点相对于上止点的曲轴转角差(CAo)。 特点: (1)压力升高率很高,接近等容燃烧,工作粗暴。 (2)达到最高压力(6~9MPa)。 (3)继续喷油。 压力升高率过大,则柴油机工作粗暴,燃烧噪音大;同时运动零件承受较大的冲击负荷,影响其工作可靠性和使用寿 命; 压力升高率大,燃烧迅速,柴油机的经济性和动力性会较好。 压力升高率应限制在一定的范围之内,柴油机的压力升高率一般应不大于0.4~0.5 MPa/(o)曲轴。与汽油机相比,柴油机的压力升高率较大。 控制压力升高率的措施: 减小在着火延迟期内准备好的可燃混合气的量

谈汽油机可燃混合气的形成与燃烧过程

谈汽油机可燃混合气的形成与燃烧过程 摘要气缸内的可燃混合气通过火花塞点火燃烧,使气缸内气体的压力、温度急剧升高,为膨胀做功积聚能量。在燃烧过程中,燃料的燃烧是否正常,与混合气的浓度有很大关系,只有燃料正常的燃烧,才能在燃烧进程位于上止点附近最大限度的提高缸内气体的压力和温度,燃料燃烧的是否完全、最高压力点的位置、压力增长率是否合适,对发动机性能有很大的影响。 关键词混合气浓度可燃 一、可燃混合气的形成 现代大多数汽油机都采用进气道间歇式多点喷射系统,在进气行程开始和排气行程结束时,喷油器根据发动机电子控制单元(ECU)发出的指令,向进气门前方的进气道中(或直接向气缸中)喷射出雾状汽油,与空气混合后,由进气门进入气缸,直到压缩行程接近终了形成可燃混合气。 二、可燃混合气浓度的表示方法 可燃混合气是指汽油与空气按一定比例混合的混合物。可燃混合气的浓度是指可燃混合气中燃料的含量。可燃混合气的浓度通常用空燃比和过量空气系数表示。 1.空燃比 混合气中所含空气质量(kg)与燃料质量(kg)的比值,称为空燃比。即 R=空气质量燃料质量 理论混合气是指1 kg汽油完全燃烧需要空气14.7 kg,即空燃比为147。R<147的混合气称为浓混合气;R>147的混合气称为稀混合气。对于不同燃料,其理论空燃比数值不同。 2.过量空气系数 过量空气系数就是在燃烧过程中,实际供给的空气质量与理论上燃料完全燃烧时所需的空气质量之比,也就是实际空燃比与理论空燃比之比,即 α=燃烧过程中实际供给的空气质量理论上完全燃烧时所需的空气质量=实际空燃比理论空燃比 由以上可知,无论使用何种燃料,α=1的可燃混合气即为理论混合气(又

相关文档
最新文档