高二物理专题练习-电磁感应典型题型归类

高二物理专题练习-电磁感应典型题型归类
高二物理专题练习-电磁感应典型题型归类

电磁感应

一、磁通量

【例1】如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置.设穿过圆环a的磁通量为Φa,穿过圆环b的磁通量为Φb,已知两圆环的横截面积分别为S

a和S b,且S a<S b,则穿过两圆环的磁通量大小关系为

A.Φa=Φb

B.Φa>Φb

C.Φa<Φb

D.无法确定

二、电磁感应现象

1、1841~1842年,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律。

2、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。

3、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;

【例2】图为“研究电磁感应现象”的实验装置.

(1)将图中所缺的导线补接完整.

(2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后()

A.将原线圈迅速插入副线圈时,电流计指针向右偏转一下

B.将原线圈插入副线圈后,电流计指针一直偏在零点右侧

C.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指

针向右偏转一下

D.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指

针向左偏转一下

三、感应电流与感应电动势

四、感应电流产生的条件

(1)文字该念性

【例3】关于感应电流,下列说法中正确的是()

A.只要闭合电路里有磁通量,闭合电路里就有感应电流

B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生

C.线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流

D.只要电路的一部分切割磁感线运动电路中就一定有感应电流

(2)图象分析性

【例4】金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是:

【例5】如图所示,在条形磁铁的外面套着一个闭合弹簧线圈,若把线圈四周向外拉,使线圈包围的面积变大,这时:

A 、线圈中有感应电流

B 、线圈中无感应电流

C 、穿过线圈的磁通量增大

D 、穿过线圈的磁通量减小 二、感应电流的方向

对楞次定律的理解:从磁通量变化的角度来看,感应电流总

是 ;从导体和磁体相对运动的角度来看,感应电流总是要 ;从能

量转化与守恒的角度来看,产生感应电流的过程中 能通过电磁感应转化成 电能.

1、楞次定律的第一种表述 ——“增反减同”

【例6】在电磁感应现象中,下列说法中正确的是( ) A .感应电流的磁场总是跟原来的磁场方向相反 B .闭合线框放在变化的磁场中一定能产生感应电流

C .闭合线框放在匀强磁场中做切割磁感线运动时一定能产生感应电流

D .感应电流的磁场总是阻碍原磁通量的变化 2、楞次定律的第二种表述之一 ——“来拒去留”

【例7】如图所示线框ABCD 从有界的匀强磁场区域穿过,下列说法中正确的是( ) A .进入匀强磁场区域的过程中,ABCD 中有感应电流 B .在匀强磁场中加速运动时,ABCD 中有感应电流

C .在匀强磁场中匀速运动时,ABC

D 中没有感应电流 D .离开匀强磁场区域的过程中,ABCD 中没有感应电流 3、楞次定律的第二种表述之二 ——“反抗”

【例8】a 、b 两个金属圆环静止套在一根水平放置的绝缘光滑杆上,如图所示.一根条形磁铁自右向左向b 环中心靠近时,a 、b 两环将 A .两环都向左运动,且两环互相靠近 B .两环都向左运动,且两环互相远离

× × × ×

×

×

× × × ×

× ×

× ×

C .两环都向右运动,且两环靠拢

D .a 环向左运动,b 环向右运动 【例9】如图所示,通电螺线管置于闭合金属环a 的轴线上,当螺线管中电流I 减少时 ( ) A 、环有缩小的趋势以阻碍原磁通量的减小 B 、环有扩大的趋势以阻碍原磁通量的减小 C 、环有缩小的趋势以阻碍原磁通量的增大 D 、环有扩大的趋势以阻碍原磁通量的增大 4、右手定则 5、比较电势的高低

【例10】如图所示,螺线管中放有一根条形磁铁,当磁铁突然向左抽出时,A 点的电势比B 点的电势 ;当磁铁突然向右抽出时,A 点的电势比B 点的电势 。 三、法拉第电磁感应定律

1、两个公式的应用——(弄清两组概念) (1)感生电动势与动生电动势; (2)平均电动势与瞬时电动势

【例11】如下图所示,铜杆OA 长为L, 在垂直于匀强磁场的平面上绕O 点以角速度ω匀速转动,磁场的磁感应强度为B ,求杆OA 两端的电势差,并分析O 、A 两点电势的高低。

四、法拉第电磁感应定律的应用 1、基本概念

【例12】如图所示,将边长为l 、总电阻为R 的正方形闭合线圈,从磁感强度为B 的匀强磁场中以速度v 匀速拉出过程中(磁场方向垂直线圈平面) (1)所用拉力F = . (2)拉力F 做的功W = . (3)拉力F 的功率P F = . (4)线圈放出的热量Q = . (5)线圈发热的功率P 热=

(6)通过导线截面的电量q = .

上题中,用一个平行线框的力将此线框匀速地拉进磁场。设第一次速度为v ,第二次速度为2 v ,则

(7)两次拉力大小之比为F 1:F 2=_ ___,

A'

O t

??=?n

E BLv E

=

(8)拉力做的功之比为W1:W2=___ _,

(9)拉力功率之比为P1:P2=___ _,

(10)流过导线横截面的电量之比为q1:q2=___ _

2、等效电路及电磁感应中的动力学问题

【例13】如图所示,长为L的金属棒ab与竖直放置的光滑金属导轨接触良好

(导轨电阻不计),匀强磁场中的磁感应强度为B、方向垂直于导轨平面,金

属棒无初速度释放,释放后一小段时间内,金属棒下滑的速度逐

渐,加速度逐渐。

电磁感应与磁场、导体的受力以及运动相结合的综合题目,题中的电磁感应现象、力现象相互联系而又相互制约,其关系如下

这类题目综合程度高,涉及的知识面广,解题时可将问题分解为电学和力学两部分,其应对思路分别为

电学部分:一是将产生感应电动势的那部分电路等效为电源,如果电路中有几个这样的电源,要看清楚它们的串、并联关系;二是分清内外电路,利用闭合电路的欧姆定律(或部分电路欧姆定律)解决个电学量之间的关系。

力学部分:分析通电导体的受力情况,应用牛顿定律、动能定理、动量定理或动量守恒定

律、解械能守恒定律等解决力学量之间的关系。

①解本类题,一般可依据“力的观点”解题,也可依据“能的观点”解题。大家应该特别熟练。

②本题需要注意的问题有:一是要理解“最终速度”的含义;二是要注意,安培力对于每一

根金属杆来讲是外力,而对于a、b组成的系统而言则成了内力。

【例14】如图所示,电阻为R的矩形线圈abcd,边长ab=L,bc=h,质量为m。该线圈自某一高度自由落下,通过一水平方向的匀强磁场,磁场区域的宽度为h,磁感应强度为B。若线圈恰好

以恒定速度通过磁场,则线圈全部通过磁场所用的时间为多少?

【例15】竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图18所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置)。问:

(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?

(2)若此时PQ正好到达最大速度,此速度多大?

(3)以上过程产生了多少热量?

【例16】如图所示,固定于水平绝缘平面上的粗糙平行金属导轨,垂直于导轨平面有一匀强磁场。质量为m的金属棒cd垂直放在导轨上,除电阻R和金属棒cd的电阻r外,其余电阻不计;现用水平恒力F作用于金属棒cd上,由静止开始运动的过程中,下列说法正确的是:

A、水平恒力F对cd棒做的功等于电路中产生的电能

B、只有在cd棒做匀速运动时,F对cd棒做的功才等于电路中产生的电能

C、无论cd棒做何种运动,它克服安培力所做的功一定等于电路中产生

的电能

D、R两端的电压始终等于cd棒中的感应电动势的值

【例17】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.

中画出ab杆下滑过程中某时刻的受力示意图.

(2)在加速下滑过程中,当ab杆的速度大小为v时,

求此时ab杆中的电流及其加速度的大小.

(3)求在下滑过程中,ab杆可以达到的速度最大值.

【例18】如图所示,在水平台面上铺设两条很长但电阻可忽略的平行导轨MN和PQ,导轨间宽度L=0.50 m.水平部分是粗糙的,置于匀强磁场中,磁感应强度B=0.60 T,方向竖直向上.倾斜部分是光滑的,该处没有磁场.直导线a和b可在导轨上滑动,质量均为m=0.20 kg,电阻均为R=0.15Ω.b放在水平导轨上,a置于斜导轨上高h=0.050 m处,无初速释放.设在运动过程中a、b间距离

足够远,且始终与导轨MN、PQ接触并垂直,回路感应电流的磁场可忽略不计.求:

(2)如果导线与水平导轨间的动摩擦因数μ=0.10,当导线b

的速度达到最大值时,导线a的加速度多大?

(3)如果导线与水平导轨间光滑,回路中产生多少焦耳热?

3、自感

要求知道什么是自感,掌握自感现象中线圈中电流的变化,知道线圈的自感系数,知道自感电动势与哪些因素有关系。

【例19】如图所示的电路(a)、(b)中,电阻R和自感线圈L的电阻值都很小.接通S,使

A.在电路(a)中,断开S,A将渐渐变暗

B.在电路(a)中,断开S,A将先变得更亮,然

后渐渐变暗

C.在电路(b)中,断开S,A将渐渐变暗

D.在电路(b)中,断开S,A将先变得更亮,然

后渐渐变暗

光灯发光的情况,下列叙述中正确的是

A.S1接通,S2、S3断开,日光灯就能正常发光

B.S1、S2接通,S3断开,日光灯就能正常发光

C.S3断开,接通S1、S2后,再断开S2,日光灯就能正常发光

D.当日光灯正常发光后,再接通S3,日光灯仍能正常发光

4、涡流

要求知道什么是涡流,知道电磁阻尼和电磁驱动,知道涡流的危害和应用

【例21】电磁炉(或电磁灶)是采用电磁感应原理产生涡流加热的,它利用变化的电流通过线圈产生变化的磁场,当变化的磁场通过含铁质锅的底部时,即会产生无数之小涡流,使锅体本身自行高速升温,然后再加热锅内食物。电磁炉工作时产生的电磁波,完全被线圈底部的屏蔽层和顶板上的含铁质锅所吸收,不会泄漏,对人体健康无危害。关于电磁炉,以下说法中正确的是:

A、电磁炉是利用变化的磁场在食物中产生涡流对食物加热的

B、电磁炉是利用变化的磁场产生涡流,使含铁质锅底迅速升温,进而对锅内食物加热的

C、电磁炉是利用变化的磁场使食物中的极性水分子振动和旋转来对食物加热的

D、电磁炉跟电炉一样是让电流通过电阻丝产生热量来对食物加热的

【例22】弹簧上端固定,下端挂一只条形磁铁,使磁铁上下振动,磁铁的振动幅度不变。若

在振动过程中把线圈靠近磁铁,如图4所示,观察磁铁的振幅将会发现:

A、S闭合时振幅逐渐减小,S断开时振幅不变

B、S闭合时振幅逐渐增大,S断开时振幅不变

C、S闭合或断开,振幅变化相同

D、S闭合或断开,振幅都不发生变化

13.增大,减小

14.22

2hB L

mgR

15.(1)0.4米 (2)0.4米/秒 0.0392J

17、 (1)见右图 (2)mR L B g R

BL v v

22sin -

θ (3)2

2sin L B mgR θ

18、 (1)1 A

(2)2 m/s2 (3)0.05 J

19、分析:在(b )图中,由于线圈的电阻很小,稳定时流过线圈的电

流比流过灯的电流大,S 断开时,灯更亮一下再熄灭;在(a )图中,由于灯与线圈串联,稳定时流过灯和线圈的电流相等,S 断开时,流过线圈的电流逐渐减小,灯渐渐变暗。所以,AD 正确。

20.C

21、分析:由以上电磁炉的工作原理可知,(A)(D)错误(B)正确,关于(C)是微波炉的加热原理。

22、分析:S 断开时,磁铁振动穿过线圈的磁通量发生变化,线圈中无感应电流,振幅不变;S 闭合时有感应电流,有电能产生;磁铁的机械能越来越少,振幅逐渐减少,A 正确。

电磁感应现象中的常见题型汇总(精华版)

电磁感应现象的常见题型分析汇总 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图1-2所示的下列图线中,正确反 映感应电流强度随时间变化规律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C 评注 (1)线框运动过程分析和电磁感应的过程是密切关联的,应借助于运动过程的分析来深化对电磁感应过程的分析;(2)运用E=Blv 求得的是闭合回路一部分产生的感应电动势,而整个电路的总感应电动势则是回路各部分所产生的感应电动势的代数和。 例2在磁棒自远处匀速沿一圆形线圈的轴线运动,并穿过线圈向远处而去,如图2—1所示,则下列图2—2中较正确反映线圈中电流i 与时间t 关系的是(线圈中电流以图示箭头为正方向)( ) 分析与解 本题要求通过图像对感应电流进行描述,具体思路为:先运用楞次定律判断磁铁穿过线圈时,线圈中的感应电流的情况,再提取图像中的关键信息进行判断。 条形磁铁从左侧进入线圈时,原磁场的方向向右且增大,根据楞次定律,感应电流的磁场与之相反,再由安培定则可判断,感应电流的方向与规定的正方向一致。当条形磁铁继续向右运动,被 ← → 图1—1 图1—2 图2—1 图2—2

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

高中物理必修第3册第十三章 电磁感应与电磁波试卷专题练习(解析版)

高中物理必修第3册第十三章电磁感应与电磁波试卷专题练习(解析版) 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.如图所示,匀强磁场中有一圆形闭合线圈,线圈平面与磁感线平行,能使线圈中产生感应电流的应是下述运动中的哪一种() A.线圈平面沿着与磁感线垂直的方向运动 B.线圈平面沿着与磁感线平行的方向运动 C.线圈绕着与磁场平行的直径ab旋转 D.线圈绕着与磁场垂直的直径cd旋转 【答案】D 【解析】 【分析】 【详解】 A.线圈平面沿着与磁感线垂直的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故A错误. B.线圈平面沿着与磁感线平行的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故B错误. C.线圈绕着与磁场平行的直径ab旋转时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故C错误. D.线圈绕着与磁场垂直的直径cd旋转时,磁通量从无到有发生变化,线圈中有感应电流产生;故D正确. 故选D. 【点睛】 感应电流产生的条件有两个:一是线圈要闭合;二是磁通量发生变化. 2.如下左图所示,足够长的直线ab靠近通电螺线管,与螺线管平行.用磁传感器测量ab 上各点的磁感应强度B,在计算机屏幕上显示的大致图象是( ) A.B.

C.D. 【答案】C 【解析】 试题分析:通电螺线管的磁场分布相当于条形磁铁,根据磁感线的疏密程度来确定磁感应强度的大小. 解:通电螺线管的磁场分布相当于条形磁铁,因此根据磁感线的分布,再由磁感线的疏密程度来确定磁感应强度的大小可知, 因为ab线段的长度大于通电螺线管的长度,由条形磁铁磁感线的分布,可知应该选C,如果ab线段的长度小于通电螺线管的长度,则应该选B. 由于足够长的直线ab,故C选项正确,ABD错误; 故选C 点评:考查通电螺线管周围磁场的分布,及磁感线的疏密程度来确定磁感应强度的大小,本题较简单但会出错. 3.如图所示为水平放置的两根等高固定长直导线的截面图,O点是两导线间距离的中点,a、b是过O点的竖直线上与O点距离相等的两点,两导线中通有大小相等、方向相反的恒定电流.下列说法正确的是( ) A.两导线之间存在相互吸引的安培力 B.O点的磁感应强度为零 C.O点的磁感应强度方向竖直向下 D.a、b两点的磁感应强度大小相等、方向相反 【答案】C 【解析】 【分析】

电磁感应现象中的常见题型汇总(很全很细)---精华版

电磁感应现象的常见题型分析汇总(很全) 命题演变 “轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.图像 2.导轨 (1)轨道的形状:常见轨道的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)轨道的闭合性:轨道本身可以不闭合,也可闭合; (3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)轨道的放置:水平、竖直、倾斜放置等等. 理图像是一种形象直观的“语言”,它能很好地考查考生的推理能力和分析、解决问题的能力,下面我们一起来看一看图像在电磁感应中常见的几种应用。 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定 速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始 终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图 1-2所示的下列图线中,正确反映感应电流强度随时间变化规 律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C ← → 图1—1 图1—2

高二物理之电磁感应综合题练习(附答案)

电磁感应三十道新题(附答案) 一.解答题(共30小题) 1.如图所示,MN和PQ是平行、光滑、间距L=0.1m、足够长且不计电阻的两根竖直固定金属杆,其最上端通过电阻R相连接,R=0.5Ω.R两端通过导线与平行板电容器连接,电容器上下两板距离d=lm.在R下方一定距离有方向相反、无缝对接的两个沿水平方向的匀强磁场区域I和Ⅱ,磁感应强度均为B=2T,其中区域I的高度差h1=3m,区域Ⅱ的高度差h2=lm.现将一阻值r=0.5Ω、长l=0.lm的金属棒a紧贴MN和PQ,从距离区域I上边缘h=5m处由静止释放;a进入区域I后即刻做匀速直线运动,在a进入区域I的同时,从紧贴电容器下板中心处由静止释放 一带正电微粒A.微粒的比荷=20C/kg,重力加速度g=10m/s2.求 (1)金属棒a的质量M; (2)在a穿越磁场的整个过程中,微粒发生的位移大小x; (不考虑电容器充、放电对电路的影响及充、放电时间) 2.如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求: (1)金属棒的最大速度; (2)金属棒的速度为3m/s时的加速度; (3)求从开始计时起2s内电阻R上产生的电热.

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

电磁感应典型题型归类

电磁感应期中复习材料 知识结构: 常见题型 一、磁通量 【例1】如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置.设穿过圆环a 的磁通量为Φa ,穿过圆环b 的磁通量为Φb ,已知两圆环的横截面积分别为S a 和Sb,且S a Φb C.Φa<Φb ? D.无法确定 二、电磁感应现象 【例2】图为“研究电磁感应现象”的实验装置. (1)将图中所缺的导线补接完整. (2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后( ) A.将原线圈迅速插入副线圈时,电流计指针向右偏转一下 B.将原线圈插入副线圈后,电流计指针一直偏在零点右侧 C.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向右偏转一下 D.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向左偏转一下 三、感应电流产生的条件 (1)文字概念性 【例3】关于感应电流,下列说法中正确的是( ) A.只要闭合电路里有磁通量,闭合电路里就有感应电流 B .穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生 C .线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流 电磁感应产生的条件 感应电流的方向判定 感应电动势的大小 回路中的磁通量变化 楞次定律 法拉第电磁感应定律E=ΔΦ/Δt 电磁感应的实际应用:自感现象(自感系数L ),涡流 特殊情况:导体切 割磁感线E=BLV 特殊情况:右手定则

D.只要电路的一部分切割磁感线运动电路中就一定有感应电流 (2)图象分析性 【例4】金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是: 【例5】如图所示,在条形磁铁的外面套着一个闭合弹簧线圈,若把线圈四周 向外拉,使线圈包围的面积变大,这时: A、线圈中有感应电流 B、线圈中无感应电流 C、穿过线圈的磁通量增大 D、穿过线圈的磁通量减小 二、感应电流的方向 1、楞次定律 【例6】在电磁感应现象中,下列说法中正确的是( ) A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动时一定能产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 【例7】如图,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈 中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到 的支持力FN及在水平方向运动趋势的正确判断是( ) A.FN先小于mg后大于mg,运动趋势向左 B.F N先大于mg后小于mg,运动趋势向左 C.F N先大于mg后大于mg,运动趋势向右 D.F N先大于mg后小于mg,运动趋势向右 【例8】如图1所示,当变阻器R的滑动触头向右滑动时,流过电阻R′的电流方向是_______. 图1 图2图3 【例9】如图2所示,光滑固定导轨MN水平放置,两根导体棒PQ平行放在导轨上,形成闭合

高二物理电磁感应测试题及答案

高二物理同步测试(5)—电磁感应 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试用时60分钟. 第Ⅰ卷(选择题,共40分) 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的,全部选对得4分,对而不全得2分。) 1.在电磁感应现象中,下列说法正确的是 () A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动,一定产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 2. 为了利用海洋资源,海洋工作者有时根据水流切割地磁场所产生的感应电动势来测量 海水的流速.假设海洋某处的地磁场竖直分量为B=×10-4T,水流是南北流向,如图将两个电极竖直插入此处海水中,且保持两电极的连线垂直水流方向.若 两极相距L=10m,与两电极相连的灵敏电压表的读数为U=2mV,则海水 的流速大小为() A.40 m/s B.4 m/s C. m/s D.4×10-3m/s 3.日光灯电路主要由镇流器、起动器和灯管组成,在日光灯正常工作的情况下,下列说法正确的是() A.灯管点燃后,起动器中两个触片是分离的 B.灯管点燃后,镇流器起降压和限流作用 C.镇流器在日光灯开始点燃时,为灯管提供瞬间高压 D.镇流器的作用是将交变电流变成直流电使用 4.如图所示,磁带录音机既可用作录音,也可用作放音,其主要部件为

可匀速行进的磁带a 和绕有线圈的磁头b ,不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象,下面对于它们在录音、放音过程中主要工作原理的说法,正确的是 ( ) A .放音的主要原理是电磁感应,录音的主要原理是电流的磁效应 B .录音的主要原理是电磁感应,放音的主要原理是电流的磁效应 C .放音和录音的主要原理都是磁场对电流的作用 D .放音和录音的主要原理都是电磁感应 5.两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导 体环,当A 以如图所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流。则( ) A .A 可能带正电且转速减小 B .A 可能带正电且转速增大 C .A 可能带负电且转速减小 D .A 可能带负电且转速增大 6.为了测出自感线圈的直流电阻,可采用如图所示的电路。在测量完毕后将电路解体时应该( ) A .首先断开开关S 1 B .首先断开开关S 2 C .首先拆除电源 D .首先拆除安培表 7.如图所示,圆形线圈垂直放在匀强磁场里,第1秒内磁场方向指向纸里,如图(b ).若磁感应强度大小随时间变化的关系如图(a ),那么,下面关于线圈中感应电流的说法正确的是 ( ) A .在第1秒内感应电流增大,电流方向为逆时针 B .在第2秒内感应电流大小不变,电流方向为顺时针 C .在第3秒内感应电流减小,电流方向为顺时针 D .在第4秒内感应电流大小不变,电流方向为顺时针 8.如图所示,xoy 坐标系第一象限有垂直纸面向外的匀强磁 场,第 x y o a b

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习—电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 B.通过导线某一横截面的电荷量之比是1:1 C.拉力做功之比是1:4 D.线框中产生的电热之比为1:2 4.图12-5,条形磁铁用细线悬挂在O点。O点正下方固定一 个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的 是() R v a b θ d 图12-1 M N v B 图12-3

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

(完整版)高二物理电磁感应知识点

一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量Φ=B?S?sinα(α是B与S的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB S sinα ②B、α不变,S改变,这时ΔΦ=ΔS B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化. 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 C、从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒. 3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。 用以判断感应电流的方向,其步骤如下: 1)确定穿过闭合电路的原磁场方向; 2)确定穿过闭合电路的磁通量是如何变化的(增大还是减小); 3)根据楞次定律,确定闭合回路中感应电流的磁场方向; 4)应用安培定则,确定感应电流的方向. 三、法拉第电磁感应定律 1、定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根 导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd B v 0 L a d b

高二物理电磁感应教案

高二物理电磁感应教案 (一)教学目的 1.知道电磁感应现象及其产生的条件。 2.知道感应电流的方向与哪些因素有关。 3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。 (二)教具 蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。 (三)教学过程 1.由实验引入新课 重做奥斯特实验,请同学们观察后回答: 此实验称为什么实验?它揭示了一个什么现象? (奥斯特实验。说明电流周围能产生磁场) 进一步启发引入新课: 奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。 2.进行新课 (1)通过实验研究电磁感应现象 板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉

提问:根据实验目的,本实验应选择哪些实验器材?为什么? 师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。 教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。 进一步提问:如何做实验?其步骤又怎样呢? 我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。 用小黑板或幻灯出示观察演示实验的记录表格。 教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。 实验完毕,提出下列问题让学生思考: 上述实验说明磁能生电吗?(能) 在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时) 为什么导体在磁场中左右、斜着运动时能产生感应电流呢? (师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。) 通过此实验可以得出什么结论? 学生归纳、概括后,教师板书:

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

电磁感应综合练习题1

高二物理(理班)电磁感应的八种典型案例 【案例1】感应电动势的计算 (1)导体棒平动切割磁感线产生的感应电动势 练习1.如图所示,导轨与电流表相连,导轨的宽度为d,处于向里的大小为B的匀强磁场中,一根导线沿着导轨以速度v向右运动,求导线上产生的感应电动势. (2)导体棒转动产生的感应电动势 练习2.若导体棒半径为r,处于匀强磁场B中,以角速度ω匀速转动,则导线产生的感应电动势的大小是多少? (3)磁场变化产生的感生电动势 练习3.正方形线框边长为L、质量为m、电阻为R,线框的上半部 处于匀强磁场中,磁场的磁感应强度按B=kt的规律均匀增强,细 线能承受的最大拉力为T=2mg,从t=0起经多少时间绳被拉断? 【案例2】感应电流大小计算问题 练习4.由两个同种材料,同样粗细的导线制成圆环a、b已知其半径之比为2:1,在B中充满了匀强磁场,当匀强磁场随着时间均匀变化时,圆环a、b的感应电流之比为多少?

【案例3】阻碍“磁通量的变化” 练习5.判定下列各种情况下灯泡中是否有感应电流,若有则写明在ab 处感应电流的方向 (1)导体棒匀速向右运动 ( (2)导体棒匀加速向右运动 ( (3 )导体棒匀减速向右运动 ( (4)导体棒匀减速向左运动 ( 练习6. (1)当线圈a 中有电流,电流方向为逆时针且大小均匀增加时,线圈b 中的感应电流方向应为( )。 (2)若线圈b 中有电流,电流方向为逆时针且大小均匀增加时,线 圈a 中的感应电流方向应为( )。 【案例4】阻碍导体的相对运动——“跟着走” 练习7.线圈A 闭合,线圈B 开口,当条形磁铁插入线圈的过程中,线圈A 、 B 如何运动? 【案例5】电磁感应的能量问题 练习8.如图所示,导体棒向右匀速运动切割磁感线,已知匀 强磁场为B ,轨道宽度为L ,切割速度为v ,外电阻为R ,导体棒的电阻为R ’,求:安培力及t 时间内所做的功。

物理高考选考中电磁感应计算题问题归类例析(精品,有详解)

物理选考中电磁感应计算题问题归类例析 余姚八中 陈新生 导体在磁场中运动切割磁感线产生电磁感应现象,是历年物理选考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,要探讨的问题不外乎以下几种: 1、问题的总体动态分析:①运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。②运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等。③等效电路分析:谁是等效电源,路端电压如何求解,外电路的串并联情况等。 2、能量转化的计算:分析运动过程中各力做功和能量转化的问题:如安培力所做的功、摩擦力做功等,结合研究对象写好动能定理。明确在电磁感应现象中,通过克服安培力做功,把其他形式的能转化为电能,再通过电流做功,把电能转化为内能和其他形式的能。 3、各运动量速度v 、位移x 、时间t 的计算:两个思路,①位移x 的计算一般需要结合电量q : ②速度v 和时间t 的计算一般需要结合动量定理: 12mv -mv q -t =+BL I F 变力恒力, 还可以计算变力的冲量。以电荷量作为桥梁,可以直接把上面的物理量位移x 、速度v 、时间t 联系起来。 按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感 强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有 一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导 线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的 方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度 为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因 数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电 阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取 10m /s2)求: 总总总R BL R B R x n s n n q =?=?=φ

相关文档
最新文档