一个常见弹簧系统动力解答

一个常见弹簧系统动力解答
一个常见弹簧系统动力解答

弹簧质量阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时 目录 目录 (1) 1 研究背景及意义 (3) 2 弹簧-质量-阻尼模型 (3) 2.1 系统的建立 (3) 2.1.1 系统传递函数的计算 (4) 2.2 系统的能控能观性分析 (6) 2.2.1 系统能控性分析 (6) 2.2.2 系统能观性分析 (7) 2.3 系统的稳定性分析 (7) 2.3.1 反馈控制理论中的稳定性分析方法 (7) 2.3.2 利用Matlab分析系统稳定性 (8) 2.3.3 Simulink仿真结果 (9) 2.4 系统的极点配置 (10) 2.4.1 状态反馈法 (10) 2.4.2 输出反馈法 (11) 2.4.2 系统极点配置 (11)

2.5系统的状态观测器 (13) 2.6 利用离散的方法研究系统的特性 (15) 2.6.1 离散化定义和方法 (15) 2.6.2 零阶保持器 (16) 2.6.3 一阶保持器 (17) 2.6.4 双线性变换法 (18) 3.总结 (18) 4.参考文献 (19)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中,,,,,。 2.1 系统的建立

弹簧基础知识

弹簧基础知识 1、概述 1.1弹簧功用 弹簧是利用自身的变形产生力或储存能量的机械零件。其主要功能有:①控制机械的运动:如内燃机中的阀门弹簧、离合器中的控制弹簧;②吸收振动和冲击能量,如车辆中的缓冲弹簧、联轴器的吸振弹簧;③储存及输出能量作为动力,如钟表弹簧;④用做测力元件,如测力器和弹簧秤中的弹簧等。 1.2弹簧种类 按照所承受的载荷不同,弹簧可以分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧等四种;按照弹簧的形状不同,弹簧有可以分为螺旋弹簧、环形弹簧、碟形弹簧、板簧和盘簧等。其中螺旋弹簧是用弹簧丝卷绕制成的,结构简单且可以根据受载情况制成各种型式,应用最广泛。 1.3弹簧各部分名称及尺寸关系 ⑴、弹簧丝直径d:制造弹簧的钢丝直径。 ⑵、弹簧外径D:彈簧的最大外直径 ⑶、弹簧内径D1:弹簧的最小外径 ⑷、弹簧中径D2:弹簧的平均直径 ⑸、t:除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离成为节距。 ⑹、支撑圈数n2:为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。 并紧的圈数仅起支撑作用,一般由1.5d、2d、2.5d,常用的是2d ⑺、有效支撑圈数n:弹簧能保持相同节距的圈数 ⑻、总圈数n1:有效圈数与支撑圈数的和. ⑼、自由长度L:弹簧在未受外力作用下的长度. ⑽、螺旋方向:有左右之分,常用右旋,图纸未注明时用右旋. ⑾、弹簧刚度E:弹簧的载荷变量与变形变量之比. ⑿、旋绕比C:也称弹簧指数,C=D2/d,其它条件相同时,C值越小,弹簧内、外侧的应力差越悬殊,材料利用率就越低。所以在设计弹簧时一般规定C>4。 ⒀、螺旋升角α:α=arctgt/πD2,圆拄螺旋压缩弹簧一般应在5°~9°范围内选取。 2、弹簧使用材料及用途

弹簧-质量-阻尼实验指导书

质量-弹簧-阻尼系统实验教学指导书 北京理工大学机械与车辆学院 2016.3

实验一:单自由度系统数学建模及仿真 1 实验目的 (1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。 2 实验原理 单自由度质量-弹簧-阻尼系统,如上图所示。由一个质量为m 的滑块、一个 刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。系统输入:作用在滑块上的力f (t )。系统输出:滑块的位移x (t )。 建立力学平衡方程: m x c x kx f ??? ++= 变化为二阶系统标准形式: 22f x x x m ζωω?? ? ++= 其中:ω是固有频率,ζ是阻尼比。 ω= 2c m ζω= = 2.1 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应: ()()sin()))] t t x t t d e ζωττζωττ +∞ --=? -= -+-?

2.2 欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应: 022 3 00 22222 00 222222 2 ()cos(arctan()) 2f [(0)]cos() [()(2)] sin( t t x t t x e k e ζω ζω ζωω ω ωω ζωω ωωζωω - ? - =- - ++ -+ +) 输出振幅和输入振幅的比值:A= 3 动力学仿真 根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。 仿真代码见附件 4 实验 4.1 固有频率和阻尼实验 (1)将实验台设置为单自由度质量-弹簧-阻尼系统。 (2)关闭电控箱开关。点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=0.0042,然后OK。 (3)点击Command菜单,选择Trajectory,选取step,进入set-up,选取Open Loop Step 设置(0)counts, dwell time=3000ms,(1)rep, 然后OK。此步是为了使控制器得到一段时间的数据,并不会驱动电机运动。 (4)点击Data菜单,选择Data Acquisition,设置选取Encoder#1 ,然后OK离开;从Utility菜单中选择Zero Position使编码器归零。 (5)从Command菜单中选择Execute,用手将质量块1移动到2.5cm左右的位置(注意不要使质量块碰触移动限位开关),点击Run, 大约1秒后,放开手使其自由震荡,在数据上传后点击OK。 (6)点击Plotting菜单,选择Setup Plot,选取Encoder #1 Position;然后点击Plotting 菜单,选择Plot Data,则将显示质量块1的自由振动响应曲线。 (7)在得到的自由振动响应曲线图上,选择n个连续的振幅明显的振动周期,计算出这段振动的时间t,由n/t即可得到系统的频率,将Hz转化为rad/sec即为系统的振动频率ω。

电控悬架系统的控制原理和控制方法

1、弹性元件 空气弹簧 在空气悬挂系统中,空气弹簧代替了普通悬挂系统的螺旋弹簧。他有一个被卡紧在弹簧底部活塞上的合成橡胶和塑料膜片,一个端盖固定在膜片的上部,并且在端盖上有空气弹簧阀。通过空气弹簧的充气或者放气,保证了恒定的车辆纵倾高度。前空气弹簧安装在控制臂和横梁之间。空气弹簧的下端用卡箍卡紧在控制臂上,而在上端安装在横梁的弹簧座上。前减震器和弹簧是分开安装的。 空气弹簧电磁阀 在每个空气弹簧的上部都安装了一个空气弹簧电磁阀,并且正常情况下电磁阀是关闭的。当电磁阀线圈通电时,活塞移动就会使得到空气弹簧的气路打开。上面这种情况下,空气就会进入空气弹簧,或者从空气弹簧排出。在阀的末端安装了两个O形密封圈,用来密封空气弹簧罩。而阀就安装在类似于散热器承压盖的两成转动作用的空气弹簧罩内。 空气压缩机 空气压缩机的单活塞通过曲轴和连杆带动在缸体内上下运动。电枢连接在曲轴上,因此,电枢的转动就会使得活塞上下运动,当压缩机的输入端接上12V电源时,电枢就开始转动了。在缸体的顶部有进气阀和排气阀。压缩机上安装的硅胶干燥器去除了进入系统空气中的水分。 2、传感器 高度传感器 在空气悬架系统中,位于下控制器臂和横梁之间有2个前高度传感器,而在悬架和车架之间有一个后高度传感器。每个高度传感器都有一个安装传感器上端的磁性滑块。当车辆行程高度发生变化时,磁性滑块就会在传感器下壳内上下运动。传感器下壳上有2个通过电线束连接在控制模块上的电子继电器。 车辆动态悬挂(VDS)系统 车辆动态悬挂(VDS)系统由以下部件组成: 1,双位维护开关; 2,2个前高度传感器; 3,1个后高度传感器; 4,有内部电磁排气阀和空气干燥器的压缩机; 5,控制模块; 6,空气管路; 7,前后混合空气弹簧和减震器; 8,4个空气弹簧电磁阀; 9,压缩机继电器。

弹簧浮力问题(难题)讲课讲稿

学习资料 各种学习资料,仅供学习与交流 弹簧和浮力结合 1.如图7所示,用质量不计、长度为10cm 的弹簧将正方体物块下表面与底面积为150cm 2的圆柱形容器底部相连, 正方体物块竖直立于圆柱形容器内,且不与容器壁接触,弹簧的长度缩短为2cm ;现向容器内部倒入水,当物块有1/5的体积露出水面时,弹簧的长度又恢复到原长;现继续向容器内倒入0.2kg 的水后(水不溢出),容器底部所受水的压强为 Pa 。已知:弹簧的长度每改变1cm 时,所受力的变化量为1N ,取g =10N/kg 。 2.将一轻质弹簧的两端分别固定在正方体物体A 、B 表面的中央,把正方体物体B 放在水平桌面上,当物体A 、B 静止时,弹簧的长度比其原长缩短了5cm ,如图7甲所示。现将物体A 、B 上下倒置,并将它们放入水平桌面上的平底圆柱形容器内,使物体A 与容器底接触(不密合),再向容器中缓慢倒入一定量的某种液体,待物体A 、B 静止 时,物体B 上表面与液面平行,且有14 体积露出液面,此时容器底对物体A 的支持力为1 N 。已知物体A 、B 的边长分别为5cm 、10cm ,物体A 、B 的密度之比为16:1,圆柱形容器的底面积为150cm 2,弹簧原长为10cm ,弹簧所受力F 的大小与弹簧的形变量Δx (即弹簧的长度与原长的差值的绝对值)的关系如图7乙所示。上述过程中弹簧始终在竖直方向伸缩,且撤去其所受力后,弹簧可以恢复原长。不计弹簧的体积及其所受的浮力,g 取10N/kg ,则容器内倒入液体的质量是 kg 。 3.如图6所示,甲、乙两个质量相等的实心物块,其密度为ρ甲=0.8×103kg/m 3,ρ乙=0.4×103 kg/m 3,甲、乙均由弹簧竖直向下拉住浸没在水中静止,则( ) 图6 A .甲、乙所受浮力之比为2∶1 B .甲、乙所受浮力之比为1∶2 C .甲、乙所受弹簧拉力之比为1∶6 D .甲、乙所受弹簧拉力之比为2∶3 4如图11甲所示,底面积为S 1=690cm 2的圆柱形容器甲内放置一个底面积S 2=345cm 2的圆柱形铝筒,铝筒内装一铁块,图乙 F/N 0 Δx 2 4 1 3 图甲 A B 图7

【WO2019215046A1】空气弹簧控制系统、空气弹簧系统、包括该系统的车辆及其方法【专利】

(12)NACH DEM VERTRAGüBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS(PCT)VER?FFENTLICHTE INTERNATIONALE ANMELDUNG (19)Weltorganisation für geistiges Eigentum Internationales Büro (43)Internationales Ver?ffentlichungsdatum(10)Internationale Ver?ffentlichungsnummer WO2019/215046Al 14.November2019(14.11.2019) W IP O P C T (51)Internationale Patentklassifikation:(72)Erfinder:ZAK,Przemyslaw;Lukasinskiego13/14, B60G17/052(2006.01)B60G17/015(2006.01)50-436Wroclaw(PL).FILTER,Stefan;Doerpefeld40, 30419Hannover(DE).JOVERS,Ingo;Sch?fereiweg13, (21)Internationales Aktenzeichen:PCT/EP2019/061423 30989Gehrden(DE).LUCAS,Johann;Güldenbusch?(22)Internationales Anmeldedatum:weg23,31319Sehnde(DE).MORADI DEHDEZI,Nos? 03.Mai2019(03.05.2019)rat;Alte Bemeroder Stra?e111,30539Hannover(DE). THIMM,Andreas;Haydnstr.21,31157Sarstedt(DE). (25)Einreichungssprache:Deutsch (74)Anwalt:RABE,Dirk-Heinrich;WABCO GmbH,IP/In-(26)Ver?ffentlichungssprache:Deutsch tellectual Property,Am Lindener Hafen 21,30453Hanno?(30)Angaben zur Priorit?t:ver(DE). 102018111003.0(81)Bestimmungsstaaten(soweit nicht anders angegeben,für 08.Mai2018(08.05.2018)DE jede verfügbare nationale Schutzrechtsart).AE,AG,AL, (71)Anmelder:WABCO EUROPE BVBA[BE/BE];Chaus?AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY, see de la Hulpe166,1170Brüssel(BE).BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM, DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT, HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN, (54)Title:PNEUMATIC SPRING CONTROL SYSTEM,PNEUMATIC SPRING SYSTEM,VEHICLE COMPRISING SAME,AND METHOD FOR SAME (54)Bezeichnung:LUFTFEDERSTEUERUNGS SYSTEM UND LUFTFEDERSYSTEM SOWIE FAHRZEUG DAMIT UND VERFAHREN DAFüR 10 Fig.1 (57)Abstract:The invention relates to a pneumatic spring control System(ECAS,Electronic Controlled Air Suspension)(10)for a Utility vehicle,such as a truck or the like,or for a passenger car,comprising a main control unit(12)for operating the pneumatic spring control System(10).The pneumatic spring control System(10)is characterized by at least two auxiliary control units(14),eachofwhich is connected to the main control unit(12)via a separate or common data Connection(16).Each of the auxiliary control units(14)has at least one output(18)for actuating at least one actuator(20)which can be connected to the output(18),in particular an adjustment drive (28)for a valve(30),preferably an electrovalve component,in particular a pneumatic or hydraulic valve component,such as a solenoid valve.Furthermore,at least one function can be stored in each auxiliary control unit(14)for generating control Signals at the output [Fortsetzung auf der n?chsten Seite]

弹簧-质量-阻尼模型

弹簧-质量-阻尼模型

弹簧-质量-阻尼系统 1 研究背景及意义 弹簧-质量-阻尼系统是一种比较普遍的机械振动系统,研究这种系统对于我们的生活与科技也是具有意义的,生活中也随处可见这种系统,例如汽车缓冲器就是一种可以耗减运动能量的装置,是保证驾驶员行车安全的必备装置,再者在建筑抗震加固措施中引入阻尼器,改变结构的自振特性,增加结构阻尼,吸收地震能量,降低地震作用对建筑物的影响。因此研究弹簧-质量-阻尼结构是很具有现实意义。 2 弹簧-质量-阻尼模型的建立 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型, 不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

图2.1 弹簧-质量-阻尼系统简图 其中1 m ,2 m 表示小车的质量,i c 表示缓冲器的粘滞摩擦系数,i k 表示弹簧的弹性系数,i F (t )表示小车所受的外力,是系统的输入即i U (t )=i F (t ),i X (t)表示小车的位移,是系统的输出,即i Y (t )=i X (t),i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中1m =1kg ,2 m =2kg ,1k =3k =100N/cm ,2k =300N/cm ,1c =3 c =3N ?s/cm ,2 c =6N ?s/cm 。 由图 2.1,根据牛顿第二定律,,建立系统的动力学模型如下: 对1 m 有: (2-1) 对2 m 有: (2-2) 3 建立状态空间表达式 令3 1421122 ,,,x x x x u F u F ====,则原式可化为:

最新青岛版小学科学三年级下册《弹簧里的学问》教学反思精编版

2020年青岛版小学科学三年级下册《弹簧里的学问》教学反思 精编版

《弹簧的学问》教学反思 本课主要内容与设计意图:在物体形状或体积发生改变的情况下,会产生要恢复原状的力,对跟它接触的物体会产生力的作用,这种力叫做弹力,对于弹性与弹力,学生虽然平时有一定的感性认识,但对其中的道理并不很清楚。因此,本课将研究弹性和弹力的一些特点。 本课按照“游戏——问题——假设——体验——结论”的科学认识过程,在学生对日常生活中弹性,弹力有一定经验与体验的基础上,进一步探究认识有关弹性与弹力的科学规律,激发孩子们科学探究的兴趣。我用了“弹簧做游戏,了解、发现弹簧的性质和特点,认识弹力——了解生活中的弹力——设计弹力玩具,进一步认识弹力和弹簧——课堂评价”的思路进行教学。在课堂活动设计了三个探究式活动任务,这个教学环节中运用了建构主义学习

论,学生建构自己知识的过程,教师只是起促进作用,重视了学生的主体性,重视了师生之间,生生之间的会话,协作和反思。 从建构策略上来看,教师非常注意如何合理安排教学环节,给学生创造了自主探究,合作学习的空间,并且很好的体现了以问题解决作为课堂活动的目标。有强烈的新课程倡导的教学观和学生观意识,注意了自身在教学中角色的转变,怎样做一个学生学习的促进者。这个环节属于比较典型的科学探究过程中的指定计划与设计实验的环节。在这一环节中主要是从操作的角度把探究的问题具体化。在小学科学教学中开展对学生科学思维的训练、培养是科学课程标准赋予的一项基本要求。课堂教学中学生的探究是非常重要的,教师应立足学生的角度,换位思考,把眼光放在学生的探究学习上,要努力体现出以每一位学生的发展为本的教学理念,努力体现课程标准对该课程的要求。科学课不是教知识,而是教孩子科学研究的方法。科学地想问题,指导科学地做,有计划地做,能动地搜集资料,面对实验现象进行假设、验证、整理、交流最后得出结

弹簧质量阻尼系统模型

自动控制原理综合训练项目题目:关于MSD系统控制的设计 目录 1设计任务及要求分析 (2) 初始条件 (2) 要求完成的任务 (2) 任务分析 (3) 2系统分析及传递函数求解 (3) 系统受力分析 (3) 传递函数求解 (8) 系统开环传递函数的求解 (8) 3.用MATLAB对系统作开环频域分析 (9) 开环系统波特图 (9) 开环系统奈奎斯特图及稳定性判断 (10) 4.系统开环频率特性各项指标的计算 (11) 总结 (13) 参考文献 (13)

弹簧-质量-阻尼器系统建模与频率特性 分析 1设计任务及要求分析 初始条件 已知机械系统如图。 1k y p 2k x 图 机械系统图 要求完成的任务 (1) 推导传递函数)(/)(s X s Y ,)(/)(s P s X , (2) 给定m N k m N k m s N b g m /5,/8,/6.0,2.0212==?==,以p 为输入)(t u (3) 用Matlab 画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系 统的稳定性。 (4) 求出开环系统的截止频率、相角裕度和幅值裕度。 (5) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清

楚分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 任务分析 由初始条件和要求完成的主要任务,首先对给出的机械系统进行受力分析,列出相关的微分方程,对微分方程做拉普拉斯变换,将初始条件中给定的数据代入,即可得出 )(/)(s X s Y ,)(/)(s P s X 两个传递函数。由于本系统是一个单位负反馈系统,故求出的传 递函数即为开环传函。后在MATLAB 中画出开环波特图和奈奎斯特图,由波特图分析系统的频率特性,并根据奈奎斯特判据判断闭环系统位于右半平面的极点数,由此可以分析出系统的稳定性。最后再计算出系统的截止频率、相角裕度和幅值裕度,并进一步分析其稳定性能。 2系统分析及传递函数求解 系统受力分析 单自由度有阻尼振系的力学模型如图2-1所示,包括弹簧、质量及阻尼器。以物体的平衡位置0为原点,建立图示坐标轴x 。则物体运动微分方程为 kx x c x m -=-&&& (2-1) 式中 : x c &-为阻尼力,负号表示阻尼力方向与速度方向相反。 图2-1 将上式写成标准形式,为 0=++kx x c x m &&& (2-2) 令p 2= m k , m c n =2, 则上式可简化为 022=++p x n x &&& (2-3)

安全阀基础知识学习培训.doc

按结构及加载机构分类 按其整体结构及加载机构的不同可?以分为重锤杠杆式、弹簧式和脉冲式三种。 1. 重锤杠杆式安全阀 重锤杠杆式安全阀是利用重锤和杠杆来平衡作用在阀瓣上的力。根据杠杆原理,它可以使用质量较小的重锤通过杠杆的增大作用获得较大的作用力,并通过移动重锤的位置(或变换重锤的质景)来调整安全阀的开启压力。 重锤杠杆式安全阀结构简单,调整容易而又比较准确,所加的载荷不会因阀瓣的升高而有较大的增加,适用于温度较高的场合,过去用得比较普遍,特别是用在锅炉和温度较高的压力容器上。但重锤杠杆式安全阀结构比较笨重,加载机构容易振动,并常因振动而产生池漏;其回座压力较低,开启后不易关闭及保持严密。 2 .弹簧微启式安全阀 弹簧微启式安全阀是利用压缩弹簧的力来平衡作用在阀瓣上的力。螺旋圈形弹簧的压缩量可以通过转动它上面的调整螺母来调节,利用这种结构就可以根据需要校正安全阀的开启(整定)压力。弹簧微启式安全阀结构轻便紧凑,灵敏度也比较高,安装位置不受限制,而旦因为对振动的敏感性小,所以可?用于移动式的压力容器上。这种安全阀的缺点是所加的载荷会随看阀的开启而发生变化,即随着阀瓣的升高,弹簧的压缩量增大,作用在阀瓣上的力也跟肴增加。这对安全阀的迅速开启是不利的。另外,阀上的弹簧?会山于长期受高温的影响而使弹力减小。用于温度较高的容器上时,常常要考虑弹簧的隔热或散热问题,从而使结构变得复杂起来。 I

3 .脉冲式安全阀 脉冲式安全阀山主阀和辅阀构成,通过辅阀的脉冲作用带动主阀动作、其结构复杂, 通常只适用于安全池放量很大的锅炉和压力容器。 上述三种形式的安全阀中,用得比较普遍的是弹簧式安全阀。 相关名词 公称压力:表示安全阀在常温状态下的最高许用压力,高温设备用的安全阀不应考虑高温下材料许用应力的降低。安全阀是按公称压力标准进行设计制造的。 开启压力:也叫额定压力,是指安全阀阀瓣在运行条件下开始升起时的进口压力,在该压力下,开始有可测量的开启高度,介质呈可山视觉或听觉干支的连续排放状态。 排放压力:阀瓣达到规定开启高度时的进口压力。排放压力的上限需服从国家有关标准或规范的要求。 超过压力:排放压力与开启压力之差,通常用开启压力的百分数来表示。 回座压力:排放后阀瓣重新与阀座接触,即开启高度变为零时的进口压力。 启闭压差:开启压力与叵I座压力之差,通常用PI座压力与开启压力的百分比表示,只有当开启压力很低时采用二者压力差来表示。 背压力:安全阀出口处的压力。 额定排放压力:标准规定排放压力的上限值。 密封试验压力:进行密封试验的进口压力,在该压力下测:晨通过关闭件密封面的泄漏率。

锻造基础知识讲座

锻造基础知识讲座 (一)锻造的基本概念。 锻造是锻压工艺的一部分,锻压包括锻造和冲压两部分。 锻造的根本目的:是获得所需形状和尺寸,同时要求其性能和组织符合一定的技术要求的毛坯。 锻造按温度来分有:热锻、温锻和冷锻。不同的锻造温度对锻件的组织和性能的影响也是不同的。 下面介绍的内容主要是热锻部分知识。 锻造分自由锻和模锻两部分。 自由锻是自由锻造的简称,自由锻包括胎模锻,适用于单件小批生产。 模锻适用于批量生产和大批量生产,如汽车制造行业。 自由锻和模锻是锻造工艺的主要支柱。 发达国家的模锻件占锻件总重量的70%以上;我国在50年 代模锻件占锻件总重量不到20%,现在有进步,但模锻件总重乃比自由锻件少。 自由锻又分手工锻和机器锻。 手工锻在现在工厂用得很少,只在工具修理部门有,农村的铁匠炉基本上还是用手工锻。 机器锻又分锤上自由锻和水压机上自由锻,前者用来生产大、中、小锻件;后者用来生产大型和特大型锻件。 自由锻特点: 1.所用工具简单,通用性强,灵活性大。 2.靠工人的手工操作来控制锻件的形状和尺寸,因此,锻件的 精度差,工人的劳动强度大,生产率低。 锻件的主要缺陷有: 1.裂纹:有横向、纵向裂纹及其它各种裂纹。 2.过烧。 3.白点(锻件内部银白色、灰白色圆形的裂纹) 4.折叠。 5.疏松、非金属夹杂物。 6.机械性能达不到要求(锻比不够)。 7.弯曲、变形。 产生以上缺陷的原因很多,有铸锭缺陷引起的,有锻造加热不当引起的,有锻造本身的原因,也有锻后冷却和热 处理不当引起的。总之,原因很多。所以当锻件的缺陷发现 后,需要综合起来进行分析,并要掌握在不同情况下产生缺

空气弹簧原理

空气弹簧装置系统组成 1、系统组成。 主要有空气弹簧本体、附加空气室、高度控制阀、差压阀和滤尘器等组成。 2、压力空气传递过程 压力空气由列车主风管1→T 形支管2→截断塞门3→滤尘止回阀4→空气弹簧储风缸5→主管→连接软管6→高度控制阀7→附加空气室10和空气弹簧本体8。 3、高度调整阀工作原理。为了保持车体距轨面的高度不变,在车体与转向架之间装有高度调整阀,以调节空气弹簧橡胶囊中的压缩空气,使车辆地板面不受车内乘客的多少和分布不均匀的影响,基本保持水平。调节过程: ① 在正常载荷位置,及H h =时,充气通路L V →和放气回路E L →均被关闭; ② 当车体载荷增加时,此时H h <,阀动作,使L V →通路开启,压缩空气向空气弹簧充气,直至地板上面上升到标定高度为止。 ③ 当车体载荷减少时,此时H h >,阀动作,使E L →通路开启,空气弹簧向大气排气,直至地版面下降到标定高度为止。 4、高度调整阀装置结构。不同动车组所使用的高度调整装置结构有所区别,这里以2CRH 和3CRH 动车组所采用的高度调整阀装置为例来加以说明。 2CRH 的结构如图 所示。该高度调整阀内使用的工作油特性如下: (1)种类:硅油。 黏度:25,/1023s m -℃。 温度系数:0.6. 流动点:-50℃。 高度调整阀工作过程分进气过程和排气过程,具体如图 当然,上述调整只是在静态时进行,不能影响车体与转向架间的正常震动。保证高度调节阀仅在静态需要调整时才起作用,而对动态震动不起作用,这就要求高度调整阀必须具有如下特性: 具有不感带(10±1)mm ;具有时间延时(3±1)s ;内腔充满硅油,起阻尼作用。 3CRH 的高度控制阀组成主要包括高度阀座、高度阀、水平杆、螺纹杆、调整环和下座等部件见图 高度控制阀的主体采用螺钉固定在高度阀座上,阀座与摇枕相连,而该阀的阀杆铰接在转向架上。高度控制阀在转向架的位置可参见图 通过调整高度控制阀和转向架构架之间的螺纹杆的长度以便调整由于车轮磨耗造成的车辆高度变化。在每次镟轮之后应进行这样的调整。车辆高度阀调节车辆垂向位移的不敏感带约为±3mm ,此时空气流通停止,避免空气的过度消耗。在不敏感带之后,空气流通保证了悬挂系统的减振功能。空气悬挂设备的空气信号与旅客载荷成比例,并传送到控制单元,用以制动载荷补偿。 高度调整阀在空气弹簧系统的闭环线路中起着一个作动器的作用。它被设计为一个无旁通的非节流阀式双座阀门。它使用了一个单向阀门,用来保持气囊压力。 3CRH 动车组采用SN1205-E/110型的高度控制阀,其工作原理如图 该阀门在顶部有一个开口V ,用来安装辅助储气罐。在开口V 的对面是一个排气口E,左和

弹簧基本知识

一.弹簧的种类与作用: 1.弹簧的种类: 弹簧的种类很多,也有各种分类的方法,但都不具决定性: 1.1依使用材料分类: J.锯齿形弹簧、扣环等 1.1.依构成弹簧的材料所受应力状态分类: A.压缩螺旋弹簧 B.拉张螺旋弹簧 C.扭转螺旋弹簧 D.其它螺旋弹簧 E.迭板弹簧 F.扭杆

G.滑形弹簧 H.薄板弹簧 I.盘簧 J.弹簧垫圈 K.线细工弹簧 L.扣环 M.环形弹簧 2.弹簧的作用: 不过, 2.弹性系数: 对弹簧材料施力,产生单位应变时的应力称为弹性系数,此值为弹簧设计的基体,弹簧材料的弹性系数主要取决于其化学成分,因热处理、冷间加工而稍有变化,使用温度高时会大减少; 3.疲劳强度: 疲劳强度与材料的抗拉强度有一定关系,但因表面状态、脱碳、冷间加工、热处理而变化,这些条件因材料的制造方法,弹簧的制造方法而变化;

4.淬火性: 大形弹簧为了提高淬火效果,需要淬火性良好的材料,淬火性取决于材料的化学成分; 5.形状尺寸: 弹簧材料的机械性性质因尺寸而异,得不到特殊尺寸,形状,颇受限制; 6.耐热性: 有的弹簧在某种程度的高温使用,通常弹簧材料的各种机械性性质随着 , 1.琴钢线:(Pianowire) 是用琴钢线材施行韧化处理,藉强力抽线加工,赋予良好的尺寸精度,良好的表面肌肤,高度机械性性质,韧化是将高碳钢线在变态点以上的温度连续加热约500℃的熔铅等中冷却,作成富加工性的组织; A.SWPA——抗拉强度较低 用于重荷重特性的弹簧、耐疲劳 B.SWPB——抗拉强度较高; 抗拉强度因线径而异,线径细,抗拉强度一般较高;

2.硬钢线:(碳钢线)——HardDrawnSteelWire 使用硬钢线材韧化处理后,借冷间抽线加工制造,素材及加工都没有琴钢线那么严格,良质者有时不亚于琴钢线,不过,其不均度通常大于琴钢线,广用于反复次数不多之弹簧,无冲击荷重的弹簧; 2.1SWC60C含碳量较低 2.2SWC80C含碳量较高,应用广泛 3.不锈钢线——Stainlesssteelwire 4. 三 低; 4.3.白铜线Ni18%Zn27%Cu55%的合金,强度大,弹簧特性良好,加工后约在 350℃低温退火; 4.4.铍铜:在铜合金材料中,性能最优良,弹簧弹性好,耐高温; 5.电镀钢线: 视客户需求,其素材有SWC、SWP、SUS 镀锌线镀锡线镀镍线镀金线

弹簧质量阻尼系统模型

弹簧质量阻尼系统模型 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

自动控制原理综合训练项目 题目:关于MSD系统控制的设计 目录 弹簧-质量-阻尼器系统建模与频率特性分析

1设计任务及要求分析 初始条件 已知机械系统如图。 1 k y p 2 k 图机械系统图 要求完成的任务 (1)推导传递函数) ( /) (s X s Y,) ( /) (s P s X, (2)给定m N k m N k m s N b g m/ 5 , / 8 , / 6.0 , 2.0 2 1 2 = = ? = =,以p为输入)(t u (3)用Matlab画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系统的稳定性。 (4)求出开环系统的截止频率、相角裕度和幅值裕度。 (5)对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab源 程序或Simulink仿真模型,说明书的格式按照教务处标准书写。

任务分析 由初始条件和要求完成的主要任务,首先对给出的机械系统进行受力分析,列出相关的微分方程,对微分方程做拉普拉斯变换,将初始条件中给定的数据代入,即可得出)(/)(s X s Y ,)(/)(s P s X 两个传递函数。由于本系统是一个单位负反馈系统,故求出的传递函数即为开环传函。后在MATLAB 中画出开环波特图和奈奎斯特图,由波特图分析系统的频率特性,并根据奈奎斯特判据判断闭环系统位于右半平面的极点数,由此可以分析出系统的稳定性。最后再计算出系统的截止频率、相角裕度和幅值裕度,并进一步分析其稳定性能。 2系统分析及传递函数求解 系统受力分析 单自由度有阻尼振系的力学模型如图2-1所示,包括弹簧、质量及阻尼器。以物体的平衡位置0为原点,建立图示坐标轴x 。则物体运动微分方程为 kx x c x m -=- (2-1) 式中 : x c -为阻尼力,负号表示阻尼力方向与速度方向相反。 图2-1 将上式写成标准形式,为 0=++kx x c x m (2-2) 令p 2= m k , m c n =2, 则上式可简化为 022=++p x n x (2-3) 这就是有阻尼自由振动微分方程。它的解可取st e x =,其中

弹簧基础知识培训.doc

弹簧基础知识 -、弹簧的定义、作用、类型: 1.弹费的定乂: 弹簧是一种机械零件,它利用材料的弹性和结构特点,在工作时产生变形,把机械功或动能传变为变形能(位能),或把变形能(位能)转变为机械功或动能。 2?弹簧的作用: (1)减震(2)控制运动(3)测量器材的衡定(4)储存能量 3.弹簧的基本特性 (1)刚度:载荷与变形的关系(单位变形量所产生的载荷)。单位是:N/mm 柔度:单位载荷下产生的变形量。它与刚度成反比 (2)弹簧的变形能(变形所储存的能量,储存——转换——释放) (3)自振频率 (4)弹簧受迫振动的振幅。 4.弹簧的类型 4. 1 圆柱螺旋弹簧 圆截而材料圆柱螺旋压缩弹簧 矩形截面材料圆柱螺旋压缩弹簧 扁截面材料圆柱螺旋压缩弹簧 不等节距圆柱螺旋弹簧 多股螺旋弹簧 圆柱螺旋拉仲弹簧 圆柱螺旋扭转弹簧 4. 2 非圆柱螺旋弹簧 截锥螺旋弹簧 中凹形螺旋弹簧 中凸形螺旋弹簧 组合螺旋弹赞 非I员I形螺旋弹簧 4. 3 其它类型弹簧线成型片弹簧 二、常用的名词诠释。 1.工作负荷:弹簧工作过程中承受的力和扭距。 2.弹簧刚度:单位变形量所产生的负荷。 3.弹簧柔度:单位工作负荷下所产生的变形量。 4.初拉力:密圈螺旋拉伸弹簧在冷卷时形成的内应力,其值为弹簧开始产生拉伸变形时所需的 作用力。 5.自由高度(长度):弹赞无负荷时的高度(长度)。 6.压并高度:压缩弹簧压至各圈接触时的理论高度。 7?总圈数:沿螺旋轴线两端间的螺旋圈数。

8.有效圈数:(工作圈数)计算弹簧刚度时的圈数。 9.支承圈数:弹簧端部用于支承或固定的圈数。 10.弹簧中径:弹簧内径和外径的平均值。 11.节距:螺旋弹簧两相邻冇效圈截而屮心线的轴向距离。 12.间距:(坑距)螺旋弹簧两相邻有效圈轴向间距。 13.旋绕比:弹簧屮径与线径的比值。 14.高径比:螺旋压缩弹簧自由高度与屮径的比值。 15.立定处理:将热处理后的压缩弹簧压缩到工作极限负荷下的高度或压并高度(拉伸到弹簧 工作极限下的长度,扭转到工作极限扭转角)一次或多次短暂压缩(拉伸或扭转)以达到稳 定弹簧几何尺寸的主要目的的一种工艺方法。(定型) 16.强压(拉、扭):将弹簧压缩(拉、扭)至弹簧材料表层产生有益的工作应力反向残余力, 以达到提高弹簧承载能力和稳定几何尺寸的一种工艺方法。(存储能量) 17.疲劳试验:考核弹簧疲劳性能的试验。 三、形位公弟:(形状与位置的公茅称形位公弟) 弹簧常用的符号和单位 A——弹簧材料截面面积(mm2)弯曲刚度(N/mm);系数a—矩形截而材料垂直于弹簧轴线的边长(mm);系数B——平板的弯曲刚度(N/mm);系数 b——高径比;矩形截面材料平行于弹簧轴线的边长;系数 C——螺旋弹簧旋绕比;碟赞直径比;系数 D ---- 弹簧的中径(mm) D1——弹簧内径(mm) D2 ----- 弹簧外径)(mm) d ------ 弹簧材料的直径(mm) E——弹性模量(Mpa) F——弹簧的载荷(N) F——弹簧的刚度(N/mm) Fj——弹簧的工作极限载荷(N) Fo——圆柱拉伸弹簧的初拉力(N) F—弹簧的径向载荷(N) F'r ----- 弹簧的径向刚度(N/mm)

弹簧质量系统瞬态响应分析

弹簧质量系统瞬态响应分析 一、弹簧系统研究的背景、研究的目的和意义及国内外研究趋势分析 1.1 弹簧质量系统提出的背景、研究的目的和意义 弹簧作为储能元件,在减振器机械缓冲器等方面得到越来越广泛的应用。而由螺旋弹簧与质量块组成的螺旋弹簧系统可以说几乎在任何机电仪器和设备中都有它的存在。作为一常用零部件,其各项性能指标,尤其是其强度指标,直接或间接地影响整机的性能和工作质量。因此对螺旋弹簧质量系统的机械性解响应及其强度分析受到了国内外专家,学者和工程技术人员的普遍重视。载荷下弹簧质量系统的瞬态响应,这个问题具有广泛的意义和实际应用价值。 1.2 弹簧质量系统在国内外同一研究领域的现状与趋势分析 关于载荷作用下弹簧质量系统的工作和文献很多,大多数问题都是围绕着,螺旋弹簧质量系统在承受静载荷或低频周期性载荷的情况下进行分析的。其结论主要适用于对螺旋弹簧质量系统的静强度分析和固定载荷下的可靠性。实验结果和经验表明,造成弹簧失效的一个主要原因是:当它承受突加载荷时,产生的冲激响应。在冲激载荷下,弹簧失效数目很多,往往经静强度分析或固定载荷分析的结论是可靠的,而实际情况是不可靠的。所以激载荷下的可靠性设计就不得不被提出来了。但这方面文献非常少,实验数据也不多。 就弹簧质量系统在57火炮输弹系统的应用而言,螺旋弹簧失效主要是冲激失效,对这个问题的研究,美国、俄罗斯的水平较高,它们的主要工作是从提高材料性能上大量的实验进行的。其寿命指标可达

2000次,我国的现有水平较差,平均寿命在500一1000次之间,所以,对输弹系统进行寿命估计,找出问题,具有很大的应用价值和经济价值。 二、一维单自由度弹簧质量系统固有频率理论推导 2.1无阻尼弹簧质量系统的自由振动 如图1 所示,就是本文要讨论的单自由度无阻尼系统。 该系统有质量为m 的重物(惯性元件)和刚度为k的弹簧(弹性元件)组成。假设不考虑重物的尺寸效应,可以用一个简单质点来表示这一类重物。为了描述图示系统位置,采用如图 1 所示的单轴坐标系。坐标原点选取在质点静平衡位置,用x 表示质点在任意时刻处于坐标系中的坐标,以向下的方向为正。在此系统运动过程中,x 是时间t 的函数,可以称为质点的位移函数。由于只需要一个空间坐标x,就可以完全确定图中质点任意时刻的位置,因此可以认为该系统就是单自由度系统。不考虑阻尼的情形下,系统将在初始条件激励下,围绕静平衡点做无阻尼自由振动。 2.2 振动方程的建立方法 2.2.1 用牛顿第二定律法建立微分方程 牛顿第二定律又称运动定律,即物体动量的改变与施加的力量成正比。对于图示系统,定义质点的静平衡位置为坐标原点,则质点与

CRH380BL高速列车空气弹簧

摘要 在普通机车车辆中,常常采用弹簧装置来缓冲冲击,使列车平稳运行,从而改善车辆横向运动性能和曲线通过性能。在高铁迅猛发展的今天,普通机车传统的弹簧装置已经无法满足CRH系列动车组的列车性能要求了,所以采用圆弹簧,橡胶弹簧以及空气弹簧。圆弹簧和橡胶弹簧常常用于一级悬挂系统中,而空气弹簧则主要应用于二级悬挂系统中。本文主要介绍的是CRH380BL动车组空气弹簧悬挂装置的分析与改进。 关键词:二系悬挂装置空气弹簧设计改进

目录 第1章空气弹簧简介 (1) 1.1空气弹簧原理 (1) 1.2空气弹簧分类 (1) 1.3空气弹簧特点 (2) 1.4空气弹簧在CRH380BL的应用 (3) 第2章 CRH380BL空气弹簧的结构原理与结构分析 (5) 2.1CRH380BL空气弹簧系统的工作原理 (5) 2.2空气弹簧系统的结构 (5) 2.2.1空气弹簧 (5) 2.2.2高度阀 (6) 2.2.3差压阀 (8) 2.2.4抗测滚扭杆 (8) 2.2.5抗蛇行减振器 (11) 2.2.6二系横向减振器 (11) 2.2.7二系垂向减振器 (12) 2.3CRH380BL整体转向架特点 (12) 第3章日本空气弹簧系统 (15) 3.1日本新干线高速动车组二系悬挂空气弹簧技术 (15) 3.1.1抗蛇行减振器 (16) 3.1.2半有源悬挂和有源悬挂 (16) 第4章CRH380BL空气弹簧的设计改进分析 (17) 4.1空气弹簧的支撑方式 (17) 4.2垂向减振器方式的选择 (17) 4.3空气弹簧气囊大小的选择 (18) 4.4存在问题 (20) 4.5分析问题 (20)

相关文档
最新文档