高中物理力学竞赛辅导资料专题03牛顿力学中的传送带问题含解析

高中物理力学竞赛辅导资料专题03牛顿力学中的传送带问题含解析
高中物理力学竞赛辅导资料专题03牛顿力学中的传送带问题含解析

专题03 牛顿力学中的传送带问题

一、内容解读

1.传送带的基本类型

(1)按放置可分为:水平(如图a)、倾斜(如图b,图c)、水平与倾斜组合;

(2)按转向可分为:顺时针、逆时针。

2.传送带的基本问题分类

(1)运动学问题:运动时间、痕迹问题、运动图象问题(运动学的角度分析);

(2)动力学问题:物块速度和加速度、相对位移,运动时间(动力学角度分析);

(3)功和能问题:做功,能量转化(第五章讲)。

二、传送带模型分类

(一)水平传送带模型

项目图示滑块可能的运动情况

情景1

(1)可能一直加速

(2)可能先加速后匀速

情景2

(1)v0>v时,可能一直减速,也可能先减速再匀速

(2)v0

情景3(1)传送带较短时,滑块一直减速达到左端

(2)传送带较长时,滑块还要被传送带传回右端。其中v0>v返回时速度为v,当v0

1.(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2。由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。则小煤块从A运动到B的过程中( )

图1

A.小煤块从A运动到B的时间时 2 s

B .小煤块从A 运动到B 的时间是2.25 s

C .划痕长度是4 m

D .划痕长度是0.5 m

【解析】选BD 小煤块刚放上传送带后,加速度a =μg =4 m/s 2

,由v 0=at 1可知,小煤块加速到与传送带同速的时间为t 1=v 0a =0.5 s,此时小煤块运动的位移x 1=v 0

2t 1=0.5 m,而传送带的位移为x 2=v 0t 1=1 m,故小煤

块在带上的划痕长度为l =x 2-x 1=0.5 m,D 正确,C 错误;之后的x -x 1=3.5 m,小煤块匀速运动,故t 2=x -x 1

v 0

=1.75 s,故小煤块从A 运动到B 的时间t =t 1+t 2=2.25 s,A 错误,B 正确。

2、(多选)如图2所示,水平传送带A 、B 两端相距x =3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4m/s,到达B 端的瞬时速度设为v B .下列说法中正确的是( )

图2

A .若传送带逆时针匀速转动,v

B 一定等于3m/s B .若传送带逆时针匀速转动越快,v B 越小

C .若传送带顺时针匀速转动,v B 有可能等于3m/s

D .若传送带顺时针匀速转动,物体刚开始滑上传送带A 端时一定做匀加速运动

【解析】若传送带不动,物体的加速度:a =μg =1m/s 2

,由v 2

A -v 2

B =2ax, 得:v B =3m/s.若传送带逆时针匀速转动,物体的受力情况不变,由牛顿第二定律得知,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.故A 正确,B 错误;若传送带以小于3m/s 的速度顺时针匀速转动,物体滑上传送带时所受的滑动摩擦力方向水平向左,做匀减速运动,物体的加速度仍为a =μg ,物体的运动情况跟传送带不动时的一样,则v B =3 m/s.若传送带以大于3m/s 且小于4 m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向左,物体做减速运动,最后物体随传送带一起做匀速运动.若传送带以大于4m/s 的速度顺时针匀速转动,则开始时物体受到的摩擦力向右,物体做加速运动,v B 可能大于4 m/s.故

C 正确,

D 错误.

3、如图3甲所示的水平传送带AB 逆时针匀速转动,一物块沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点)。已知传送带的速度保持不变,重力加速度g 取10 m/s 2

。关于物块与传送带间的动摩擦因数μ及物块在传送带上运动第一次回到传送带左端的时间t ,下列计算结果正确的是( )

图3

A .μ=0.4

B .μ=0.2

C .t =4.5 s

D .t =3 s

【解析】由题图乙可得,物块做匀变速运动的加速度大小为a =Δv Δt

=2.0 m/s 2

,由牛顿第二定律得F f =ma =

μmg ,则可得物块与传送带间的动摩擦因数μ=0.2,A 错误,B 正确;在v -t 图象中,图线与t 轴所围面积表

示物块的位移,则物块经减速、反向加速到与传送带相对静止,最后匀速运动回到传送带左端时,物块的位移为0,由题图乙可得物块在传送带上运动的总时间为4.5 s,C 正确,D 错误。答案 BC

4、如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带。不计定滑轮质量和摩擦,绳足够长。正确描述小物体P 速度随时间变化的图像可能是( )

【解析】选BC 本题需考虑速度之间的关系及摩擦力与Q 重力之间的关系,分别讨论求解。若v 1>v 2,且P 受到的滑动摩擦力大于Q 的重力,则可能先向右匀加速,加速至v 1后随传送带一起向右匀速,此过程如图B 所示,故B 正确。若v 1>v 2,且P 受到的滑动摩擦力小于Q 的重力,此时P 一直向右减速,减速到零后反向加速。若v 2>v 1,P 受到的滑动摩擦力向左,开始时加速度a 1=F T +μmg

m

,当减速至速度为v 1时,摩擦力反向,若有F T

>μmg ,此后加速度a 2=

F T -μmg

m

,故C 正确,A 、D 错误。 5、如图4所示,水平传送带两端相距x =8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度

v A =10 m/s,设工件到达B 端时的速度为v B 。(取g =10 m/s 2)

图4

(1)若传送带静止不动,求v B ;

(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,求到达B 点的速度v B ; (3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。 【解析】(1)根据牛顿第二定律可知μmg =ma ,则a =μg =6 m/s 2

, 又v 2

A -v 2

B =2ax ,代入数值得v B =2 m/s 。

(2)能。当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度

v B =2 m/s 。

(3)工件速度达到13 m/s 时所用时间为t 1=

v -v A

a

=0.5 s, 运动的位移为x 1=v A t 1+12

at 2

1=5.75 m <8 m,

则工件在到达B 端前速度就达到了13 m/s,此后工件与传送带相对静止,因此工件先加速后匀速。匀速运动的位移x 2=x -x 1=2.25 m,t 2=x 2

v

≈0.17 s ,t =t 1+t 2=0.67 s 。

6、如图所示,一足够长的水平传送带以速度v 0匀速运动,质量均为m 的小物块P 和小物块Q 由通过滑轮组的轻绳连接,轻绳足够长且不可伸长.某时刻物块P 从传送带左端以速度2v 0冲上传送带,P 与定滑轮间的绳子水平.已知物块P 与传送带间的动摩擦因数μ=0.25,重力加速度为g,不计滑轮的质量与摩擦.求: (1)运动过程中小物块P 、Q 的加速度大小之比;

(2)物块P 刚冲上传送带到右方最远处的过程中,PQ 系统机械能的改变量;

若传送带以不同的速度v (0

【解析】(1)设P 的位移、加速度大小分别为s 1、a 1,Q 的位移、加速度大小分别为s 2、a 2, 因s 1=2 s 2,故a 1=2a 2

2

1

21 a a (2)对P 有:μmg+T=m a 1 对Q 有:mg ﹣2T=ma 2 得:a 1=0.6g P 先减速到与传送带速度相同,设位移为x 1,

共速后,由于f=μmg<2

1

mg,P

不可能随传送带一起匀速运动,

继续向右减速, 设此时P 加速度为a 1′,Q 的加速度为/1/

22

1a a =

对P 有:T ﹣μmg=ma 1′,

对Q 有:mg ﹣2T=ma 2’解得:a 1′=0.2g

设减速到0位移为x 2,

PQ 系统机械能的改变量等于摩擦力对P 做的功,△E=﹣μmgx 1+μmgx 2=0

(3)第一阶段P 相对皮带向前,相对路程:

第二阶段相对皮带向后,相对路程:/12

22a v S =

摩擦产生的热Q=μmg(S 1+S 2)=

当021v v =时,摩擦热最小--2

085mv Q =

7、如图5甲所示,水平传送带沿顺时针方向匀速运转。从传送带左端P 先后由静止轻轻放上三个物体A 、B 、C ,物体A 经t A =9.5 s 到达传送带另一端Q ,物体B 经t B =10 s 到达传送带另一端Q ,若释放物体时刻作为t

=0时刻,分别作出三物体的v -t 图象如图乙、丙、丁所示,求:

图5

(1)传送带的速度大小v 0; (2)传送带的长度L ;

(3)物体A 、B 、C 与传送带间的动摩擦因数; (4)物体C 从传送带左端P 到右端Q 所用的时间t C 。

【解析】(1)物体A 与B 先做匀加速直线运动,然后做匀速直线运动,说明物体的速度与传送带的最终速度相

等,所以由图乙、丙可知传送带的速度大小是4 m/s 。

(2)v -t 图线与t 轴围成图形的面积表示物体的位移,所以A 的位移x A =36 m, 传送带的长度L 与A 的位移相等,也是36 m 。 (3)(4)A 的加速度a A =Δv A t 1

=4 m/s 2

由牛顿第二定律得μA mg =ma A ,所以μA =a A

g =0.4 同理,B 的加速度a B =Δv B t 2

=2 m/s 2,μB =a B g

=0.2

设物体C 从传送带左端P 到右端Q 所用的时间为t C ,则

L =

0+v C 2t C t C =2L v C =24 s C 的加速度a C =Δv C t C =18 m/s 2

,μC =a C g

=0.012 5。 8、一水平传送带以2.0 m/s 的速度顺时针传动,水平部分长为2.0 m 。其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4 m,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间动摩擦因数μ=0.2, 试问:

(1)物块能否到达斜面顶端?若能则说明理由,若不能则求出物块沿斜面上升的最大距离。 (2)物块从出发到4.5 s 末通过的路程。(sin 37°=0.6,g 取10 m/s 2

)

【解析】(1)物块在传送带上先做匀加速直线运动

μmg =m a 1① s 1=v 02

2a 1

=1 m <L ②

所以在到达传送带右端前物块已匀速 物块以v 0速度滑上斜面-mg sin θ=ma 2③ 物块速度为零时上升的距离s 2=-v 02

2a 2=1

3m④

由于s 2<0.4 m,所以物块未到达斜面的最高点。 (2)物块从开始到第一次到达传送带右端所用时间t 1=2s 1v 0+L -s 1

v 0

=1.5 s⑤

物块在斜面上往返一次时间t 2=-2v 0a 2=2

3

s⑥

物块再次滑到传送带上速度仍为v 0,方向向左-μmg =ma 3⑦ 向左端发生的最大位移s 3=-v 0

2

2a 3

物块向左的减速过程和向右的加速过程中位移大小相等

4.5 s 末物块在斜面上速度恰好减为零故物块通过的总路程s =L +3s 2+2s 3⑨

s =5 m

9、一小物块随足够长的水平传送带一起运动,被一水平向左飞行的子弹击中并从物块中穿过,如图6甲所示。固定在传送带右端的位移传感器记录了小物块被击中后的位移x 随时间的变化关系如图乙所示(图像前3 s 内为二次函数,3~4.5 s 内为一次函数,取向左运动的方向为正方向)。已知传送带的速度v 1保持不变,g 取10 m/s 2

图6 图7

(1)求传送带速度v 1的大小; (2)求0时刻物块速度v 0的大小; (3)在图7中画出物块对应的v -t 图像。

【解析】(1)由x -t 的图像可知,物块被击穿后,先向左减速,2 s 末减到v =0,然后向右加速,3 s 末后与传送带共速v 1=Δx ′Δt =2 m/s,以后随传送带一起做匀速运动。

(2)2~3 s 内,物块向右匀加速运动,加速度大小a =μg ,v 1=a Δt 1 0~2 s 内,物块向左匀减速运动,加速度大小a =μg 解得0时刻物块的速度v 0=a Δt 2=4 m/s 。

(3)根据x -t 的图像分析得到的运动规律用v -t 图像画出如图所示。

10、图8甲是利用传送带装运煤块的示意图,传送带右轮轴顶端与运煤车底板间的竖直高度差H =1.8m .现传送带以某一速度v 0匀速运动,在传送带左端由静止释放一煤块(可视为质点),当煤块运动到右轮轴顶端后

做平抛运动,其落在运煤车底板上的位置相对传送带右轮轴的水平距离x =1.2m,已知煤块在 传送带上运动的v -t 图象如图乙所示,图中t 0=0.25s,取g =10m/s 2

.求:

图8

(1)传送带速度v 0的大小;

(2)煤块在传送带上划出的痕迹长度L .

【解析】 (1)煤块从传送带右端抛出,则竖直方向有:

H =12

gt 2①

水平方向有:x =v 0t ②

联立①②代入数据,解得v 0=2m/s. (2)0~t 0时间内,传送带位移x 1=v 0t 0③ 煤块位移x 2=1

2v 0t 0④

则痕迹长度L =x 1-x 2⑤ 联立③④⑤式求得L =0.25m.

11、如图所示,以 A 、B 和 C 、D 为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠 B 点,上表面所在平面与两半圆分别相切于 B 、C.一物块被轻放在水平匀速运动的传送带上 E 点,运动到 A 时刚好与传送带速度相同,然后经 A 沿半圆轨道滑下,再经 B 滑上滑板.滑板运动到 C 时被牢固粘连.物块可视为质点,质量为 m,滑板质量 M =2m,两半圆半径均为 R ,板长 l =6.5 R,板右端到 C 的距离 L 在 R

(1)求物块滑到 B 点的速度大小;

(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功 W f 与 L 的关系,并判断物块能否滑到 CD 轨道的中点.

【解析】(1)设物块到达B 点的速度为v B ,对物块从E 到B 由动能定理得μmg·5R+mg·2R=12mv 2

B -0①

解得v B =3gR ②

(2)假设物块与滑板达到共同速度v 时,物块还没有离开滑板,对物块与滑板,由动量守恒,有mv B =(m +M )v③ 设物块在滑板上运动的距离为s 1,由能量守恒得

μmg ·s 1=12mv 2B -12(m +M )v 2

④ 由③④,得s 1=6R

即达到共同速度v 时,物块不会脱离滑板滑下.

设此过程滑板向右运动的距离为s 2,对滑板由动能定理得μmg·s 2=12Mv 2

由③⑥,得s 2=2R

讨论:ⅰ当R

B ⑦

解得v C =

2.5R -L g > 0

所以克服摩擦力所做的功W f =μmg(l+L)=3.25mgR +0.5mgL 设物块离开滑板沿圆轨道上升的高度为H

由机械能守恒得12mv 2C =mgH⑧解得H<3

4

R,故物块不能滑到CD 轨道中点.

ⅱ当2R≤L<5R 时,滑块与滑板最终一起运动至滑板与C 相碰,碰后滑块在滑板上继续做减速运动到右端,设此时的速度为v C1,对物块由动能定理得

-μmg(l+s 2)=12mv 2

C1-12mv 2B ⑨ 解得v C1=

2gR 2 > 0 所以克服摩擦力所做的功W f =μmg(l+s 2)=4.25mgR

设物块离开滑板沿圆轨道上升的高度为h,由机械能守恒得12mv 2

C1=mgh⑩

解得h =R

4

(二)倾斜传送带模型

项目

图示

滑块可能的运动情况

情景1

(1)可能一直加速

(2)可能先加速后匀速

情景2(1)可能一直加速

(2)可能先加速后匀速

(3)可能先以a1加速后以a2加速

情景3(1)可能一直加速

(2)可能先加速后匀速

(3)可能一直减速

(4)可能先以a1加速后以a2加速

情景4(1)可能一直加速

(2)可能一直匀速

(3)可能先减速后反向加速

(4)可能一直减速

1、如图所示为粮袋的传送装置,已知A、B间长度为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A点将粮袋放到运行中的传送带上,关于粮袋从A到B的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)( )

A .粮袋到达B点的速度与v比较,可能大,也可能相等或小

B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以一定的速度v做匀速运动C.若μ≥tan θ,则粮袋从A到B一定一直是做加速运动

D.不论μ大小如何,粮袋从A到B一直匀加速运动,且a≥g sin θ

【解析】粮袋在传送带上可能一直做匀加速运动,到达B点时的速度小于v;可能先匀加速运动,当速度与传送带相同后,做匀速运动,到达B点时速度与v相同;也可能先做加速度较大的匀加速运动,当速度与传送带相同后做加速度较小的匀加速运动,到达B点时的速度大于v,故A正确;粮袋开始时受到沿斜面向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得,加速度a=g(sin θ+μcos θ),故B错误;若μ≥tan θ,粮袋从A到B可能一直是做加速运动,也可能先匀加速运动,当速度与传送带相同后,做匀速运动,故C错误;

由上分析可知,粮袋从A到B不一定一直匀加速运动,故D错误,故选A。

2、(多选)如图9示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的运动情况的是( )

图9 图10

【解析】选BD 小木块刚放上之后的一段时间内所受摩擦力沿斜面向下,由牛顿第二定律可得:mg sin θ+μmg cos θ=ma1,小木块与传送带同速后,因μ<tan θ,小木块将继续向下加速运动,此时有:mg sin θ-μmg cos θ=ma2,有a1>a2故B、D正确,A、C错误。

3、如图11所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ

图11

【解析】开始阶段,木块受到竖直向下的重力、垂直斜面向上的支持力和沿传送带向下的摩擦力作用,做加速度为a1的匀加速直线运动,由牛顿第二定律得mg sin θ+μmg cos θ=ma1

所以a1=g sin θ+μg cos θ

木块加速至与传送带速度相等时,由于μ

所以a2=g sin θ-μg cos θ

根据以上分析,有a2

4、(多选)如图12所示,传送带与水平地面的倾角为θ=37°,AB的长度为10m,传送带以10m/s的速度沿逆时针方向转动,在传送带上端A点无初速度地放上一个质量为4kg的物体,它与传送带之间的动摩擦因数为0.5,规定沿斜面向下为正方向,则物体从A点运动到B点所用的时间内,物体的速度v和物体受到传送带的摩擦力F随时间的变化图象,正确的是( )

图12

【解析】开始时滑动摩擦力的大小不变,方向沿斜面向下,物体下滑的加速度:a1=g(sin37°+μcos37°)

=10m/s2,运动到与传送带共速的时间为:t1=v

a1

=1s,下滑的距离:x1=

1

2

a1t21=5m<10m;由于ta n37°=

0.75>0.5,故物体加速下滑,且此时滑动摩擦力的大小不变,方向沿斜面向上,物体下滑的加速度:a2=g(sin37°-μcos37°)=2m/s2,所以物体先以10 m/s2做加速运动,后来以2m/s2做加速运动.所以物体相对于传送带始终滑动,滑动摩擦力的大小和方向发生变化,故A、D错误,B、C正确.

5、如图13所示,物块M在静止的传送带上以速度v匀速下滑时,传送带突然启动,方向如图中箭头所示顺时针转动,若传送带的速度大小也为v,则传送带启动后( )

图13

A.M相对地面静止在传送带上

B.M沿传送带向上运动

C.M受到的摩擦力不变

D.M下滑的速度减小

【解析】传送带突然启动前物块匀速下滑,对物块进行受力分析:物块受重力、支持力、沿斜面向上的滑动摩擦力.传送带突然启动后,对物块进行受力分析,物块受重力、支持力,由于与M接触的传送带斜向上运动,而物块斜向下运动,所以物块所受到的摩擦力不变仍然斜向上,所以物块仍匀速下滑,故C正确,A、B、D错误.

6、(多选)如图14所示,白色传送带保持v0=10m/s的速度逆时针转动,现将一质量为0.4 kg的煤块轻放在传送带的A端,煤块与传送带间动摩擦因数μ=0.5,传送带A、B两端距离x=16 m,传送带倾角为37°,则(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)( )

图14

A .煤块从A 端运动到

B 端所经历的时间为2s B .煤块从A 端运动到B 端相对传送带的相对位移为6m

C .煤块从A 端运动到B 端画出的痕迹长度为5m

D .煤块从A 端运动到B 端摩擦产生的热量为6.4J 【解析】煤块刚放上传送带时的加速度大小为:a 1=

mg sin37°+μmg cos37°m

=10m/s 2

,则煤块速度达到传

送带速度的时间为:t 1=v 0a 1=1010s =1s,位移为:x 1=v 20

2a 1=10020m =5m,煤块速度达到传送带速度后的加速度为:

a 2=mg sin37°-μmg cos37°m =g sin37°-μg cos37°=2m/s 2

,根据x -x 1=v 0t 2+12

a 2t 22代入数据解得:t 2=

1s,则煤块从A 端运动到B 端所经历的时间为:t =t 1+t 2=2s,故A 正确;煤块速度达到传送带速度时,相对位移大小Δx 1=v 0t 1-x 1=5m,煤块速度达到传送带速度后相对位移的大小Δx 2=x -x 1-v 0t 2=1m,则相对位移的大小Δx =Δx 1-Δx 2=4m,故B 错误;留下的痕迹长度Δx ′=Δx 1=5m,故C 正确;摩擦产生的热量Q =μmg cos37°Δx 1+μmg cos37°Δx 2=9.6J,故D 错误.

7、 如图15所示,倾角为θ=30°的皮带运输机的皮带始终绷紧,且以恒定速度v =2.5 m/s 运动,两轮相

距L AB =5 m,将质量m =1 kg 的物体无初速地轻轻放在A 处,若物体与皮带间的动摩擦因数μ=3

2

(取g =10 m/s 2

),物体从A 运动到B 共需多长时间?

图15

【解析】第一阶段,物块向上匀加速运动,由牛顿第二定律有μmg cos θ-mg sin θ=ma 1 代入数据求得a 1=2.5 m/s 2

根据匀变速直线运动规律得v =a 1t 1,x 1=v

2t 1

代入数据求得t 1=1 s,x 1=1.25 m

第二阶段,由于μ>tan θ,故物体向上匀速运动。

L AB -x 1=vt 2,t 2=1.5 s 。总时间t =t 1+t 2=2.5 s 。

8、如图16所示,传送带与地面夹角θ=37°,从A 到B 长度为L =10.25 m,传送带以v 0=10 m/s 的速率逆时针转动。在传送带上端A 无初速地放一个质量为m =0.5 kg 的黑色煤块,它与传送带之间的动摩擦因数为

μ=0.5。煤块在传送带上经过会留下黑色痕迹。已知sin 37°=0.6,g =10 m/s 2,求:

图16

(1)煤块从A 到B 的时间;

(2)煤块从A 到B 的过程中传送带上形成痕迹的长度。 【解析】(1)煤块刚放上时,受到向下的摩擦力,其加速度为

a 1=g (sin θ+μcos θ)=10 m/s 2,

加速过程中t 1=v 0a 1=1 s,x 1=12

a 1t 2

1=5 m 。

达到v 0后,受到向上的摩擦力,则a 2=g (sin θ-μcos θ)=2 m/s 2

,

x 2=L -x 1=5.25 m,x 2=v 0t 2+1

2

a 2t 22,得t 2=0.5 s 。

煤块从A 到B 的时间为t =t 1+t 2=1.5 s 。 (2)第一过程痕迹长Δx 1=v 0t 1-x 1=5 m, 第二过程痕迹长Δx 2=x 2-v 0t 2=0.25 m, Δx 1与Δx 2部分重合,故痕迹总长为5 m 。

9、如图17所示的传送皮带,其水平部分ab 长度为2 m,倾斜部分bc 长度为4 m ,bc 与水平方向的夹角为θ=37°,将一小物块A (可视为质点)轻轻放在传送带的a 端,物块A 与传送带之间的动摩擦因数μ=0.25。传送带沿图示方向以v =2 m/s 的速度匀速运动,若物块A 始终未脱离皮带,试求小物块A 从a 端传送到c 端所用时间。(取g =10 m/s 2

,sin 37°=0.6,cos 37°=0.8)

图17

【解析】物块A 在ab 之间运动,f 1=μF N1,根据牛顿第二定律得F N1-mg =0,f 1=ma 1,解得a 1=μg =2.5 m/s 2

,设小物块A 速度达到2 m/s 所需时间为t 1,运动位移为x 1。

根据运动学规律可得t 1=v a 1=0.8 s,x 1=12

a 1t 2

1=0.8 m

由于x 1<2 m,可知A 在还没有运动到b 点时,已与皮带速度相同。此后A 做匀速运动,设运动时间为t 2,l ab -

x 1=vt 2,得t 2=0.6 s 。A 在bc 间运动时,小物块A 所受的摩擦力方向沿传送带向上。 mg sin θ-f 2=ma 2,又f 2=μmg cos θ

得a 2=g (sin θ-μcos θ)=4 m/s 2

l bc =vt 3+1

2

a 2t 23,得t 3=1 s,t 3′=-2 s(舍去)

则小物块A 从a 端传送到c 端所用时间t =t 1+t 2+t 3=2.4 s

10、如图18所示,甲、乙两传送带倾斜放置,与水平方向夹角均为37°,传送带乙长为4 m,传送带甲比乙长0.45 m,两传送带均以3 m/s 的速度逆时针匀速转动,可视为质点的物块A 从传送带甲的顶端由静止释放,可视为质点的物块B 由传送带乙的顶端以3 m/s 的初速度沿传送带下滑,两物块质量相等,与传送带间的动摩擦因数均为0.5,取g =10 m/s 2

,sin 37°=0.6,cos 37°=0.8。求:

图18

(1)物块A 由传送带顶端滑到底端经历的时间; (2)物块A 、B 在传送带上的划痕长度之比。

【解析】(1)对物块A 由牛顿第二定律知mg sin 37°+μmg cos 37°=ma 1,代入数值得a 1=10 m/s 2

设经时间t 1物块A 与传送带共速,则由运动学规律知

v 带=a 1t 1,即t 1=0.3 s

此过程中物块A 的位移为x 1=12a 1t 2

1=0.45 m

物块A 与传送带共速后,由牛顿第二定律知

mg sin 37°-μmg cos 37°=ma 2,代入数值得a 2=2 m/s 2

由运动学规律知L 甲-x 1=v 带t 2+12

a 2t 2

2,代入数值得t 2=1 s

所以物块A 由传送带顶端滑到底端经历的时间为t =t 1+t 2=1.3 s 。

(2)在物块A 的第一个加速过程中,物块A 在传送带上的划痕长度为

L 1=v 带t 1-x 1=0.45 m

在物块A 的第二个加速过程中,物块A 在传送带上的划痕长度为

L 2=v 带t 2+1

2

a 2t 22-v 带t 2=1.0 m

所以物块A 在传送带上的划痕长度为L A =L 2=1.0 m

由分析知物块B 的加速度与物块A 在第二个加速过程的加速度相同,从传送带顶端加速到底端所需时间与t 2相同

所以物块B 在传送带上的划痕长度为L B =v 带t 2+12a 2t 2

2-v 带t 2=1.0 m

故物块A 、B 在传送带上的划痕长度之比为L A ∶L B =1∶1

11、如图19所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s,在传送带顶端A 处无初速度的释放一个质量为m =0.5 kg 的物体,已知物体与传送带间的动摩擦因数μ=0.5,g 取10 m/s 2

。求:(sin 37°=0.6,cos 37°=0.8)

图19

(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间。

【解析】(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg (sin 37°-μcos 37°)=ma 则a =g sin 37°-μg cos 37°=2 m/s 2

,根据l =12

at 2得t =4 s 。

(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a 1,由牛顿第二定律得

mg sin 37°+μmg cos 37°=ma 1

则有a 1=

mg sin 37°+μmg cos 37°m

=10 m/s 2

设当物体运动速度等于传送带转动速度时经历的时间为t 1,位移为x 1,则有

t 1=v a 1=1010 s =1 s,x 1=1

2

a 1t 12=5 m <l =16 m

当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,

受到传送带向上的滑动摩擦力——摩擦力发生突变。设当物体下滑速度大于传送带转动速度时物体的加速度为a 2,则

a 2=mg sin 37°-μmg cos 37°m =2 m/s 2

x 2=l -x 1=11 m

又因为x 2=vt 2+12a 2t 22,则有10t 2+t 22

=11

解得:t 2=1 s(t 2=-11 s 舍去) 所以t 总=t 1+t 2=2 s 。

12、如图20所示,与水平方向成37°角的传送带以恒定速度v =2 m/s 沿顺时针方向转动,两传动轮间距L =5 m 。现将质量为1 kg 且可视为质点的物块以v 0=4 m/s 的速度沿传送带向上的方向自底端滑上传送带。物块与传送带间的动摩擦因数为μ=0.5,取g =10 m/s 2

,已知sin 37°=0.6,cos 37°=0.8,计算时,可认为滑动摩擦力近似等于最大静摩擦力,求物块在传送带上上升的最大高度。

图20

【解析】刚滑上传送带时,物块相对传送带向上运动,受到摩擦力沿传送带向下,将匀减速上滑,直至与传送带等速,由牛顿第二定律得mg sin θ+μmg cos θ=ma 1 则a 1=g (sin θ+μcos θ)=10 m/s 2

改变物块与传送带相对静止瞬间,由于最大静摩擦力f =μmg cos θ<mg sin θ,相对静止状态不能持续,物块速度会继续减小。此后,物块受到滑动摩擦力沿传送带向上,但合力沿传送带向下,故继续匀减速上升,直到速度为零

由mg sin θ-μmg cos θ=ma 2 得a 2=g (sin θ-μcos θ)=2 m/s 2

位移x 2=v 2

2a 2

=1 m

则物块沿传送带上升的最大高度为

H =(x 1+x 2)sin 37°=0.96 m 。

13、如图所示,皮带传动装置与水平面夹角为30°,轮半径R =

1

m,两轮轴心相距L =3.75m,A 、B 分别使传

送带与两轮的切点,轮缘与传送带之间不打滑。一个质量为0.1kg 的小物块与传送带间的动摩擦因数为μ= 36

。g 取10m/s 2

。 (1)当传送带沿逆时针方向以v 1=3m/s 的速度匀速运动时,将小物块无初速地放在A 点后,它运动至B 点需多长时间?(计算中可取252≈16,396≈20)

(2)小物块相对于传送带运动时,会在传送带上留下痕迹。当传送带沿逆时针方向匀速运动时,小物块无初速地放在A 点,运动至B 点飞出。要想使小物块在传送带上留下的痕迹最长,传送带匀速运动的速度v 2至少多大?

-

【解析】(1)当小物块速度小于3m/s 时,小物块受到竖直向下、垂直传送带向上的支持力和沿传送带斜向

下的摩擦力作用,做匀加速直线运动,设加速度为a 1,根据牛顿第二定律mg sin30° + μmg cos30°=ma 1

解得 a 1 = 7.5m/s 2

当小物块速度等于3m/s 时,设小物块对地位移为L 1,用时为t 1,根据匀加速直线运动规律t 1 = v 1a 1 L 1 = v 12

2a 1

解得 t 1 = 0.4s L 1 = 0.6m

由于L 1<L 且μ<tan30°,当小物块速度大于3m/s 时,小物块将继续做匀加速直线运动至B 点,设加速度为

a 2,用时为t 2,根据牛顿第二定律和匀加速直线运动规律 mg sin30°-μmg cos30°=ma 2

解得 a 2 = 2.5m/s 2

L -L 1 = v 1t 2 + 12

a 2t 22 解得 t 2 = 0.8s

故小物块由禁止出发从A 到B 所用时间为 t = t 1 + t 2 = 1.2s

(2)作v —t 图分析知:传送带匀速运动的速度越大,小物块从A 点到B 点用时越短,当传送带速度等于某一值v′ 时,小物块将从A 点一直以加速度a 1做匀加速直线运动到B 点,所用时间最短,即 L = 12a 1t min 2

得t min = 1s v′ =a 1t min =7.5m/s

此时小物块和传送带之间的相对路程为 △S = v′ t -L = 3.75m

传送带的速度继续增大,小物块从A 到B 的时间保持不变,而小物块和传送带之间的相对路程继续增大,小物

块在传送带上留下的痕迹也继续增大;当痕迹长度等于传送带周长时,痕迹为最长S max ,设此时传送带速度为

v 2,则 联立得 v 2 = 12.25m/s

14、如图所示为车站使用的水平传送带的模型,它的水平传送带的长度为L =8m,传送带的皮带轮的半径均为

R =0.2m,传送带的上部距地面的高度为h =0.45m,现有一个旅行包(视为质点)以v 0=10m/s 的初速度水平

地滑上水平传送带.已知旅行包与皮带之间的动摩擦因数为μ=0.6.皮带轮与皮带之间始终不打滑。g 取10m/s 2

.讨论下列问题:

⑴若传送带静止,旅行包滑到B 端时,人若没有及时取下,旅行包将从B 端滑落.则包的落地点距B 端的水平距离为多少?

⑵设皮带轮顺时针匀速转动,若皮带轮的角速度ω1=40 rad/s,旅行包落地点距B 端的水平距离又是多少? ⑶设皮带轮以不同的角速度顺时针匀速转动,画出旅行包落地点距B 端的水平距离s 随皮带轮的角速度ω变化的图象.

【解析】⑴旅行包做匀减速运动, a =μg =6m/s 2

旅行包到达B 端速度为

包的落地点距B 端的水平距离为 s =vt =v

g

h

2=2×10

45

.02? m =0.6m ⑵当ω1=40 rad/s 时,皮带速度为

当旅行包速度也为s m v /81=时,在皮带上运动了位移

<8m

以后旅行包作匀速直线运动,所以旅行包到达B 端的速度也为 s m v /81= 包的落地点距B 端的水平距离为 s 1=v 1t =v 1

g

h

2=8×10

45

.02? m =2.4 m

⑶如图所示,每段图线1分。

广州市2019年高中物理力学竞赛辅导资料专题07动量和能量(含解析)

专题07 动量和能量 一、单项选择题(每道题只有一个选项正确) 1、质量为m 、速度为v 的A 球跟质量为3m 的静止B 球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B 球的速度允许有不同的值。则碰撞后B 球的速度可能是( ) A.0.6v B.0.5v C.0.4v D.0.3v 【答案】C 【解析】①若是弹性碰撞,由动量守恒定律和机械能守恒定律可得mv =mv 1+3mv 212mv 2=12mv 2 1+12×3mv 22 得v 1=m -3m m +3m v =-12v ,v 2=2m 4m v =12v 若是完全非弹性碰撞,则mv =4mv ′,v ′=14v 因此14v ≤v B ≤1 2v ,只有C 是可能的。 2、如图所示,在足够长的光滑水平面上有一静止的质量为M 的斜面,斜面表面光滑、高度为h 、倾角为θ。一质量为m (m <M )的小物块以一定的初速度沿水平面向左运动,不计冲上斜面时的机械能损失。如果斜面固定,则小物块恰能冲到斜面的顶端。如果斜面不固定,则小物块冲上斜面后能达到的最大高度为( ) A.h B.mh m +M C.mh M D.Mh m +M 【答案】D 【解析】斜面固定时,由动能定理得-mgh =0-1 2mv 20 所以v 0=2gh 斜面不固定时,由水平方向动量守恒得mv 0=(M +m )v 由机械能守恒得12mv 20=12(M +m )v 2 +mgh ′解得h ′=M M +m h ,选项D 正确。 3、如图所示,在光滑水平面上停放质量为m 装有弧形槽的小车。现有一质量也为m 的小球以v 0的水平速度沿切线水平的槽口向小车滑去(不计摩擦),到达某一高度后,小球又返回小车右端,则以下说法不正确的是( )

2018年温州市高一力学竞赛

2018年温州市高一物理(力学)竞赛试卷 (本卷重力加速度g取10m/s2) 一.选择题(本题共11小题,共55分.在每小给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得5分,选对但不全的得2分,有选错的得0分) 1.用国际单位制的基本单位表示能量的单位,下列正确的是( ) A.kg.m2/s2 B.kg/s.m2 C.N/m D.N.m 2.如图所示,小芳在休重计上完成下蹲动作,下列F-t图像能反应体重计示数随间变化的是( ) 3.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整 再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给 卫星一附加速度,使卫星沿同步凯道运行.已知同步卫星的环绕速度约为 3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的 高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发 动机给卫星的附加速度的方问和大小约为( ) A.西偏北方问,1.9×103m/S B.东偏南方向,1.9×103m/s C.西偏北方向,2.7×103m/S D.东偏南方向,2.7×103T/S 4.2013年2月16日凌晨,2012DA14小行星与地球“擦肩而过”,距离地球最近约2.77万公里.据观测,它绕太阳公转的周期约为366天,比地球的公转周期多1大.假设小行星和地球绕太阳运行的轨道均为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2小以下关系式正确( ) A. R1 R2= 366 365 B. R13 R23= 3662 3652 C. v1 v2= 366 365 D. v1 v2= 3366 365 5.如图所示,A、B两物体用两根轻质细线分别悬挂在天花板上,两绌线与水平方向夹角分别为60°和45°,AB 间拴接的轻质弹簧恰好处于水平状态,则下列判断正确的是( ) A.A,B的质量之比为1: 3 B.A,B所受弹簧弹力大小之比为 3 : 2 C.悬挂A.B的细线上拉力大小之比为1: 2 D.快速撤去弹簧的瞬间,A、B的瞬时加速度大小之比为1: 2 6.风速仪结构如图(a)所示,光源发出的光经光纤传输,被探测器接 收,当风轮旋转时.通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经 过透镜系统时光被挡住.已知风轮叶片转动半径为r.每转动n圈带 动凸轮圆盘转动一圈.若某段时间Δt内探测器接收到的光强随时 间变化关系如图(b)所示,则该时间段内风轮叶片( )

高级高中物理力学实验专题汇总

高级高中物理力学实验 专题汇总 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

实验一研究匀变速直线运动 考纲解读 1.练习正确使用打点计时器.2.会计算纸带上各点的瞬时速度.3.会利用纸带计算加速度.4.会用图象法探究小车速度与时间的关系,并能根据图象求加速度. 基本实验要求 1.实验器材 电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片. 2.实验步骤 (1)按照实验原理图所示实验装置,把打点计时器固定在长木板无滑轮的一端,接好电源; (2)把一细绳系在小车上,细绳绕过滑轮,下端挂合适的钩码,纸带穿过打 点计时器,固定在小车后面; (3)把小车停靠在打点计时器处,接通电源,放开小车; (4)小车运动一段时间后,断开电源,取下纸带; (5)换纸带反复做三次,选择一条比较理想的纸带进行测量分析. 3.注意事项 (1)平行:纸带、细绳要和长木板平行. (2)两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源,后取纸带. (3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地和小车与滑轮相撞. (4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速 度大小以能在约50 cm的纸带上清楚地取出6~7个计数点为宜. 规律方法总结 1.数据处理 (1)目的 通过纸带求解运动的加速度和瞬时速度,确定物体的运动性质等. (2)处理的方法 ①分析物体的运动性质——测量相邻计数点间的距离,计算相邻计数点距离 之差,看其是否为常数,从而确定物体的运动性质. ②利用逐差法求解平均加速度

(完整版)高一物理牛顿第一定律

必修一 4.1 牛顿第一定律学案 课前预习学案 A.预习目标 1、知道牛顿第一定律。知道惯性及惯性现象。 2、知道日常生活中由于惯性而产生的简单现象。会解释日常生活中的惯性现象。 二、预习内容 1、一切物体总保持_______状态或________状态,除非__________________,这就是牛顿第一定律.牛顿第一定律揭示了运动和力的关系:力不是_________的原因,而是______________的原因. 2、物体的这种保持_________或__________的性质叫做惯性,惯性是物体的____性质. 三、提出疑惑 课内探究学案 (一)学习目标 (一)知识与技能 1、理解力和运动的关系,知道物体的运动不需要力来维持。 2、理解牛顿第一定律,知道它是逻辑推理的结果,不受力的物体是不存在的。 3、理解惯性的概念,知道质量是惯性大小的量度. (二)过程与方法 1、培养学生分析问题的能力,要能透过现象了解事物的本质,不能不加研究、分析而只凭经验,对物理问题决不能主观臆断.正确的认识力和运动的关系. 2、帮助学生养成研究问题要从不同的角度对比研究的习惯. 3、培养学生逻辑推理的能力,知道物体的运动是不需要力来维持的。 (三)情感、态度与价值观 1、利用动画演示伽利略的理想实验,帮助学生理解问题。 2、利用生活中的例子来认识惯性与质量的关系。培养学生大胆发言,并学以致用。 教学重难点 1、理解力和运动的关系。 2、理解牛顿第一定律,知道惯性与质量的关系。 二、学习过程 (一)下面你就利用桌子上的器材来研究一下这个问题。让学生利用桌子上的器材,自主设计实验,分别研究: l、力推物动,力撤物停。 2、力撤物不停。 提问:你还能举出其他的例子来说明这个问题吗? 刚才的两个实验为什么会出现两种现象呢?矛盾出在哪呢? 总结:物体的运动是不需要力来维持的。(力撤物停的原因是因为摩擦力。如果没有摩擦力,运动的物体会一直运动下去)。最早发现这一问题的科学家是伽利略。伽利略是

2012年衢州市高中物理力学竞赛试题(含答案)

2012年衢州市高中物理力学竞赛试题(含答案) 一、不定项选择题(共10小题,50分) 1. 伽利略为了研究自由落体的规律,将落体实验转化为著名的“斜面实验”,对于这 个研究过程,下列说法正确的是( ) A .斜面实验通过确定小球运动位移和时间关系来证明小球速度与时间成正比 B .斜面实验“冲淡”了重力的作用,便于测量小球运动的时间 C .通过对斜面实验的观察与计算,直接得到落体运动的规律 D .根据斜面实验结论进行合理的外推,得到落体的运动规律 2. 如图所以,斜面体M 放在粗糙水平面上,物体m 在沿斜面向上力的作用下在光滑 斜面上做下列四种运动,斜面体均保持静止。沿斜面向上匀速运动;沿斜面向上匀加速运动;沿斜面向下匀加速运动;沿斜面向上变加速运动。地面对斜面体M 的摩擦力大小分别为1f F 、2f F 、3f F 、4f F 。则( ) A .1f F 、2f F 、3f F 一定相等,但与4f F 一定不相等 B .1f F 可能与2f F 或3f F 相等 C .2f F 、3f F 一定相等,但与4f F 可能相等 D .1f F 、2f F 、3f F 、4f F 四者一定相等 3.有一种大型游戏机叫“跳楼机”.参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40m 高处,然后由静止释放.为研究方便,可以认为座椅沿轨道做自由落体运动1.2 s 后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4m 高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10m /s2)则( ) A .匀减速运动的时间为4.8s B .匀减速运动的加速度大小为5.0m/s2 C .游客对座椅的最大压力为游客重力的1.25倍 D .游客对座椅的最大压力为游客重力的0.75倍 4.一个质点在竖直平面内运动一周闪光照片如图所示,由图可知( ) A .质点作匀速圆周运动 B .质点作非匀速圆周运动 C .若闪光频率已知可以求出质点运动周期 D .即使闪光频率已知也不能求出质点运动周期 5.一质点只受一个恒力F 作用在xoy 平面内运动,F 大小为2N 。已 知质点运动到A 点的动能为12J ,运动到B 点的动能为7J ,A 、B 两 点的坐标如图所示。则恒力F 与+x 方向的夹角可能为( ) A .023 B .060 C .083 D .0 97 6.如图(俯视图)所示,水平地面上处于伸直状态的轻绳一端拴在质量为m 的物块上,另一端拴在固定于B 点的本桩上.用弹簧称的光滑挂钩缓慢拉绳,弹簧称始终与地面平行.物块在水平拉力作用下缓慢滑动.当物块滑动至A 位置,∠AOB=120°时,弹簧称的示数为F .则( ) A ,物块与地面间的动摩擦因数为F/mg B .木桩受到绳的拉力始终大于F C .弹簧称的拉力保持不变 D .弹簧称的拉力一直增大 7.a 是放在地球赤道上的物体,b 是近地卫星,c 是地球同步卫星,a 、b 、c 在同一 平面内绕地心做逆时针方向的圆周运动,某时刻,它们运行通过地心的同一直线上,如图甲所示.一段时间后.它们的位置可能是图乙中的 ( ) 第2题图

全!物理竞赛必修指导及推荐教材

物理竞赛必修指导及推荐教材蔡子星 结合这么几年带物理竞赛的经验和自身当年竞赛的心得给出竞赛初学者的必读书目。当然啦,说是必读,如果能有类似的书替换也没有任何问题。只不过在浩如烟海的竞赛书籍中,缺的不是书,而是对书的挑选。 所以下面分四个难度级别向大家提供高中物理竞赛详细培养计划 第一阶段【初入殿堂篇】 难度:初赛;使用:选择新概念读本+任意一本;目标:决定是否开始往下看; 《新概念:高中物理读本》by 赵凯华第一册:第二册:第三册: 范晓辉“黑白书” 费曼第一册 北京市高中力学竞赛试题答案汇编高中物理奥赛方法 3000物理习题经解 第二阶段【强化学员篇】 难度:复赛;使用:前三个任选2个+真题;目标:搞定复赛 程稼夫系列:《力学篇》《电磁学篇》《中学奥林匹克竞赛物理讲座》《热学光学近代物理篇》 物理竞赛教程(三册)by 张大同第一册第二册第三册 《高中物理竞赛培优教程》by 舒幼生 《更高更妙的物理》 《全国中学生物理竞赛1-20届力学部分》 《全国中学生物理竞赛1-20届电磁学部分》 《全国中学生物理竞赛1-20届热学、光学及近代物理部分》 《金牌之路》by 张大同 历年预赛复赛真题 200道物理学难题 第三阶段【难度补全篇】 难度:决赛;使用:新概念物理+难题集萃+任选两本;目标:搞定决赛 《物理学难题集萃》by 舒幼生 《新编基础物理实验》 《新概念物理系列》by 赵凯华-《力学》《热学》《电磁学》新概念物理难度分级表高等数学(上)(下)by 李忠上册:下册: 历届决赛题第四阶段【究极领域篇】 难度:国际集训队;使用:结合国培搞定四大力学;目标:为从事物理行业打基础 历届IPhO试题历届APhO试题 《国际物理奥赛的选拔与培训》 《简明理论力学教程》by 周乐柱 四大力学《经典力学》by 梁昆淼《电动力学》by 郭硕鸿 《热力学与统计物理》by 汪志诚《量子力学》卷I卷II by 曾谨言

【名师精品】高中物理经典题库-力学实验题30个

力学实验题集粹(30个) 1.(1)用螺旋测微器测量某金属丝的直径,测量读数为0.515mm,则此时测微器的可动刻度上的A、B、C刻度线(见图1-55)所对应的刻度值依次是________、________、________. 图1-55 (2)某同学用50分度游标卡尺测量某个长度L时,观察到游标尺上最后一个刻度刚好与主尺上的6.2cm刻度线对齐,则被测量L=________cm.此时游标尺上的第30条刻度线所对应的主尺刻度值为________cm.2.有一个同学用如下方法测定动摩擦因数:用同种材料做成的AB、BD平面(如图1-56所示),AB面为一斜面,高为h、长为L1.BD是一足够长的水平面,两面在B点接触良好且为弧形,现让质量为m的小物块从A点由静止开始滑下,到达B点后顺利进入水平面,最后滑到C点而停止,并测量出BC=L2,小物块与两个平面的动摩擦因数相同,由以上数据可以求出物体与平面间的动摩擦因数μ=________. 图1-56 3.在利用自由落体来验证机械能守恒定律的实验中,所用的打点计时器的交流电源的频率为50Hz,每4个点之间的时间间隔为一个计时单位,记为T.在一次测量中,(用直尺)依次测量并记录下第4点、第7点、第10点、第13点及模糊不清的第1点的位置,用这些数据算出各点到模糊的第1点的距离分别为d1=1.80cm、d2=7.10cm、d3=15.80cm、d4=28.10cm.要求由上述数据求出落体通过与第7点、第10点相应位置时的即时速度v1、v2.注意,纸带上初始的几点很不清楚,很可能第1点不是物体开始下落时所打的点.v1、v2的计算公式分别是:v1=________,v2=________,它们的数值大小分别是v1=________,v2=________.4.某同学在测定匀变速运动的加速度时,得到了几条较为理想的纸带,已在每条纸带上每5个打点取好一个计数点,即两计数之间的时间间隔为0.1s,依打点先后编为0,1,2,3,4,5.由于不小心,纸带被撕断了,如图1-57所示,请根据给出的A、B、C、D四段纸带回答(填字母) 图1-57 (1)在B、C、D三段纸带中选出从纸带A上撕下的那段应该是________. (2)打A纸带时,物体的加速度大小是________m/s2. 5.有几个登山运动员登上一无名高峰,但不知此峰的高度,他们想迅速估测出高峰的海拔高度,但是他们只带了一些轻质绳子、小刀、小钢卷尺、可当作秒表用的手表和一些食品,附近还有石子、树木等.其中一个人根据物理知识很快就测出了海拔高度.请写出测量方法,需记录的数据,推导出计算高峰的海拔高度的计算式.6.如图1-58中A、B、C、D、E、F、G为均匀介质中一条直线上的点,相邻两点间的距离都是1cm,如果波沿它们所在的直线由A向G传播,已知波峰从A传至G需要0.5s,且只要B点振动方向向上,D点振动方向就向下,则这列波的波长为________cm,这列波的频率为________Hz.

高中物理牛顿运动定律典型例题精选讲解

牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示, F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2 的加速度的作用力为 1N,即1N=1kg.m/s 2 . 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向, 竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜 面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小 练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。 1.物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变). 2.中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等. 30a F m g F f 图1 x y x a a 图图

2019年第32届北京市高中力学竞赛决赛试题(word版)含答案

第32届北京市高中力学竞赛竞赛试题 一、填空题(6小题,每小题8分,共48分) 1、按最近新闻报道,科学家观察到了水分子在月球正面的运动。月球表面有水,稀疏的水会与月球表面的土壤或风化层结合,随着每天时间变化,你是否联想到月球表面空间是否存在稀薄的大气? 答:_________________________________________________; 理由:________________________________________________________________。 2、两个基本相同的生鸡蛋A 和B ,左手持A 静止,右手持B 以一定速度碰向A ,碰撞的部位相同,用你学的物理规律判断哪一个蛋破碎的可能性大?___________________; 理由是:__________________________________________________________________________。 3、质点沿半径为R 的圆周运动,通过圆弧的长度s =bt - 2 c t 2,则质点的切向加速度与法向加速度相等的时间为_______________。 4、长为l 的轻杆,两端分别固定小球A 和B ,质量分别为m 和2m ,竖直立于光滑水平面上(如图1所示),由静止释放后,A 落到水平面瞬间速度的大小为_____________,方向为______________。

5、如图2所示,质量相同的两物块A和B,用细线连接起来,A位于光滑水平面上,开始时细线水平拉直,细线中点位于小滑轮上,释放B后,问A先碰到滑轮还是B先碰到竖直壁?答:___________________,理由是____________________________________________________。 6、一艘帆船静止于湖面上,此时无风,船尾安装一风扇,风扇向帆吹风,流行的说法认为船不会向前运动,你仔细想想这说法是否正确?答_______________________,理由是:________________________。 二、计算题(共102分) 7、(16分)如图3所示,长2l的线系住两个相同的小钢球,放在光滑的水平地板上,在线中央有水平恒力F作用于线, 问:(1)钢球第一次相碰时,在与F垂直的方向上钢球对地面的速度多大? (2)经若干次碰撞后,最后两球一直处于接触状态下运动,那么因碰撞而失去的总能量是多少?

高中物理力学实验专题训练(有答案)

力学实验专题训练 2017、04 1.在“验证动量守恒定律”的实验中,气垫导轨上放置着带有遮光板的滑块A、B,遮光板的宽度相同,测得的质量分别为m1和m2.实验中,用细线将两个滑块拉近使轻弹簧压缩,然后烧断细线,轻弹簧将两个滑块弹开,测得它们通过光电门的时间分别为t1、t2. (1)图22⑴为甲、乙两同学用螺旋测微器测遮光板宽度d时所得的不同情景。由该图可知甲同学测得的示数为mm,乙同学测得的示数为mm。 (2)用测量的物理量表示动量守恒应满足的关系式: 被压缩弹簧开始贮存的弹性势能P E 2.为验证“动能定理”,某同学设计实验装置如图5a所示,木板倾斜构成固定斜面,斜面B处装有图b所示的光电门. (1)如图c所示,用10分度的游标卡尺测得挡光条的宽度d= (2)装有挡光条的物块由A处静止释放后沿斜面加速下滑,读出挡光条通过光电门的挡光时间t,则物块通过B处时的速度为________ (用字母d、t表示); (3)测得A、B两处的高度差为H、水平距离L.已知物块与斜面间的动摩擦因数为μ,当地的重力加速度为g,为了完成实验,需要验证的表达式为_______________ _.(用题中所给物理量符号表示) 3.在“验证机械能守恒定律”的实验中,小明同学利用传感器设计实验:如图10甲所示,将质量为m、直径为d的金属小球在一定高度h由静止释放,小球正下方固定一台红外线计时器,能自动记录小球挡住红外线的时间t,改变小球下落高度h,进行多次重复实验.此方案验证机械能守恒定律方便快捷. (1)用螺旋测微器测小球的直径如图乙所示,则小球的直径d=________mm; (2)为直观判断小球下落过程中机械能是否守恒,应作下列哪一个图象________; A.h-t图象 B.h-1 t图象 C.h-t2图象 D.h- 1 t2图象 甲 0123401234 5 45 5 45 可动刻度 固 定 刻 度 固 定 刻 度

高中物理牛顿运动定律基础练习题

牛顿运动定律 第一课时牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作

北京市高中物理(力学)竞赛第29届(2016)预赛试题与解答

第29届北京市高中力学竞赛预赛试题 一、选择题 1.如图1所示,一斜劈静止于粗糙水平地面上,斜劈倾角为θ,质量为m 的物块在水平力F 作用下沿斜面向上匀速运动。由此可以判断地面对斜劈的摩擦力 A .大小为F ,方向向左; B .大小为F ,方向向右; C .摩擦力大于F ,方向向左; D .摩擦力大于F ,方向向右. 2.质点运动的图如图2所示,由图可知 A .0-t 1段做加速运动; B .t 1-t 2段做加速运动;. C .t 3后做匀速运动; D .t 1时刻速度为0. 3.竖直上抛一个小球,设小球运动过程中所受空气阻力大小恒定,则小球的速度随时间变化的图线可能是图3中的 4.轻质弹簧上端固定在天花板上,用手托住一个挂在弹簧下端的物体,此时弹簧既不伸长也不缩短。如果托住物体的手缓慢下移,直到移去手后物体保持静止。在此过程中 A .物体的重力势能的减小量大于弹簧的弹性势能的增加量; B .物体的重力势能的减小量等于弹簧的弹性势能的增加量; C .物体的重力势能的减小量小于弹簧的弹性势能的增加量; D .物体和弹簧组成的系统机械能守恒 5.质点做匀速圆周运动,所受向心力F 与半径R 的关系图线如图4所示,关于 a 、 b 、 c 、 d 四条图线可能正确的是 A .a 表示速度一定时,F 与R 的关系; B .b 表示角速度一定时,F 与R 的关系; C .c 表示角速度一定时,F 与R 的关系; D .d 表示速度一定时,F 与R 的关系. 6.登月舱在接近月球时减速下降,当距离月球表面5.0m 时,关闭发动机,此时下降的速度为0.2m/s ,则登月舱落到月球表面时的速度大小约为(月球表面处的引力加速度为1.6m/s 2) A .2.0m/s B .3.0m/s C .4.0m/s D .5.0m/s 7.从高处水平抛出一个小球,初速度为v 0,小球落地时速度为v ,不计空气阻力,则小球在空中飞行的时间为 A .v -v 0g B .v 2-v 022g C .v 2-v 02 g D .v 2-v 022g

北京市高中物理(力学)竞赛第30届(2017)决赛试题与解答

第30届北京市高中力学竞赛决赛试题 一、填空题 1.观察火箭的发射,火箭单位时间内喷出质量为ρ的燃料,喷出燃料相对于火箭的速度为u ,ρ、u 不变。随着火箭上升的速度不断变大,火箭所受推力的大小变化情况是, 理由是。 2.男子花样滑冰中的一个高难动作是:跳起,空中旋转4周落下。解说员说,这需要滑行速度足够大,使运动员惯性大才能完成转4周。你对这说法的评论是 。 3.以初速度v 0竖直上抛一物体,物体所受空气阻力与速度成正比。试画出物体从抛出到落回原地过程中的速度——时间图线。(要求体现上升下降两段运动特点即可) 4.细线绕在半径为R 的定滑轮上,线的一端吊一物体,物体释放后下降的距离满足的规律是h =12 at 2, a 为加速度,t 时刻滑轮边缘一点加速度的大小是。 5.小球A 沿光滑水平面自西向东运动,与一同样质量的静止小球B 发生完全弹性碰撞,后A 球运动方向为东偏北θ1角,B 球运动方向为东偏南θ2角,θ1与θ2的关系为。解题方程为。 6.倾角为θ,高为h 的斜面顶端放置一小细钢环,钢环释放后沿斜面无滑滚下,钢环与水平地面的碰撞是完全弹性的,钢环弹起的高度为,解题方程为。 二、计算题 7.如图1所示,滑轮上绕一不可伸长的绳,绳上悬一轻质弹簧,弹性系数为k , 弹簧另一端挂一质量为m 的物体.当滑轮以匀角速度转动时,物体以匀速v 0下降.若将 滑轮突然停住,试求弹簧的最大伸长及最大拉力是多少? 8.质量为m 0的卡车上载一质量为m 的木箱,以速度v 沿平直路面行驶,因故 突然刹车,车轮立即停止转动,卡车滑行一定距离后静止,木箱在卡车上相对于卡 车滑行了 l 距离,卡车滑行的距离为L 。己知木箱与卡车间的滑动摩擦系数为μ1,卡 车轮和地面的每 动摩擦系数为μ2。 (1)如果L 和l 已知,试分别以木箱、卡车和地面为参考系讨 论木箱和卡车间 的摩擦力f 、f ′,所做的功及其做功之和,试说明摩擦力做功的特点。 (2)求L 和l 。 9.物理科学是实验科学,通过观察、归纳,然后猜想演绎最后实验验证。开普勒观察归纳总结出开普勒三 定律,请你由此出发将地球绕太阳运动简化为圆周运动,用牛顿定律猜测推理出万有引力大小正比于1R 2 。(R 是太阳中心到地球中心的距离)

高中物理力学实验专题

高中力学实验专题 高中物理《考试说明》中确定的力学实验有:研究匀变速直线运动、探究弹力和弹簧伸长的关系、验证力的平行四边形定则、验证牛顿运动定律、探究动能定理、验证机械能守恒定律。其中有四个实验与纸带的处理有关,可见力学实验部分应以纸带的处理,打点计时器的应用为核心来展开复习。近几年力学实验中与纸带处理相关的实验、力学创新实验是高考的热点内容,以分组或演示实验为背景,考查对实验方法的领悟情况、灵活运用学过的实验方法设计新的实验是高考实验题的新趋势。要求考生掌握常规实验的数据处理方法,能将课本中分组实验和演示实验的实验原理、实验方法迁移到新的背景中,深刻理解物理概念和规律,并能灵活运用,要求考生有较强的创新能力。 在复习过程中,应以掌握常规实验原理、实验方法、规范操作程序、数据处理方法等为本,同时从常规实验中,有意识的、积极的提取、积累一些有价值的方法。逐步过渡到灵活运用学过的实验方法设计新的实验。 (一)打点计时器系列实验中纸带的处理 1.纸带的选取:一般实验应用点迹清晰、无漏点的纸带中选取有足够多点的一段作为实验纸带。在“验证机械能守恒定律”实验中还要求纸带包含第一、二点,并且第一、二两点距离接近2.0mm 。 2.根据纸带上点的密集程度选取计数点。打点计时器每打n 个点取一个计数点,则计数点时间间隔为n 个打点时间间隔,即T=0.02n (s )。一般取n =5,此时T=0.1s 。 3.测量计数点间距离。为了测量、计算的方便和减小偶然误差的考虑,测量距离时不要分段测量,尽可能一次测量完毕,即测量计数起点到其它各计数点的距离。如图所示,则由图可得: 1s S I =,12s s S II -=,23s s S III -=,34s s S IV -=,45s s S V -=,56s s S VI -=

高中物理牛顿运动定律经典练习题

牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作用力后有反作用力。

高中物理力学实验完美知识点版本

常用实验原理设计方法 1.控制变量法:如验证牛顿第二定律的实验中加速度、力和质量的关系控制。 2.等效替代法:某些量不易测量,可以用较易测量的量替代,从而简化实验。如验证碰撞中的动量守恒的实验中,速度的测量就转化为对水平位移的测量。 3.理想模型法:用伏安法测电阻时,选择了合适的内外接方法,一般就忽略电表的非理想性。4.比值定义法:用两个基本的物理量的“比”来定义一个新的物理量的方法。如①物质密度②电阻③场强④磁通密度⑤电势差等。 5.微量放大法:微小量不易测量,勉强测量误差也较大,实验时常采用各种方法加以放大。卡文迪许测定万有引力恒量,采用光路放大了金属丝的微小扭转。 6.模拟法:当实验情景不易创设或根本无法创设时,可以用物理模型或数学模型等效的情景代替,“描绘电场中的等势线”的实验就是用电流场模拟静电场。 实验一:验证力的合成 [实验原理] 此实验是要用互成角度的两个力与一个力产生相同的效果(即:使橡皮条在某一方向伸长一定的长度),看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的平行四边形定则。 [实验器材] 木板一块,白纸,图钉若干,橡皮条一段,细绳,弹簧秤两个,三角板,刻度尺,量角器。 [实验步骤] 1.用图钉把一张白纸钉在水平桌面上的方木板上。 2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。 3.用两个弹簧秤分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O。 4.用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧秤的读数。在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板根椐平行四边形定则求出合力F。 5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向。按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。 6.比较F'与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。 7.改变两个分力F1和F2的大小和夹角。再重复实验两次,比较每次的F与F'是否在实验误差允许的范围内相等。 [注意事项] 1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。 2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。

全国高中物理力学竞赛试题卷(部分)

20XX 年全国高中物理力学竞赛试题卷(部分) 考生须知:时间150分钟,g取10m/s2(题号带25的题今年不要求, 题号带△的题普通中学做) 单选题(每题5分) △1.如图所示,一物体以一定的初速度沿水平面由A 点滑到B 点,摩 擦力做功为W1;若该物体从M 点沿两斜面滑到N ,摩擦力做的总功 为W2。已知物体与各接触面的动摩擦因数均相同,则:A .W1=W2 B .W1<W2 C .W1>W2 D .无法确定 △2.下面是一位科学家的墓志铭:爵士安葬在这里。他以超乎常人的智力第一个证明了行星的运动与形状、彗星的轨道和海洋的潮汐。他孜孜不倦地研究光线的各种不同的折射角,颜色所产生的种种性质。对于自然、历史和圣经,他是一个勤勉、敏锐的诠释者。让人类欢呼,曾经存在过这样一位伟大的人类之光。这位科学家是:A .开普勒 B .牛顿 C .伽利略 D .卡文迪许 3.20XX 年3月25日,北京时间22时15分,我国在酒泉卫星发射中心成功发射了一艘正样无人飞船,除航天员没有上之外,飞船技术状态与载人状态完全一致。它标志着我国载人航天工程取得了新的重要进展,为不久的将来把中国航天员送上太空打下了坚实的基础。这飞船是A .北斗导航卫星 B .海洋一号 C .风云一号D 星 D .神舟三号 4.如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则中间一质量为m的土豆A 受到其它土豆对它的总作用 力大小应是:A .μmg B .mg 21μ+ C .mg 21μ- D .mg 12-μ 5.如图所示,B 、C 、D 、E 、F 五个球并排放置在光滑的水平面上,B 、C 、D 、E 四 个球质量相同,均为m=2kg ,A 球质量等于F 球质量,均为m=1kg , 现在A 球以速度v0向B 球运动,所发生的碰撞均为弹性碰撞,则 碰撞之后:A .五个球静止,一个球运动 B. 四个球静止,二个球运动 C .三个球静止,三个球运动 D .六个球都运动 6.一物体原来静置于光滑的水平面上。现对物体同时施加两个方向水平、互成120°角的等大的力,作用时间为t ,物体的瞬时速度大小为v ;之后,撤去其中一个力,并保持另一力大小方向不变,再经时间t ,物体的瞬时速度大小为:A .2v B .3v C .22v D .33v 7.科学家们使两个被加速后的带正电的重离子沿同一条直线相向运动而发生猛烈碰撞,试图用此模拟宇宙大爆炸初期的情境。为了使碰撞前的动能尽可能多地转化为内能,关键是设法使这两个重离子在碰撞前的瞬间具有:A .相同的速率 B .相同大小的动量 C .相同的动能 D .相同的质量 填空题(每空10分) △8.上海外滩气象信息台需要整体移位,施工人员将信息台与地面脱离后,在信息台与地面之间铺上石英砂,用四个液压机水平顶推。已知信息台质量为4×105kg ,假设信息台与地面之间的动摩擦因数为0.2,

相关文档
最新文档