高考数学专题--概率及期望与方差

高考数学专题--概率及期望与方差
高考数学专题--概率及期望与方差

高考数学专题--概率及期望与方差

建知识网络明内在联系

[高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在浙江新高考中的考查方式十分灵活,背景容易创新.基于上述分析,本专题按照“古典概型”“随机变量及其分布”两个方面分类进行引导,强化突破.

突破点1、古典概型

[核心知识提炼]

提炼1古典概型问题的求解技巧

(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一

列举出来,然后进行求解.

(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,

列举过程更具有直观性、条理性,使列举结果不重、不漏.

(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思

维,先求其对立事件的概率,进而可得所求事件的概率.

(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数

结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决. 提炼2求概率的两种常用方法

(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概

率.

(2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,

即“正难则反”.它常用来求“至少”或“至多”型事件的概率.

[高考真题回访]

回访古典概型

1.(浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )

A.

1

10

B.

3

10

C.3

5

D.

9

10

D[“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白

球”,因而所求的概率P=1-C3

3

C3

5

=1-

1

10

9

10

.]

2.(浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.

1

3

[记“两人都中奖”为事件A,

设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.

其中甲、乙都中奖有(1,2),(2,1),2种,所以P(A)=2

6

1

3

.]

3.(浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.

1

5

[用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,共15种选法,其中都是女同学的选法有3种,即ab,ac,bc,故

所求概率为

3

15

1

5

.]

热点题型1 古典概型

题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小.

【例1】(1)袋子里有大小、形状相同的红球m个,黑球n个(m>n>2).从中任取1个球是红球的概率记为p1.若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为p2;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为p3,则( )

A.p1>p2>p3B.p1>p3>p2

C.p3>p2>p1D.p3>p1>p2

(2)已知M={1,2,3,4},若a∈M,b∈M,则函数f(x)=ax3+bx2+x-3在R上为

增函数的概率是( )

A.

9

16

B.

7

16

C.

4

16

D.

3

16

(1)B(2)A[(1)由题意得p1=

m

m+n

,p2=

m+1

m+n+2

,p3=

m-1

m+n-2

,则

1

p

1

m+n

m

1+n

m

1

p

2

m+n+2

m+1

=1+

n+1

m+1

1

p

3

m+n-2

m-1

=1+

n-1

m-1

,则

1

p

1

1

p

2

n

m

n+1

m+1

n-m m m +1<0,

1

p

1

1

p

3

n

m

n-1

m-1

m-n

m m-1

>0,所以

1

p

2

1

p

1

1

p

3

,所以p3>p1>

p

2

,故选D.

(2)记事件A为“函数f(x)=ax3+bx2+x-3在R上为增函数”.因为f(x)=ax3+bx2+x-3,所以f′(x)=3ax2+2bx+1.

因为函数f(x)在R上为增函数,所以f′(x)≥0在R上恒成立.

又a>0,所以Δ=(2b)2-4×3a=4b2-12a≤0在R上恒成立,即a≥b2 3

.

所以当b=1时,有a≥1

3

,故a可取1,2,3,4,共4个数;

当b=2时,有a≥4

3

,故a可取2,3,4,共3个数;

当b=3时,有a≥3,故a可取3,4,共2个数;

当b=4时,有a≥16

3

,故a无可取值.

综上,事件A包含的基本事件有4+3+2=9(种).

又a,b∈{1,2,3,4},所以(a,b)共有4×4=16(种).

故所求事件A的概率为P(A)=

9

16

.故选A.]

[方法指津]

利用古典概型求事件概率的关键及注意点

1.关键:正确列举出基本事件的总数和待求事件包括的基本事件数.

2.注意点:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏.(2)当直接求解有困难时,可考虑求其对立事件的概率.

[变式训练1]若将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率是________.

2

9

[将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则有3×3=9种不同放法,其中在1,2号盒子中各有一个球的结果有2种,

故所求概率是2

9

.]

热点题型2 互斥事件与对立事件的概率

题型分析:互斥事件与对立事件的概率常与古典概型等交汇命题,主要考查学生的分析转化能力,难度中等.

【例2】现有甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的.

(1)求文学社和街舞社都至少有1人参加的概率;

(2)求甲、乙同在一个社团,且丙、丁不同在一个社团的概率.

[解]甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的情况如下:

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版

高考数学一轮复习: 概率与统计 高考大题专项(六) 概率与统计 考情分析 一、考查范围全面 概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法. 二、考查方向分散 从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查. 三、考查难度稳定 高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调. 典例剖析 题型一相关关系的判断及回归分析 【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图. x50100150200300400 t906545302020

高中数学概率大题经典一

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

总体分布的估计、总体期望和方差的

§12.2总体分布的估计、总体期望和方差的估计 (时间:45分钟满分:100分) 一、选择题(每小题7分,共35分) 1.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm的株数大约是() A.3 000 B.6 000 C.7 000 D.8 000 2.(2010·山东)在某项体育比赛中,七位裁判为一选手打出的分数如下: 90899095939493 去掉一个最高分和一个最低分后,所剩数据的期望值和方差分别为() A.92,2 B.92,2.8 C.93,2 D.93,2.8 3.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是() A.32 B.27 C.24 D.33

4.(2010·陕西)如图,样本A和B分别取自两个不同的总体,它们的样本期望值分别为x A 和x B,样本标准差分别为s A和s B,则() A.x A>x B,s A>s B B.x As B C.x A>x B,s A

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

高考纠错专题29离散型随机变量的分布列、期望与方差(解析版)

专题29 离散型随机变量的分布列、期望与方差(解析版) 易错点1:二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混; 通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项); 事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-; ()=,0,1,2,3,01,1k k n k n p k C p q k n p p q 且ξ-==<<+=; 易错点2:混淆二项分布和超几何分布的期望和方差; 题组一 1.(2018全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7 B .0.6 C .0.4 D .0.3 【解析】由题意,X~B(10,p),所以DX=10×p×(1-p)=2.4,p=0.4或0.6,又(4)(6)P X P X =<=,即()()644466101011C p p C p p -<-,得1,0.62 p p >=所以 2.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = . 【解析】由题意,X~B(100,0.02),所以DX=100×0.02×(1-0.02)=1.96 题组二 3.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

高考中的分布列、期望、方差问题

几种常见题型的解法 一、从分类问题角度求概率 例2(日本高考题)袋内有9个白球和3个红球,从袋中任意地顺次取出三个球(取出的球不再放回),求第三次取出的球是白球的概率。 二、从不等式大小比较的角度看概率 例3 “幸运52”知识竞猜电视节目,为每位选手准备5道试题,每道题设“Yes ”与“No ”两个选项,其中只有一个是正确的,选手每答对一题,获得一个商标,假设甲、乙两位选手仅凭猜测独立答题,是否有99%的把握断定甲、乙两位选手中至少有一位获得1个或1个以上的商标? 三、从“至多”、“至少”的角度看概率. 例4、有三种产品,合格率分别是0.90、0.95和0.95,各取一件进行检验。(I )求恰有一件不合格的概率;(II )求至少有两件不合格的概率(精确到0.001)。 四、从“或”、“且”的角度看概率 例5甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或被乙解出的概率为0.92。 (1)求该题被乙独立解出的概率; (2)求解出该题的人数 的数学期望和方差。 相关练习 1.(山东卷7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 (A ) 51 1 (B ) 681(C )3061 (D )408 1 2.(福建卷5)某一批花生种子,如果每1粒发牙的概率为4 5,那么播下4粒种子恰有2粒发芽的概率是 A. 16 625 B. 96625 C. 192 625 D. 256 625 3.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A . 13 B . 12 C . 23 D . 34 4.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 2 1 与p ,且乙投球2

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

概率分布以及期望及方差.docx

概率分布以及期望和方差 上课时间 : 上课教师: 上课重点 : 掌握两点分布、超几何分布、二项分布、正态分布的概率分布 及其期望和方差 上课规划:解题技巧和方法 一两点分布 知识内容 ⑴两点分布 如果随机变量X 的分布列为 X10 P p q 其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布. X 10 P 0.80.2 两点分布又称 0 1分布,由于只有两个可能结果的随机试验叫做伯努利试 验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np . 典例分析 ,针尖向上; 1、在抛掷一枚图钉的随机试验中,令X1,如果针尖向上的 ,针尖向下 . 概率为 p ,试写出随机变量 X 的概率分布. 2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的

,当取到白球时, 白球个数”,即 X ,当取到红球时, ,求随机变量 X 的概率分布. 3、若随机变量 X 的概率分布如下: X 1 P 2 3 8C 9C C 试求出 C ,并写出 X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 ) 1, (当第一次向上一面的点 数等于第二次向上一面 的点数 ) 试写出随机变量 的分布列. 4、篮球运动员比赛投篮,命中得 1 分,不中得 0 分,已知运动员甲投篮命 中率的概率为 P . ⑴ 记投篮 1次得分 X ,求方差 D ( X ) 的最大值; ⑵ 当⑴中 D ( X ) 取最大值时,甲投 3 次篮,求所得总分 Y 的分布列及 Y 的期望与方差. 二 超几何分布

新课标高考期望与方差经典高考题

期望与方差 1.某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 2.某一中学生心理咨询中心服务电话接通率为 4 3 ,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列. 3.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ 表示取出的3只球中的最大号码,写出随机变量ξ 的分布列. 4.一批零件中有9个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.

5.(2012年高考(安徽理))某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道 试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量. (Ⅰ)求2X n =+的概率; (Ⅱ)设m n =,求X 的分布列和均值(数学期望). 6.(2012年高考(天津理))现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率: (Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.

(完整版)高中数学概率大题(经典二)

高中数学概率大题(经典二) 一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ; (Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (Ⅰ)试估计C班的学生人数; (Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润. (Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

第十章 统计与概率10-9离散型随机变量的期望、方差与正态分布(理

第10章 第9节 一、选择题 1.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 [答案] B [解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B. 2.设随机变量ξ的分布列如下: 其中a ,b ,c 成等差数列,若E (ξ)=1 3,则D (ξ)=( ) A.49 B .-19 C.23 D.59 [答案] D [解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×????-1-132+13????0-132+12????1-132=5 9 . 3.某区于2010年元月对全区高三理科1400名学生进行了一次调研抽测,经统计发现5科总分ξ(0<ξ<750)大致服从正态分布N (450,1302),若ξ在(0,280)内取值的概率为0.107,则该区1400名考生中总分为620分以上的学生大约有(结果四舍五入)( ) A .100人 B .125人 C .150人

[答案] C [解析] 由条件知,P (ξ>620)=P (ξ<280)=0.107,1400×0.107≈150. 4.(2010·山东济南模拟)下列判断错误的是( ) A .在1000个有机会中奖的号码(编号为000~999)中,有关部门按照随机抽取的方式确定后两位数字是09号码为中奖号码,这是用系统抽样方法确定中奖号码的; B .某单位有160名职工,其中业务人员120名,管理人员24名,后勤人员16名.要从中抽取容量为20的要本,用分层抽样的方法抽取样本; C .在正常条件下电子管的使用寿命、零件的尺寸,在一定条件下生长的小麦的株高、穗长、单位面积的产量等一般都服从正态分布; D .抛掷一枚硬币出现“正面向上”的概率为0.5,则某人抛掷10次硬币,一定有5次出现“正面向上”. [答案] D 5.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6 7 ( ) A .3 B .4 C .5 D .2 [答案] A [解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2 C 72=(7-x )(6-x )42, P (ξ=1)=x ·(7-x )C 72=x (7-x ) 21, P (ξ=2)=C x 2C 72=x (x -1) 42, ∴0× (7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6 7 , ∴x =3. 6.一台机器生产某种产品,如果生产一件甲等品可获利50元,生产一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产甲等品、乙等品和次品的概率分别为0.6、0.3和0.1,则这台机器每生产一件产品,平均预期可获利( ) A .39元 B .37元

k52006年高考第一轮复习数学:12.2 离散型随机变量的期望值和方差

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
12.2
离散型随机变量的期望值和方差
●知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差. D? 叫标准差, 反映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). ●点击双基 1.设投掷 1 颗骰子的点数为ξ ,则 A.Eξ =3.5,Dξ =3.52 C.Eξ =3.5,Dξ =3.5 解析:ξ 可以取 1,2,3,4,5,6. P(ξ =1)=P(ξ =2)=P(ξ =3)=P(ξ =4)=P(ξ =5)=P(ξ =6)= ∴Eξ =1× B.Eξ =3.5,Dξ = D.Eξ =3.5,Dξ =
35 12 35 16
1 , 6
1 1 1 1 1 1 +2× +3× +4× +5× +6× =3.5, 6 6 6 6 6 6 2 2 2 Dξ =[ (1-3.5) +(2-3.5) +(3-3.5) +(4-3.5)2+(5-3.5)2+(6-3.5)2] 1 17.5 35 = = . 6 6 12 答案:B 2.设导弹发射的事故率为 0.01,若发射 10 次,其出事故的次数为ξ ,则下列结论正确 的是 A.Eξ =0.1 B.Dξ =0.1
× C.P(ξ =k)=0.01k·0.9910
-k
k D.P(ξ =k)=C 10 ·0.99k·0.0110
-k
解析:ξ ~B(n,p) ,Eξ =10×0.01=0.1. 答案:A 3.已知ξ ~B(n,p) ,且 Eξ =7,Dξ =6,则 p 等于 A.
1 7
B.
1 6
C.
1 5 1 . 7
D.
1 4
解析:Eξ =np=7,Dξ =np(1-p)=6,所以 p=
答案:A 4.一牧场有 10 头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为 0.02.设发 病的牛的头数为ξ ,则 Dξ 等于 A.0.2 B.0.8 C.0.196 D.0.804

十年高考理科数学真题 专题十一 概率与统计 三十五离散型随机变量的分布列、期望与方差及答案

专题十一 概率与统计 第三十五讲离散型随机变量的分布列、期望与方差 2019年 1.(2019天津理16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 2.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列; (2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. (i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 3.(2019北京理17) 改革开放以来,人们的支付方式发生了巨大转变。近年来,移动支付已成为主要支付方式之一。为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

高考数学概率大题专项题型

高考数学概率大题专项题型 一.解答题 1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上 午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率; (2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E (X). 2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没 猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I)“星队”至少猜对3个成语的概率; (II)“星队”两轮得分之和为X的分布列和数学期望EX. 3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别 为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望. 4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的. (Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率; (Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望. 5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的 概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少 有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率; (Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的

相关文档
最新文档