基于迭代近点算法的地图拼接方法研究

基于迭代近点算法的地图拼接方法研究
基于迭代近点算法的地图拼接方法研究

基于迭代近点算法的地图拼接方法研究

基于迭代最近点算法的地图拼接方法研究

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

指导教师评阅书

数值计算迭代法

习题二 3、证明:当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实根x *,并分别用上述迭代法求满足于精度要求︱X k+1-X k ︱≤10-5的近似根。 解:证明:{先用迭代法求f(x)=x 3+4x 2-10=0的根。 (a )对x 3+4x 2-10=0变形有:4x 2=10-x 3 所以:X=21310X - 则相应的迭代公式为:X k+1=21k X 310- 取:X 0=1.5,根据计算可以看出看,我们认为得到的迭代序列是 收敛的。}(此行可忽略) { 由 f(x)=x 3+4x 2-10=0得迭代方程:X=21310X -=g (x ) 先证明在区间【1,2】上x=g (x )有实根。由于[1,2]上g ‘(x )存在,所以g (x )连续。作Q (x )=x-g(x),则Q(x)在[1,2]上也连续。由定理1条件2有:Q (1)=1-g (1)≤0,Q (,2)=1-g (2)≥0 故存在x *∈[1,2]使Q *(x )=0,即x *= Q *(x ) 又因为,x *是方程f(x)=x 3+4x 2-10=0在区间[1,2]内的唯一实根,(由定理一条件 2)对任意的x 0∈[1,2]时,X k ∈[1,2](k=0,1,2,3…) 因为:x *- X k+1=g (x *)-g (X k )=g ‘(h k )(x *- X k )故由条件1知: ︱X *-X k+1︱≤L ︱X *-X k ︱(k=0,1,2,3…)于是有:0≤︱X *-X k ︱≤L k ︱X *-X 0︱,0<L <1,立即可知:lim (k 趋于无穷)︱X *-X k ︱=0,从而lim (k 趋于无穷)X k= X *。所以当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都是由迭代法X k+1=g (X k )产生的迭代序列{ X k }收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实 根x *。 正解如下: (1) (牛顿迭代法): 证明:对方程f(x)=x 3+4x 2-10=0在区间[1,2]内, (a ) f ‘(x)=3x 2+8x ,f ’‘(x)=6x+8,f ’‘(x)在区间[1,2]内连续; (b ) f (1)=-5,f (2)=14,f (1)f (2)<0; (c ) 对于任意的x ∈[1,2],都有f ‘(x)=/(不等于)0; (d ) f ’‘(x)在[1,2]上保号; 综上所述,当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实根x *。 (2)用牛顿迭代法求近似根。 方程f(x)=x 3+4x 2-10=0有唯一实根x *∈[1,2],容易验证,f(x)=x 3+4x 2-10在[1,2]

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

PS全景拼接六大步骤

https://www.360docs.net/doc/7a13152185.html, PS全景拼接六大步骤 全景拼接的原理是将多张连续的照片拼接成一张全景照片。目前许多无反相机、便携数码相机和智能手机都内置有这种功能。若是使用没有全景拼接功能的单反相机拍摄,我们也可以利用后期软件自行制作高画质、高像素的全景拼接照片。制作时只要遵守一些拍摄法则与拼接步骤,一样可以轻松达成。 其实全景拼接功能非常实用,可以大幅扩展镜头的表现能力,但在技术上,单张照片的拍摄质量会直接影响后期合成的效果。拍摄要点简要列举如下,做到了这些,就能获得理想的全景拼接效果。 使用三脚架,确保证拍摄位置固定和水平。 使用标准或中焦镜头,以维持最小的镜头畸变和变形。 使用手动曝光、手动白平衡、手动对焦,使画面均一。 每两张画面之间有1/3的区域是重迭的。 照片拼接步骤 Photoshop CS3之后的版本让全景拼接变得非常容易,在此以Photoshop CS5版为例来进行讲解。本例中一共要用到五张照片。 第一步 用Photoshop打开需要拼接的照片。 第二步 选择“文件”→“自动”→“Photomerge”,进入“自动拼接”。 第三步 选择已打开的图片。

https://www.360docs.net/doc/7a13152185.html, 第四步 在拼接方式中选择“自动”。 第五步 等待软件自动合成,一张全景照片就拼接完成了。 第六步 裁剪拼接完成的照片为长条状,合并图层后储存文件,全景拼接的照片就可使用了。 云南碧沽天池。使用50mm镜头拍摄再进行全景拼接,很容易就可以得到较好的效果。EF 50mm f/1.8,f/11,1/200s,ISO 100(摄影/杜永乐) 强大的软件功能提供了很多帮助,使摄影师创作时更得心应手,这也是摄影能够在数字时代蓬勃发展的原因之一。善用这些软件,就能为拍摄增加许多乐趣,也能让工作成果更完美。

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

地图投影

世界地图常用地图投影知识大全 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

MAAB计算方法迭代法牛顿法二分法实验报告

姓名 实验报告成绩 评语: 指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点 2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。否则,继续判断是否0)()(

+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(') (00x f x f 。取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。迭代公式为:=+1 k x -0x )(')(k k x f x f 。 三、 实验设备:MATLAB 软件 四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超 过3105.0-?。 (2)、取初值00=x ,用迭代公式=+1 k x -0x )(') (k k x f x f ,求方程0210=-+x e x 的近似根。要求误差不超过3105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误差 不超过3105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 软件,建立一个实现二分法的MATLAB 函数文件如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end

新旧图幅编号

我国基本比例尺地形图分幅与编号的计算方法 韩丽蓉 (青海大学水电系,青海西宁 810016) 摘要:通过实例探讨了我国基本比例尺地形图分幅与编号的计算方法,此方法可以帮助使用者快速地由某点的经纬度值计算出高斯投影带带号和某比例尺地形图的图幅编号,在测绘工作中具有一定的实用性。 关键词:分幅;编号;六度带;中央子午线经度 中图分类号:K 99 文献标识码:B 文章编号:1006-8996(2006)06-0079-04 1 高斯分带投影 1.1 基本概念 在地理坐标中,经度是以经过英国格林威治天文台的子午面作为起算点(零度),自西向东逆时针至180°为东经,自东向西顺时针从0°至180°为西经,东、西经180°经线是重合的。地图投影是把不可展的 地球椭球体面上的经纬网,按照一定的数学法则转绘到平面上[1,2]。我国的8种国家基本比例尺地形图 (1:1000000~1:5000)中,除了1:1000000万地形图采用国际通用的正轴等角割圆锥投影外,其余7种国家基本比例尺地形图统一采用高斯投影。 高斯投影中限制长度变形的最有效方法是按一定经差将地球椭球面划分成若干投影带,通常投影分为六度带和三度带。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作。我国1:500000~1:25000的比例尺地形图多采用六度带高斯投影,1:10000~1:5000的地形图采用三度带高斯投影。我国基本比例尺地形图的分幅与编号需要用到某地所在的1:1000000 地形图(经差6° )的中央子午线经度,故需计算该六度带的带号及中央子午线经度。1.2 投影带带号和中央子午线经度的计算方法 1.2.1 六度带 从格林威治零度经线起,每隔经差6°分为一个投影带,自西向东逆时针分带,全球依次编号为1,2, 3,……60,每带中间的子午线称为中央子午线[1,2]。 东半球从经度0°逆时针回算到东、西经180°,投影带号为1~30。假如知道东半球某地区的平均大地经度L 东,则其投影带带号M 东和中央子午线经度L 6东的计算公式为: M 东=[L 东Π6](取整数商)+1(有余数时);L 6东=(6M 东-3)° (东经)西半球投影带从东、西经180°逆时针回算到0°,投影带号为31~60,假如知道西半球某地区的平均大地经度L 西,则其投影带带号M 西和中央子午线经度L 6西的计算公式为: M 西=[(360°-L 西)Π6](取整数商)+1(有余数时)=[(180°-L 西)Π6](取整数商)+1(有余数时)+30;L 6西={360°-(6M 西-3)°}(西经) 1.2.2 三度带 自东经115°子午线起,每隔经差3°自西向东分带,依次编号为1,2,3,……120[1,2] 。 东半球有60个投影带,编号为1~60,假如知道东半球某地区的平均大地经度L 东,其投影带带号N 东和中央子午线经度L 3东的计算公式为: 收稿日期:2006-07-10 作者简介:韩丽蓉(1967—),女,撒拉族,青海循化人,副教授,硕士。第24卷 第6期2006年12月 青海大学学报(自然科学版)Journal of Qinghai University (Nature Science ) Vol 124No 16Dec 12006

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。 按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号

各种地图投影全解析

地图投影全解析 科技名词定义 中文名称:地图投影 英文名称:map projection 定义1:按照一定的数学法则,把参考椭球面上的点、线投影到可展面上的方法。 所属学科:测绘学(一级学科);测绘学总类(二级学科) 定义2:根据一定的数学法则,将地球表面上的经纬线网相应地转绘成平面上经纬线网的方法。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义3:运用一定的数学法则,将地球椭球面的经纬线网相应地投影到平面上的方法。即将椭球面上各点的地球坐标变换为平面相应点的直角坐标的方法。 所属学科:地理学(一级学科);地图学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 地图投影是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。由于地球是一个赤道略宽两极略扁的不规则的梨形球体,故其表面是一个不可展平的曲面,所以运用任何数学方法进行这种转换都会产生误差和变形,为按照不同的需求缩小误差,就产生了各种投影方法。 目录

展开 定义 地图投影,Map Projection.把地球表面的任意点,利用一定数学法则,转换到地图平面上的理论和方法。 地图投影 书面概念化定义:地图投影就是指建立地球表面(或其他星球表面或天球面)上的点与投影平面(即地图平面)上点之间的一一对应关系的方法。即建立之间的数学转换公式。它将作为一个不可展平的曲面即地球表面投影到一个平面的基本方法,保证了空间信息在区域上的联系与完整。这个投影过程将产生投影变形,而且不同的投影方法具有不同性质和大小的投影变形。 由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面

地图拼接

一、实验目的 1、学会使用ArcGIS将经过几何纠正后的图像进行地图拼接,以实现数据的统一和完整; 2、掌握在ArcMap中使用裁剪和镶嵌等进行地图拼接的具体操作; 3、通过实验,理解地图拼接的目的和操作步骤。 二、实验准备 1、实验数据:校正后重新生成的采样数据“地图左2”,“地图右1”; 2、软件准备:ArcGIS Desktop ---ArcMap,ArcCatalog。 三、实验内容及步骤 1、新建一个文件夹,取名为“地图拼接”,并打开ArcCatalog,连接到此文件夹,建立一个文件地理数据库,不妨取名为“t4”。 图1 新建文件地理数据库 (建立文件地理数据库的是为了存放重采样的数据图像,并且地图拼接也需要在地理数据库中进行。) 2、重新采样数据,输出到数据库中。 打开实验三图像纠正后的文件,在”影像配准”菜单下,点击“矫正”,对配准的影像根据设定的变换公式重新采样,另存为一个新的影像文件。在输出位置选择刚才建立好的“t4”文件地理数据库中,得到重新生成的采样数据“地图左2”。

图2 重新生成采样数据 按照相同方法,将校正后的“地图右”图像重采样输出到“t4”文件地理数据库中,得到重新生成的采样数据“地图右1”。 3、在ArcMap中新建一个空白地图文档,将“地图左2”和“地图右1”拖入到内容列表中,如图3。 图3 拼接前图像 观察拼接前图像,不难发现“地图左2”和“地图右1”具有重叠部分,所以在进行图像拼接前应将两个图像进行裁剪。 4、进行图像的裁剪。 先在两张图像的重叠区域内找到一条直线,作为裁剪边界,记录下此时x 轴坐标,为18608500.000。

利用PHOTOSHOP制作平面地图

利用PHOTOSHOP制作平面地图我们可以利用google与photoshop相互协作制作平面地图。可以省去很多实地测绘的时间与辛劳,而且更为准确。 不过在之前,请先看一下后面的备注,可以给大家的操作带来许多方便。 下面我就这个方法给大家介绍一下。 一、我们要确定我们需要绘制平面地图的区域,例如这里我给大家示范的例子是安徽电子信息职业技术学院的平面地图。我们的目标区域就是安徽电子信息职业技术学院。 我们知道了目标之后,还要确定目标所在地,我们就从卫星地图上找到安徽省蚌埠市东郊,找到这所学校。 这个过程需要你对所要找的学校比较熟悉,确切知道其具体方位。 二、从卫星地图上找到了这个学校后我们要做的就是把这个学校的卫星地图准确的拓下来,以供后面使用。由于我们要做的工作要以这个地图为模板,来绘制平面地图,所以要大小合适方便我们使用,故而不可太小。一个屏幕包括不了这整个区域地图,我们需要分块将之截下。 (卫星地图我们可以使用在线的卫星地图网站,也可以下载GoogleEarth中文在线版安装到电脑上用,GoogleEarth安装后下载更好用,省时省力。在线卫星地图网站,当然也可以用国内的天地图。) 三、我们第一步要在卫星地图上找到这个区域,找到之后再来下一步。 四、为了把卫星地图完整的截下来,首先我们要打开photoshop,新建一个文件,可以使用【文件】-【新建】,也可以用ctrl+N快捷键,也可以按住ctrl在空白处双击鼠标左键来新建文件。我最常用的是最后一种方法。新建文件的设置如下: 即预设里选择A4,分辨率选择300像素/英寸,由于我们要用于出版,所以我们最好在任何时候都把色彩模式设为CMYK。 (注:普通我们电脑上图片使用的分辨率是72像素/英寸,用于印刷品的分辨率一般都不低于300像素/英寸,我们这里使用300像素/英寸是为了以后可以把从电脑屏幕上截下来的多张图放在一个文件里,方便编辑。) 建好后,我们从网上把这个地图分块截取,如下面方法截取。 把整个屏幕都截取下来的按键是print screen sysRq,.在某个界面时按下printscreen sysRq 键,这个界面就自动保存在了剪贴板里,这时我们就把它粘贴在photoshop新建的文件里面,按下ctrl+v快捷键即可。然后我们在网上卫星地图里面移动地图,使下一块暴露,按printscreen sysRq键复制这个界面,粘贴到photoshop里,一直重复这个过程到将整个卫星地图全部截完为止,如图所示。 五、将图截完之后,我们所要作的就是将这个凌乱的卫星图拼成一副完整的卫星地图。这时,我们首先要做的就是将这些地图单独截出来。 我们把网上截图复制粘贴在photoshop上的时候,每粘贴一次就是一个新的图层,每次粘贴的截图都独自占有一个图层。我们想处理哪个截图,就需要在它所属的图层上处理。 图层前边的那个小眼睛,代表可见,如果将它点击一下,这个图层就隐藏了。 我们要处理哪一副图,我们就右键单击它,选择最上面的图层,这个图层就是这副图所在的图层。当然我们也可以使用右边的图层工具框,在里面选择要处理的图层。 选择之后我们就可以处理它了,我们要做的使把这个地图单独挖出来。首先,我们要使用矩形选择工具。 右键单击它,里面一共有四种图形选择工具。我们就用这个矩形选择工具就行了,其他的以后会用到。

图幅编号的计算

图幅编号的计算 经纬度(λ,φ) ,可按下式计算出1:100万比例尺的地形图图幅编号 a=[φ/4o]+1 b=[λ/6o]+31 某点经度为121o31‘30“,纬度为31o16‘40“,计算其所在1:100万比例尺地形图图幅的编号 a=[ 121o31‘30“/4o]+1=8 b=[31o16‘40“/6o]+31=51 由a可得出,其所对应的字符码为H 故该点所在1:100万比例尺地形图图幅的编号为H51 (31+16/60+40/3600)/4=31.2778/4=7.8194 已知图幅内某点的经纬度(λ,φ) ,可按下式计算出所求比例尺地形图在1:100万比例尺的地形图图号后的行号和列号 c=4o/△φ-[(φ/4o)/△φ] d=[(λ/6o)/△λ]+1 ( )——商取余;c——所求比例尺地形图的行号; [ ]——商取整;d——所求比例尺地形图的列号; φ——图幅内某点的纬度; λ——图幅内某点的经度; △φ——所求比例尺地形图分幅的纬差; △λ——所求比例尺地形图分幅的经差; 例:某点经度为121o31‘30“,纬度为31o16‘40“,计算其所在1:1万比例尺地形图图幅的编号 根据其所在1:100万比例尺图幅及其比例尺(1:10000),编号的前四位代码为H51G,然后按1:10000的分幅纬度差和经度差: △φ=2’30’’,△λ=3’45’’ (1:50万△φ=2o△λ=3o,1:20万40’,1o,1:10万20’,30’,1:5万10’,15’,1:2.5万5’,7’30’’,1:1万2’30’’,3’45’’) 计算其行号和列号(各三位): c=4/2’30’’-[(31o16‘40“/4)/2’30’’]=018 d=[(121o31‘30“/6o)/3’45’’]+1=025 该点所在1:1万比例尺地形图图幅的编号为 H51G018025 根据图号计算图幅西南图廓点的经纬度 已知某地形图的图号X1X2X3X4X5X6X7X8X9X10, ①根据该图号的前三位代码X1X2X3按下式计算其所在1:100万比例尺地形图对应的西南图廓点的经纬度λ0、φ0 λ0=(X2X3-31)*6o φ0=(X1-1)*4o X1——此幅1:100万比例尺地形图图幅所在纬度带字符码对应的数字码;

PS拼图步骤

PS拼图步骤 步骤/方法 一、打开Photoshop,选择“文件”菜单中的“自动”子菜单中的“Photomerge”。 二、打开Photomerge后根据需要选择合适的“版面”,然后单击“浏览”按钮选择待拼接的图片。 左侧有好几种版面可选,文字下的图标表示的意思很清楚,可以根据你自己拍摄的方法和需求选择合适的版面,第一次用建议把各种版面都试一下,这样你好对各种版面有个直观的了解。 三、选中所有待拼接的照片,单击“打开”按钮将其打开。

四、确认打开的文件无误后单击“确定”按钮。 确定后稍等片刻(时间与照片数量、大小以及计算机配置有关),Photoshop会自动将你所选的照片拼接到一起,这时不要有任何操作,以免死机。 五、照片合成好之后利用Photoshop中的“裁切工具”对合并好的文件进行裁切。

注意:利用裁切工具可以重新构图,选择好裁切区域之后一定要单击“提交”或按回车键,否则不能进行下一步操作。 裁切完成后的效果如下: 六、如果对最终效果满意就可以保存了。 若不满意可以选择“编辑”菜单中的“撤销上一步操作”,重新裁切。下面说说如何保存。选择“文件”菜单中的“保存”或者直接按Ctrl+S快捷键,进入保存界面。

注意事项 , 注意:Photoshop默认保存的是psd格式的文件,这种文件保存有图层等信息,方 便日后重新修改,但是没有安装Photoshop的计算机是打不开的。一般我们先保存 一个psd格式的,方便日后修改(若不打算修改可以不保存psd格式的文件)然后 再选择“文件”菜单中的“存储为”再将文件格式选成JPEG格式,这样方便我们浏 览和交流。 , 至此拼接工作就大功告成了。

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|) 一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”) 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777~1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的两条母线剪开展平,即得到高斯-克吕格投影平面。 高斯-克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

相关文档
最新文档