胜利油田滩浅海地区地震勘探技术

胜利油田滩浅海地区地震勘探技术
胜利油田滩浅海地区地震勘探技术

胜利油田滩浅海地区地震勘探技术

崔汝国,王燕春,曹国滨

(胜利石油管理局物探公司,山东东营257100)

摘要:滩浅海地区由于特殊的地表条件和复杂多变的表层结构,既不同于陆上勘探也不同于海上勘探,尤其在两栖地带存在海陆两种施工方式。本文对滩浅海地区地震勘探的激发震源、检波器和观测系统等野外采集各环节的进行了系统研究,提出解决滩浅海地区野外难以采集到高品质地震资料问题的方法;以滩浅海复杂表层结构中地震波场传播理论为基础,进行了地震记录上的干扰波压制、差异校正等方面的深入研究,提出解决滩浅海地区地震资料处理品质过低和成像精度不足问题的方法,形成一整套适用于滩浅海地区油气资源探查的高精度实用性的特色技术主题词:滩浅海;表层结构;激发;接收;观测系统;二次定位;差异校正;干扰波压制

1、概述

滩浅海是指包括滩涂、潮间带至10米水平以内浅海区域,胜利油田滩浅海地区的勘探范围较为广泛,西起四女寺河口,东至潍河口,有利勘探面积约为5500km2。从1974年开始,经过近三十年的滩浅海地震勘探,开辟了以埕岛构造带为主的海上勘探阵地,发现了十四个油田,为胜利油田增储上产和可持续发展做出了巨大的贡献。

滩浅海地区有丰富的油气资源,由于滩浅海地区地表条件复杂、勘探难度大,不适宜采用常规陆上地震勘探设备和技术,也无法采用海上采集技术,造成滩浅海地区勘探程度相对于陆上勘探程度低,是胜利油田未来增加储量的主要阵地,发展前景十分广阔。经过多年的滩浅海地震勘探技术研究,形成了专门应用于滩浅海施工的地震勘探技术。通过应用这些技术,使滩浅海地区地震资料的品质有了很大的改进和提高,具备滩海、潮间带和极浅海环境下全方位地震勘探的能力,可以很好地完成滩浅海地区地震勘探任务。

2、滩浅海地震勘探特点及难点

2.1滩浅海地震勘探特点

胜利滩浅海地区内,极浅海近海水域底部平缓,水深一般分布在数米范围内,但由于黄河入海的影响,还在黄河口形成了沿海滩涂和潮间带。

由于黄河入海的影响,淤泥分布较广,为黄河泥沙最新淤积而成,烂泥较深,厚度大约在0.2-1m不等,激发、接收条件很差,随着黄河的延伸,其地表与沼泽地带无异。

另外大大小小的潮沟纵横交错,随着潮汐的变化,潮间带水深变化在0-1.5m。潮间带水深受潮汐变化影响,施工因素必须根据潮涨潮落来作出调整。

2.2滩浅海地震勘探难点

由以上环境特点给滩浅海施工带来很多难点,具体表现如下:

1

2

图1 近地表沉积模式示意图

滩浅海地区的表层结构复杂多变(见图1),易形成多个虚反射界面引起多种干扰波,造成激发参数难以确定; 由于烂泥滩广布和潮汐影响,给排列布设带来困难;由于地表变化大,激发接收条件差,难以获得高品质地震波资料;由于潮汐和海水的影响,检波器定位困难,影响处理精度;由于自然条件的影响,过渡带施工,会存在多种观测方式,影响过渡带资料的无缝拼接。

3、滩浅海地震采集技术

3.1、表层结构调查技术

海底表层结构复杂多变引起:(1)激发介质不清,影响激发接收效果(2)表层速度不稳定,影响静校正精度(3)表层多次波干扰发育。为解决以上问题,用浅层剖面仪对海底浅层结构进行调查,通过对浅层剖面进行处理解释,精确求取表层结构,合理选取激发因素,抑制虚反射,压制干扰波,并对表层速度进行调查以指导处理技术,确保剖面质量。

3.2、滩浅海地震波激发技术

3.2.1、炸药激发方法

滩浅海地区是一种泥沙互层的表层结构,易形成很强的虚反射界面,这些主要虚反射界面将对地震波激发和传播产生各种各样的影响。

通过小折射、微测井以及岩性取芯相结合的方法能准确确定表层结构。通过考虑虚反射界面深度、要保护的地震信号频率、炸药爆炸半径和激发岩性四个方面合理确定激发井深。这样有利于减少虚反射对地震子波的影响,并能压制表层两个强波阻抗界面之间的多次波。

3.2.2、新型震源技术

滩浅海地震勘探中过渡带的激发使用的都是常规炸药震源,在淤泥中激发产生的地震波存在着信号频率低,激发噪音强两个弱点,与气枪震源激发产生的地震波存在明显差异,无法满足高精度地震勘探的需要。针对这些问题,从爆炸冲击波形成地震波能量、频率的转换机理的规律性认识入手,对延迟迭加震源、共心聚能震源、聚能弹等新型激发震源进行了研制和应用,有效的提高了过渡带资料的信噪比和分辨率。

3.2.4、气枪激发方法

在海上施工时,如果水深超过3米,通常选用气枪激发。由于海水表面和海底的影响,海上勘探中经常观测到重复冲击、交混回响、鸣震等特有的干扰波。为了获得高品质更深目的层的地震资料,采取了以下措施以提高激发能量:增大单枪的容积、压力增加能量;合理调整气枪震源的沉放深度控制气泡效应、抑制虚反射、提高初泡比;通过气枪组合及适合组合方式来消除干扰。

3.3、滩浅海地震波接收技术

3

由于普通陆用检波器与水中压电检波器工作原理不同,对地震波的响应存在灵敏度、频率和相位差异。为此,应用压电检波器工作原理研制沼泽压电检波器,保证从水中到陆地上连续地使用相同感应机制的检波器,保证地震波频率和相位的一致性,有利于资料处理及提高整个勘探的精度。

同时针对提高滩浅海地区检波器与地表的耦合度,对长尾锥检波器进行试验,结果表明,原始记录和剖面同相轴的连续性及可靠性均有明显提高,非常适应滩浅海地区淤泥较厚地带的数据采集。

3.4、滩浅海检波器精确定位技术

在浅海地震勘探中,放臵检波器的时候,由于受风浪、潮汐、海流的影响, 检波器的位臵将发生移动,利用测量标定的检波器位臵往往是不准确的,检波器位臵不准造成的时差,在资料处理中无法通过静校正或动校正来消除,影响地震资料的成像精度。因此,在浅海地震勘探中,有必要检测检波器的实际位臵,为此采用了初至波测量技术、声纳测量技术、检波器水中定位技术。通过以上定位技术的应用,在处理时,根据检波器实际坐标进行校正,使地下反射同相轴能精确叠加,提高了地震剖面质量(图2)。

3.5、 滩浅海观测系统设计及施工技术

3.5.1、滩浅海观测系统设计技术

滩浅海地区的观测系统设计和论证技术与陆地不同之处是受滩浅海地表条件和滩浅海设备条件限制较大。

滩浅海观测系统设计要考虑以下两点:

(1) 满足地下构造需要的观测系统。根据地下构造的需要,采用多种观测系统,同一地区采用两种观测方式;同一测线采用不同观测系统,但观测系统属性不要相差太大。

(2) 适应地表需要的观测系统。在过渡带地区施工时,退潮用速度检波器、涨潮用压电检波器。由于检波器的布设相当困难,滩浅海地区施工常采用较少检波器道数,较多炮数的观测系统。具体方法有减少接收线,增加炮线法、排列渐减法、过障碍物变观测系统法、块状观测系统法。

定位前迭加剖面 定位后迭加剖面

图2 精确定位前后的叠加剖面对比图

4

3.5.2、滩浅海施工技术

滩浅海地震勘探与陆地地震勘探相比,施工效率受自然环境的影响较大,施工质量不仅取决于地震勘探技术,很大程度上受施工方式的影响。

优化施工方案是利用滩浅海地区潮汐、海浪的基本变化规律,在滩浅海水陆过渡带使用两种类型的震源(滩涂地带使用炸药震源,在3m 以上水域使用气枪震源),两种类型检波器(滩涂和两栖地带使用速度检波器,在1.5m 以上水域使用压电检波器)时。两种震源和两种检波器的结合非常关键。在退潮时,使用炸药震源和速度检波器施工到低潮线,涨潮时用气枪和压电检波器施工到高潮线,解决了陆上、水陆过渡带、海上三个区域的资料采集连接。

4、应用实例

垦东地区位于黄河入海口附近,淤泥面积大,烂泥较厚,严重影响了地震波激发和接收,但烂泥下为硬沙板地。水深变化范围在0-20m ,从南向北从西向东逐渐变深。

在施工技术上根据地表特征合理制定生产方案,采取“低潮打井、高潮放炮;潮稳深水作业、潮高浅水作业;风平浪静潮间带施工”的方法。并通过采用以上新技术,使垦东地区的地震资料质量有明显的提高(图3)。

5、结束语

胜利物探公司多年来在滩浅海地区地震波激发、接收、观测系统设计、测量及施工技术等方面进行大量研究,形成了一套适应胜利滩浅海并可推广到环渤海湾地区的滩浅海地震勘探技术。胜利物探具有完成海滩、两栖地区二维、三维地震采集任务的能力,也具有完成浅海(5-10M )或大于10M 水深地区的二维、三维地震采集任务的能力。滩浅海地区地震勘探技术经过进一步发展,有能力提供更加精确的地震资料,将为胜利油田可持续发展做出更大的贡献。

图3 垦东地区新老剖面对比(上图为老剖面,下图为新剖面

)

参考文献:

1、陆基孟著.《地震勘探原理》.东营:石油大学出版社,1993

2、[美]R.E.谢里夫、[加]L.P.吉尔达特编,初英、李承楚、王伟宏、吕旭东译.《勘探地震学》.北京:石油工业出版社,1999

3、杨惊涛等.海上二次定位技术的研究与应用.石油物探.2002,41(增刊):67~69

5

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

地震勘探在海洋石油勘探中的基本原理

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___ 地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。

地震勘探在石油行业的应用

地震勘探在石油行业的应用 黄土塬山地网状三维勘探的基本思路和基础黄土塬网状三维地震勘探出发点就是利用黄土塬区沟系发育的特点 ,在不同的沟中激发和接收 ,充分利用目前地震勘探仪器具有多道接收能力的优点 ,进行宽方位的地震接收 ,得到黄土覆盖区目的层反射信息。模型计算结果证实 ,利用不同形状闭合回路激发和接收均可获得回路中心一定面积的反射信息。但山地冲沟一般为树枝状分布 ,很难形成理想的闭合回路 ,因此在实际中需在塬上布设少量的接收点和激发点作为补充。 1. 2 野外采集方案设计和实施工区位于中国中部甘肃省庆阳县 ,地表海拔高程范围 1 140~1 560 m ,沟塬高差最大可达 300 m , 单测线沟塬高差也在百米以上。沟距一般大于 2 km(图 2a) 。目标层为中生界侏罗系延安组和三叠系延长组 ,埋深 1 000~1 500 m。考虑到激发点和接收点的不均匀布设以及地形、沟距的限制 ,设计时覆盖次数以不低于二维地震覆盖次数为主 ,面元大小以尽量不出现地下空白反射区为原则。最小偏移距无定值 ,最大偏移距应近似于目标层位埋藏深度 ,避开干扰 ,满足速度精度和仪器性能限制[ 1 ] 。施工采集排列范围设计和实施以刘八沟水系为主 ,南北局部跨相邻水系。布设 8 个排列小区 (图 2b) ,大部分激发、接收点选在沟中老地层出露处 , 小部分为联络跨塬支沟而摆放在黄土塬上。沟中采用单井或双井激发 ,塬上采用多井组合激发 ,接收道数大于 1 000 道。 网状三维原始资料特点 (1) 大信息量排列线的重复和多次观测使最大覆盖次数达 430 次。 (2) 不规则性施工排列为近似环形树枝形网状线束 ,形成极不规则的单炮记录(图 3) 。 (3) 不均匀性炮检距分布、覆盖次数平面分布、方位角分布及原始记录频率成分构成均呈现不均匀状态。 (4) 静校正难度大炮、检点间高程变化剧烈以及巨厚黄土塬低降速层造成的静态延迟使静校正问题复杂化。 (5) 低信噪比复杂的地表、近地表条件造成面波、浅层折射波、多次波发育 ,复杂的炮检关系又使普通规则干扰在原始记录中的规律性变差。

胜利油田滩浅海地区地震勘探技术

胜利油田滩浅海地区地震勘探技术 崔汝国,王燕春,曹国滨 (胜利石油管理局物探公司,山东东营257100) 摘要:滩浅海地区由于特殊的地表条件和复杂多变的表层结构,既不同于陆上勘探也不同于海上勘探,尤其在两栖地带存在海陆两种施工方式。本文对滩浅海地区地震勘探的激发震源、检波器和观测系统等野外采集各环节的进行了系统研究,提出解决滩浅海地区野外难以采集到高品质地震资料问题的方法;以滩浅海复杂表层结构中地震波场传播理论为基础,进行了地震记录上的干扰波压制、差异校正等方面的深入研究,提出解决滩浅海地区地震资料处理品质过低和成像精度不足问题的方法,形成一整套适用于滩浅海地区油气资源探查的高精度实用性的特色技术主题词:滩浅海;表层结构;激发;接收;观测系统;二次定位;差异校正;干扰波压制 1、概述 滩浅海是指包括滩涂、潮间带至10米水平以内浅海区域,胜利油田滩浅海地区的勘探范围较为广泛,西起四女寺河口,东至潍河口,有利勘探面积约为5500km2。从1974年开始,经过近三十年的滩浅海地震勘探,开辟了以埕岛构造带为主的海上勘探阵地,发现了十四个油田,为胜利油田增储上产和可持续发展做出了巨大的贡献。 滩浅海地区有丰富的油气资源,由于滩浅海地区地表条件复杂、勘探难度大,不适宜采用常规陆上地震勘探设备和技术,也无法采用海上采集技术,造成滩浅海地区勘探程度相对于陆上勘探程度低,是胜利油田未来增加储量的主要阵地,发展前景十分广阔。经过多年的滩浅海地震勘探技术研究,形成了专门应用于滩浅海施工的地震勘探技术。通过应用这些技术,使滩浅海地区地震资料的品质有了很大的改进和提高,具备滩海、潮间带和极浅海环境下全方位地震勘探的能力,可以很好地完成滩浅海地区地震勘探任务。 2、滩浅海地震勘探特点及难点 2.1滩浅海地震勘探特点 胜利滩浅海地区内,极浅海近海水域底部平缓,水深一般分布在数米范围内,但由于黄河入海的影响,还在黄河口形成了沿海滩涂和潮间带。 由于黄河入海的影响,淤泥分布较广,为黄河泥沙最新淤积而成,烂泥较深,厚度大约在0.2-1m不等,激发、接收条件很差,随着黄河的延伸,其地表与沼泽地带无异。 另外大大小小的潮沟纵横交错,随着潮汐的变化,潮间带水深变化在0-1.5m。潮间带水深受潮汐变化影响,施工因素必须根据潮涨潮落来作出调整。 2.2滩浅海地震勘探难点 由以上环境特点给滩浅海施工带来很多难点,具体表现如下: 1

前沿:海洋宽频带地震勘探新技术扫描

前沿:海洋宽频带地震勘探新技术扫描 文|吴志强 国土资源部海洋油气资源与环境地质重点实验室

1、概况 海洋地震勘探在海洋地质调查、油气藏勘探与开发中起到了无可替代的重要作用。随着勘探领域的不断拓展,地震勘探的难度越来越大。在深部地质调查和复杂构造、火山岩(或碳酸盐岩)屏蔽下的油气藏地震勘探中,为了获取目的层有效反射信号、实现精确成像,对地震数据采集的要求进一步提高,包括采集到低频、高频成分丰富的宽频带、高信噪比原始地震记录。地震信号中的低频信息具有穿透能力强、对深部目的层成像清晰的优势,同时也使地震反演处理结果更具稳定性。宽频带可产生更尖锐子波,为诸如薄层和地层圈闭等重要目标体的高分辨率成像提供全频带基础数据。 理论研究表明:当地震数据的频带宽度不低于两个倍频程时,才能保证获得较高精度的成像效果;频带越宽,地震成像处理的精度越高;增加低频分量的主要作用是减少子波旁瓣,降低地震资料解释的多解性,提高解释成果的精度。 图形象地展示了低频分量的重要性:高频分量丰富、但缺少低频分量的地震子波的主峰尖锐,却会产生子波旁瓣,使地震资料的精确解释变得困难且多解;高分辨率子波是在低频和高频两个方向都得到拓展的宽频带子波,这样子波的主峰尖锐、旁瓣少且能量低,能分辨厚度极小的薄层,地震解释的精度高。 现今地震资料反演处理大多是基于模型的地震反演,成功的关键是能否提取真实子波和建立精确的低频模型。常规地震数据中缺失低频信息,只能采用从测

井数据中提取低频分量再与地震数据反演的相对波阻抗合并处理方式得到绝对 波阻抗。 在目标地质体复杂、钻井少的探区,仅靠测井资料提取的低频分量难以反映复杂地质体横向变化,导致不精确或假的反演结果。为弥补该缺陷,一般采用从地震叠加速度提取低频分量方式,而叠加速度只能提供0~5Hz低频信息,无法弥补常规地震所缺少的0~10Hz低频分量。可见,地震数据中低频信息对保证地震岩性反演的精度意义重大。 然而,在海洋地震勘探中得到宽频带地震数据是比较困难的。 首先,在常规海洋地震数据采集中,电缆和气枪都要以固定深度沉放于海平面之下,以保证下传的激发能量最大化和降低接收环境噪声。 由于海平面是强反射界面,在激发和接收环节都会产生虚反射效应,从而压制了信号的低频和高频能量,并产生了陷波点,限制了地震勘探的频带宽度。例如,为了获得深部目的层有效反射信号,必须增加气枪阵列容量、加大沉放深度以得到穿透能力大、主频低的激发子波,并加大电缆沉放深度以减少对来自深部反射界面的低频反射信号的压制效应,由此带来的副作用是高频信号受到较大压制,降低了地震信号的频带宽度和分辨率。 在海洋高分辨率地震勘探中,一般采用较小气枪阵列容量和较浅沉放深度以得到高频成分丰富的激发子波,同时降低电缆沉放深度以降低接收环节对高频信号的压制效应,这样虽然提高了地震信号的频带宽度和视觉分辨率,但它是以牺牲低频信息和勘探深度为代价,处理后的成果数据缺少低频信息,给后续的反演处理带来较大困难。 勘探设备性能也限制海洋地震勘探获得宽频带地震数据的能力,电缆在移动时产生的机械和声波噪声掩盖了微弱的有效地震信号,降低了地震数据的频宽和信噪比,尤其是对高频段信号的影响幅度更大。到目前为止,常规海洋地震勘探中尚未找到完全有效压制虚反射效应的采集和处理方法。 近年来,针对海洋宽频带地震勘探面临的主要难题,在勘探设备方面进行了研发并取得重要进展。固体电缆的研制成功和工业化应用,有效地降低了电缆噪声,提高了对微弱高频信号的响应和记录能力;双检波器拖缆采集技术的发展与应用,压制了虚反射效应,拓宽了地震频带。 众所周知,气枪和电缆以一定深度沉放于海平面之下,海平面反射在上行波和下行波之间产生交互干涉的鬼波效应,对地震反射信号产生了压制和陷波作用,降低了原始地震资料的频带宽度。气枪和电缆沉放越深,对高频信号压制越大,越有利于低频信号;沉放越浅,对低频信号压制越大,越有利于高频信号。 为了压制虚反射效应,提高地震数据频带宽度,在海洋地震激发时借鉴陆上地震勘探压制虚反射的成功做法,开发了多层震源组合新技术代替传统的平面震源组合方式,激发地震子波的低频和高频分量都得到有效拓展和提升,因此其频带展宽、穿透能力增强。 在海洋地震信号接收环节,为有效削弱由海平面虚反射引起的陷波作用,利用电缆沉放深度的变化对不同频带的压制特性,采用上、下缆接收技术,既有效

油气非地震勘探技术的发展趋势

第17卷 第3期 地 球 物 理 学 进 展 V ol.17 N o.3 2002年9月(473~479) PROG RESS I N GE OPHY SICS Sept.2002油气非地震勘探技术的发展趋势 何展翔1,2 贺振华1 王绪本1 孔繁恕2 (1.成都理工大学,成都610059; 2.中油地球物理勘探局五处,河北定兴072656) [摘 要] 提出未来非地震技术的两个主要发展方向:面向高成熟区和复杂区的高精度非地震勘探技术和面向油气预测与油田开发的非地震岩性勘探技术;阐明了未来三维非地震技术及综合勘探技术对高精度、高效益油气勘探的重要性,指出了非地震技术在油气预测与油田开发中将占有重要地位,将发挥其特殊的作用,展现了油气非地震勘探技术广阔的应用前景. [关键词] 非地震勘探技术;油气勘探;油田开发 [中图分类号] P315 [文献标识码] A [文章编号] 100422903(2002)0320473208 0 引 言 非地震勘探技术包括了重力、磁力、电法、化探等多种勘探手段,是油气勘探中不可或缺的一个方面军.几十年来,非地震勘探技术在盆地早期普查中为地震勘探导向,发挥了重要作用,其勘探方法技术也发生了日新月异的变化.一方面,随着勘探工作的不断深入,勘探工区地表地质条件更加复杂,地震勘探遇到了前所未有的困难,非地震技术为其提供了参考和补充,在区带评价和目标勘探等多种油气勘探领域取得了明显的效果;未来油气勘探将面临更为复杂的勘探难题,单一物探方法已不能满足勘探要求,多种方法联合勘探是必然趋势,非地震技术将扮演重要角色.另一方面,油田开发增储上产、提高采收率以及寻找剩余油藏将是石油工业面临的重要课题,非地震在油田开发中有着不可低估的作用. 因此,非地震勘探技术会更多地跟随油气勘探市场的变化而发展,并推出具有特色的技术系列.其中面向高成熟区和复杂区的勘探技术和面向油气预测与油田开发的勘探开发技术是未来非地震技术的两个主要发展方向. 1 面向高成熟区和复杂区的非地震技术 新区处女地越来越少,高成熟区和地震地表复杂区则会增加,这种情形将改变石油工业对勘探技术的需求.针对这类复杂区的勘探技术除地震之外,将是三维非地震以及多种勘探技术的联合. 1.1 三维是高精度非地震技术的发展方向 重、磁勘探向三维发展最主要的特征是重、磁场的三维正、反演模拟.由于野外重、磁采集一般采用规则三维网,而现行的数据处理,如各种异常的提取也总是以面积数据为对象,因此,重、磁野外采集几乎不要做什么变动,最主要的是数据的正反演向三维发展以提高解释精度[1],特别是配合其它物探方法进行处理解释可以发挥重要作用. [收稿日期] 2001212205; [修回日期] 2002205205. [基金来源] 国家自然科学基金项目(40074036)资助. [作者简介] 何展翔,男,1962年11月生,湖南平江人,高级工程师,毕业于中国地质大学,硕士,研究方向电磁勘探. (Email:hezhanxiang@https://www.360docs.net/doc/7a15978577.html,)

胜利油田介绍

https://www.360docs.net/doc/7a15978577.html,/a2_82_05_01300000098168125413054963448_jpg.html?prd=zhengwenye_ left_neirong_tupian胜利油田 中国石油化工股份有限公司胜利油田分公司(以下简称:胜利油田分公司),主体位于黄河下游的东营市,油田机关位于东营市济南路258号,工作区域主要分布在山东省的东营、滨州、德州、济南、潍坊、淄博、聊城、烟台等8个市的28个县(区)。主要工作范围约4.4万平方千米,主体部位在东营市境内的黄河入海口两侧。自1978年以来,胜利油田共取得各类科研成果6129项,其中获国家级奖励102项,获省部级奖励596项,取得专利1333件,累计实施专利技术972项。胜利油田分公司严格按照公司法的规定规范运作,不断增强竞争实力和盈利能力,正逐步向决策科学、运作协调、管理严密的现代企业迈进。“十一五”期间,胜利油田以“共创百年胜利,共建和谐油田,共享美好生活”为目标,按照“三稳一保”的工作要求和集团公司整体部署,大力实施资源、市场和可持续“三大战略”,持续推进改革、管理、科技“三大创新”,全面推进党的建设、队伍建设、文化建设、民生建设、和谐环境建设等“五大和谐工程”,凝心聚力,向着科学发展、创新发展、和谐发展的 胜利油田是中国陆上第二大石油生产基地,自1961年发现、1964年正式投入开发建设以来,到2007年底,先后找到75个不同类型的油气田,累计生产原油9.08亿吨,生产天然气391.64亿立方米。胜利油田分公司现有油井22891口,开井17817口,原油年生产能力2700万吨。全油田平均综合含水率为90.34%,自然递减率14.7%,综合递减率5.83%。有气井371口,开井94口,年工业产气量7.84亿立方米;有注水井7455口,日注能力61.73万立方米,累计注采比0.79。拥有计量站2103座,注水站261座,联合站50座,年处理液能力3.25亿吨;接转站60座,年处理液能力7733万吨;污水站55座,年污水处理能力3.4亿立方米;原油集输管线2.09万条/1.28万公里;有93座海上采油平台,海底输油管线76条/144.4公里;形成了具有胜利特色的原油集输、脱水、污水处理配套技术。 2007年底胜利油田分公司下设21个二级单位,185个三级单位,1292个四级单位,分公司机关设15个职能处室,3个直属单位,有员工87379人,其中固定职工58526人,有高级技术职称2952人,中级技术职称8529人;所辖石油专业队伍中,采油队343个,稠油热采注汽队25个,采气队7个,输油(气)队88个,运输队4个;固定资产和油气资产总量为652.05亿元,其中油气资产净值548.26亿元;机械装备总量30792万台,装机总功率237.93万千瓦,平均设备新度系数0.39。 中国石化胜利油田有限公司于 2000年5月28日正式挂牌成立,为中国石化股份有限公司的全资子公司。是由胜利油田的油气勘探开发主体部分重组改制而成的。

石油地震勘探资料处理

石油地震勘探资料处理 1.地震资料数字处理是怎么回事? 既然野外地震已经采集到了反映地下地质情况的地震记录,为什么还要进行地震资料数字处理呢?这是因为野外采集的地震记录仅仅是把来自地下地层的各种信息以数码形式记录在磁带上或光盘上,还不能直接反映出地下地层的埋藏深度及起伏变化情况,还需要将地震记录拿到室内输入到运算速度非常快、存贮量非常大、专业功能非常强的计算机系统中,在专家的指令下进行反复计算和分析,才能获得直接反映地下地层真实情况的数据和图像,专业上把这一过程叫做地震资料数字处理。这个过程有点像我们生活中使用的数码照相机(或数码摄像机)的显像过程,将数码照相机拍摄到的图像输入到室内的电脑上,根据需要,对显示在屏幕上的影像进行修改、调整、增加、删减,满意后可通过屏幕拷贝、彩色打印输出图片来,也可以录制到光盘上存贮以供调用,这个过程叫做编辑,也叫处理。不过地震资料的数字处理所用的硬、软件则要复杂得多。因为数码相机拍摄到的图像仅是几米到几十米远的景物,而地震资料数字处理要对从地面开始到地下五六千米甚至上万米深范围内的地震数据进行处理,不仅将上面第一套地层,还要将下面很多套地层逐层搞清楚。这些地层在不同地区形态都不一样,有的很平,有的像喜马拉雅山似的高山,有的像雅鲁藏布江似的河谷。可见地震数字处理要把地下数千米深的看不见、摸不着,又极其复杂的地层情况搞清楚,这是多么难的一门学科。 不过,近些年来由于将迅速发展起来的计算机技术、信息技术等许多高新科学技术引用到地震资料数字处理中,为搞清地下地层情况,寻找深埋地下的油气田提供了条件,提供了可能,而且提高了油气勘探的成功率。 经过数字处理后的成果有好几十种。专业上把反映地层的埋藏深度、厚度以及形态的图件叫做水平叠加剖面(简称叠加剖面)、偏移剖面。把反映地层岩石(砂岩、泥岩等)组成及其物理性质(速度高低、孔隙大小等)等的成果叫地震属性资料。将经过数字处理的这些剖面和属性资料录制到数字磁带或光盘上,可提供给下道工序(解释)使用。

地震勘探基础知识

地震勘探基础知识(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1. 有关地震勘探的一些基本概念 1.1 地震勘探是勘探石油的有效方法 勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。 地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。 依据研究对象的不同,物探法主要分为以下几种: 地震勘探(利用岩石的弹性差异) 重力勘探(利用岩石的密度差异) 磁法勘探(利用岩石的磁性差异) 电法勘探(利用岩石的电性差异) 在石油勘探中,最经济的方法是物探法。首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。然后钻探法通过实际钻进,以对物探法进行验证。如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。 在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。而钻井法成本高、效率低。如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。 在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。因此,地震勘探已成为石油勘探中一种最有效的方法。 1.2 地震勘探基本原理 地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。利用记录

海底地震勘探最新方法与技术发展

海底地震勘探最新方法与技术发展 摘要:随着深海耐压材料工艺的突破和海上高分辨精细地震勘探技术的发展,底地震勘探方法逐渐成为热点。一方面,海上三维地震勘探方法逐渐向四维发展,在海上布设漂缆数量越来越多的同时,海底电缆或检波器也被应用到海上复杂油气区块的精细调查中去;另一方面,新能源研究与深水油气技术的突破,同样需要高频与低频型海底地震仪器。本文讲述目前国际上海底地震勘探新方法与仪器设备的发展和我国在海底地震勘探领域的研究状况。 关键词:海底地震仪;横波勘探;四维地震;精确时间计时;精准布设DOI:10.3772/j.issn.1009-5659.2010.06.003上个世纪地震勘探发展过程中,海底地震勘探方法 是以横波信息接收分析,作为观测天然地震,研究海底演变以及作为海上拖缆地震的补充而出现和发展的。由于横波(S波) 不能在液体中传播,因而只接收到了纵波的反射与折射信息。海底地震仪器的出现,检波器放置于海底,与海底耦合,可以接收到横波或者转换横波信息。随着电子科学、材料科学的发展进步,海底地震勘探仪器设备的性能得到了很大的提升;同时,全世界对能源需求和依赖进一步提高,海上油气资源勘探难度逐步加大,海底新型能源的开发利用步伐加快,海底地震勘探技术方法正逐渐成熟,已成为海底深部构造研究、海上四维油气勘探、天然气水合物勘探研究必不可少的手段。 1 海底地震勘探技术简介 海底地震勘探技术是海上地震勘探技术的一种,同样有震源和采集器组成。海底地震勘探技术大都采用非炸药震源(以空气枪为主),震源漂浮在接近海面,有海上调查船拖曳;采集器陈放到海底来接收震源发出,经过海底底层反射的纵横波信号。其特点是在水中激发,水中接收,激发、接收条件均一,可进行不停船的连续观测。检波器最初使用压电检波器,现在发展到压电与振速检波器组合使用。海底地震勘探技术又可分为海底电缆勘探技术(OCEAN BOTTOM CABLE,以下简称OBC)和海底地震仪勘探技术(OCEAN BOTTOMSEISMOMETER,以下简称OBS)。OBC技术是将采集电缆沉入海底,调查船拖曳震源在海面上放炮的方法 OBS勘探技术是将海底地震仪陈放到海底,调查船拖曳震源在海面上放炮的方法。 OBC的优点是:全波场采集;成像效果更好、地层层次清楚、形态可靠;消除鬼波影响,环境噪音低。但技术应用难度大、成本高,应用于海上油田储油区扩展调查等快速收回投资的项目;OBS技术是由研究海底天然地震发展起来,它的特点是:广方位角、全波接收,现在逐渐应用于海底石油勘探和新能源勘探开发。 2 近年来国际海底勘探技术发展 20世纪60年代,美国军方为观测海底核试验位置而研制了世界上第一台海底地震仪,由陆地检波器电缆发展而来的浅水底电缆引用于陆上浅水区和海上滩涂区地震油气勘探。60年代末,西方国家海洋计划开始实施,研究海洋地壳地幔结构、板块俯冲带,海沟海槽演化动力学等课题,研制出功能多样、先进、广泛应用到海洋地球科学研究中的海底地震仪。通过海底地震仪长期定点的至于海洋深处,接收天然地震或对人工触发的地震波的观测,科学家们对大洋中脊和海沟俯冲带地壳结构有了新的认识,发现快速扩张的洋中脊与慢速扩张的洋中脊结构的不同。同时,海底地震仪也用于研究天然地震的地震层析成像以及地震活动和地震预报等。随着工业化的迅猛发展,西方主要经济体对石油需求加大,更精确的油气勘探调查也向更精确和深海方向发展。设计成高分辨率、广方位角、全波接收的海底地震仪被应用到,海上油田储油目标区块的精细调查和深海油气调查中。美国、日本等国家近年来将海底地震仪应用到了新型能源——天然气水合物的调查研究当中。随即,欧盟国家德国、法国、挪威、意大利等也相继推出了新型的海底地震仪产品,并开始走

浅谈页岩气地震勘探技术_王万合

科技·探索·争鸣 科技视界 Science &Technology Vision Science &Technology Vision 科技视界0序言 页岩气是指以吸附、游离或溶解状态赋存于泥页岩中的天然气,其特点是页岩既是源岩,又是储层和封盖层。在埋藏温度升高或有细菌侵入时,泥页岩中的有机质,甚至包括已生成的液态烃,就裂解或降解成气态烃,游离于基质孔隙和裂缝中,或吸附于有机质和黏土矿物表面,在一定地质条件下就近聚集,形成页岩气藏[1]。页岩气作为一种非常规天然气资源,已经越来越得到各国的重视。 1地震勘探技术 目前,国内已陆续开展了部分地区的页岩气地震勘探试验,如对施工观测系统选择的试验等,获得了一些原始地震数据以及时间剖面,根据剖面相位、波组特征分析,取得了一些有价值的结论。就页岩气地震勘探而言,若想解决好反射波(组)与页岩层段之间的相互关系,并为井位布设和后期进一步的勘探开发提供科学依据,笔者认为应从以下几个方面的进行研究。1.1构造情况 对于页岩,其本身即是生气场所也是重要的盖层,在构造转折带、地应力相对集中带以及褶皱-断裂发育带,通常是页岩气富集的重要场所。在这些地区,裂缝发育程度较高,能够为页岩气提供大量的储集空间。成藏之后发生的构造运动也能诱发页岩裂缝的发育,也有利于页岩气的富集,但这可能会破坏页岩本身作为盖层的部分[2],若是通过运移机制进入页岩外部的储集层,则外部储集层构造特征的研究也十分重要。地震勘探技术以物性差异(波阻抗差异)为基础,是一种探测构造最有效、经济的地球物理方法。因此,通过地震勘探技术探明勘探区内的构造情况,再根据页岩气的沉积储层预测,可有效获得区内页岩气有利区。1.2储层标定 储层的标定是确定页岩层段的主要手段,但前提是勘探区内必须有已知的页岩气勘探孔,通过钻井揭露的页岩层段情况,结合地震反射波组特征,对地质主要层位进行标定,从而获得区内不同时代地层反射波(组)特征,根据该特征可实现对全区页岩层段的波组追踪,从而为后期确定储层的厚度、埋深及属性提取研究提供了坚实的基础。1.3厚度预测 厚度预测是页岩气勘探孔位选定及页岩气储量预测的基础,同时,更要注重优质页岩的厚度预测,因为优质页岩是页岩气赋存的主要载体,优质页岩与普通泥页岩的差别主要表现在自然伽马曲线上,虽然优质页岩速度并不一定比普通页岩层低,但是它的自然伽马数值要比普通泥页岩高,利用此特征,通过拟声波曲线重构,重构的曲线具有低频声波及高频自然伽马信息,它能够对优质页岩层进行很好的预测[3]。 1.4埋深计算 根据合成记录结果确定的目标层位,对地震数据进行连续追踪,获得页岩气储层的全区时间场,利用钻孔反算的速度及叠加速度值,可获得区内近似的平均速度场,通过网格化数据,利用时深转换公式:储层埋深=时深转换深度-(基准面-地震测量高程),可获得区内储层埋深等值线,为钻孔的布设及后期勘探、开发提供科学依据。1.5地震多属性提取技术研究 地震数据体中含有丰富的地质信息,如果有效提取、优选敏感信息对页岩气藏进行预测,是页岩气地震勘探成功的关键一环,页岩的孔隙度、泊松比等在常规地震时间剖面上可能无法反映,但通过地震波属性提取,建立页岩的孔隙度等与地震属性的相互关系,提取相关信息,可较好的解决页岩气的丰度等重要信息,以往多事利用某一相对敏感性属性信息进行解释,现如今已是结合了地质模型正演、地质统计学、函数逼近、神经网络、统计模式识别、模糊模式识别等数学方法综合预测,为提高储层预测的可靠性提供了更多的途径。1.6“甜点”预测 页岩气地震勘探的主要目的就是寻找页岩气勘探开发的有利区域———“甜点”,为井位部署和开发方案的制订提供科学依据,通过区域内构造的分布情况、页岩气储层的厚度及埋深、多属性优选、分析和提取技术,按照埋深介于1000~3000m 范围、构造相对简单、优质页岩厚度大于30m 的原则,最终可获得“甜点”的分布规律,为目标区块井位的部署及开展其它相关工作提供了较为全面、详实的数据[3]。 2结论 页岩气作为一种非常规能源,是一种近源岩、“自生自储自盖型”油气藏,其成气、运移和储集过程复杂,成藏模式多样化。 地震勘探因其高效、经济,是常规能源勘探的重要手段,通过对地震波场的进一步的认识,建立地震波场与页岩气藏之间的相互关系,也必将在页岩气勘探领域内大显身手。 通过地震勘探在页岩区域内构造、储层的厚度及埋深、敏感属性与页岩气的相关性等研究,可获得较为可靠的页岩气“甜点”区,为下一步页岩气的钻井布设、勘探、开发提供科学依据。【参考文献】 [1]郭思刚,梁国伟.大方地区页岩气采集参数试验分析[J].油气藏评价与开发, 2011,1(5):71-75. [2]邢恩袁,庞雄奇,欧阳学成,等.浅析页岩气成藏模式[C]//第五届油气成藏机理与油气资源评价国际学术研讨会论文集.2009:914-919. [3]李志荣,邓小江,杨晓,等.四川盆地南部页岩气地震勘探新进展[J].天然气工业,2011,31(4):40-43. [责任编辑:庞修平] S ※基金项目:中煤科工集团青年科技创新基金项目(2013XAYFX004)。 作者简介:王万合(1981—),男,汉族,安徽蒙城人,2007年毕业于中国地质大学〈武汉〉地球探测与信息技术专业,硕士,中煤科工集团西安研究院有限公司,工程师,从事煤田地质勘探、非常规气藏勘探研究及城市活断层探测工作。 浅谈页岩气地震勘探技术 王万合 (中煤科工集团西安研究院有限公司,陕西西安710077) 【摘要】本文讲述了对页岩气的基本认识,提出了页岩气地震勘探勘探应着重解决的几个方面,即寻找页岩区构造,储层标定,页岩的厚度预测和埋深计算,并对页岩气敏感属性进行优选、分析和提取,获得页岩气藏与地震数据体间的相互关系,从而实现对页岩气“甜点”的预测。 【关键词】页岩气;地震勘探;甜点 A Brief Talk about the Technology of Seismic Exploration on Shale Gas WANG Wan-he (Xi ’an Research Institute,China Coal Technology and Engineering Group Corp.,Xi ’an Shaanxi 710077,China ) 【Abstract 】This article tells us basic understanding about shale gas ,and proposes us several aspects should be focused on about the technology of seismic exploration in shale gas,that is structure for shale area,reservoir calibration,the thickness forecast and depth calculation,optimalizes,analyses,and extracts sensitive properties about shale gas.Then obtains the relationship between seismic data volume and shale gas reservoirs,So as to achieve the prediction of “The dessert ”on shale gas. 【Key words 】Shale gas;Seismic exploration;The dessert 项目与课题 58

地震勘探总结

1、地球物理勘探简称“物探”,即用物理的原理研究地质构造和解决找矿勘探中问题的方法。 目前主要的物探方法有:重力勘探,磁法勘探,电法勘探,地震勘探,放射性勘探等。 2、地震勘探:1.效果最好(精度高)2.用得最多(90%)3.发展最快4.和油气勘探与开发联系最紧密! 3、勘探石油的方法目前有三类:地质法、钻探法、物探法。 4、在勘探油气的各种物探方法中,地震勘探已成为一种最有效的方法。 5、所谓的地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播情况,查明地下地质构造,为寻找油气田或其它勘探目标的一种物探方法。 6、地震勘探的生产工作,基本上可分为三个环节: ①野外工作。②室内资料处理。③地震资料的解释。 7、地震勘探方法与其他物探方法(重、磁、电)相比,具有精度高的优点,其他物探方法都不可能象地震方法那样能详细而较准确地了解地下有浅到深一整套地层的构造特点。地震方法与钻探方法相比又有成本低以及可以了解大面积的地下地质构造情况的特点。因此,地震勘探已成为石油勘探中一种最重要的勘探方法。 8、同一反射界面的波,其波形特征是相似,不同反射界面的波其波形特征是不同的,这就是在地震资料解释中常用的基本法则之一。 9、惠更斯原理:介质中波所传到的各点,都可以看成新的波源,叫做子波源。可以认为,每个子波源都向各个方向发出微弱的波,叫做子波。子波是以所在点处的波速传播的。 10、费马原理:波在各种介质中从一点传播到另一点,所走的路径遵守时间最小。 11、地震波是在地下岩石中传播的弹性波,其类型纵波、横波、面波、反射波、透射波、折射波等。 12、弹性模量:1.杨氏模量(E)T=E e 2.体变模量(K)K=-Kθ 3.切变模量(μ)F=μψ 4.拉梅常数(λ)G=λ e 5.泊松比(σ)13、对于大多数弹性介质,σ约为0.25,非常坚硬的岩石是0.05,固结性很差的松软介质,大约为0.45,对于液体,μ=0,所以σ可达最大值0.5。 14、体波是能够在整个弹性体内传播的地震波。按照弹性形变的基本类型或岩石质点振动的不同形式,体波又可分为纵波(P波)和横波(S波)两种。纵波的特点是:质点的振动方向与波的传播方向一致。横波的特点是:质点的振动方向与波的传播方向垂直。横波只在固体介质中传播。 15、在地震勘探中主要是利用纵波:在地震勘探中,不论用炸药震源还是非炸药

地震勘探技术新进展_杨勤勇

第25卷第1期2002年2月 勘探地球物理进展 Progress in Exploration Geophysics Vol.25,No.1 Feb.2002地震勘探技术新进展 杨勤勇1徐丽萍2 (1.中国石化石油勘探开发研究院南京石油物探研究所,江苏南京210014; 2.西北石油局规划设计研究院,乌鲁木齐830011) 摘要:近几年来,地震勘探技术得到了很大的发展。超万道地震仪的投入使用,以及优化采集设计技术的发展,有效地提高了采集效率和资料质量;叠前深度偏移技术使复杂构造的成像更为清晰;3D可视化技术和虚拟现实技术大大提高了地震解释的能力、精度和速度;地震属性技术的发展把地震解释向定量化解释推进了一步;井中地震技术、多波多分量地震技术以及时延地震技术的发展,有力地增强了油气静态描述和动态监测的能力;复杂介质中地震波传播规律的研究向传统的层状介质理论发起了冲击。 关键词:可视化;虚拟现实;地震属性;成像;井中地震;VSP;多分量;时延地震 中图分类号:TE132.1+1文献标识码:A 地震勘探是利用地层岩石的弹性特性来研究地下地质结构,推断岩体物性,预测油气的一种勘查方法。几十年来,地震勘探以其高信噪比、高分辨率、高保真度、高精确度、高清晰度和高可信度等赢得了广大用户的信任,成为找油找气的关键技术。在油气勘探开发中,应用地震勘探已有效地解决了一系列复杂的地质问题,在各种复杂构造油气藏和隐蔽油气藏的勘查方面取得了重大成果,给油气公司带来了可观的经济效益。 近几年来,以PC计算机群大规模投入使用,可视化、虚拟现实、网络技术飞速发展为标志,以高分辨率地震、3D地震为代表,以4D地震、井中地震、多波多分量地震为发展前沿的地震勘探技术正跃上新的台阶,高密度采集和3D空间成像归位技术以其精确、灵活显示等优点,在国内外已卓有成效地用于查明各种复杂构造油气藏和隐蔽油气藏。 1主要进展 1.13D可视化技术[1~4] 可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物内部结构。方法包括以图形为基础(或称为面可视化)和以体素为基础(体可视化)的可视化。在以体素为基础的体可视化中,每一个数据采样点被转换成一个体素(一个3D象素的大小近似于面元间隔和采样间隔)。每一个体素有一个对应于源3D数据体的值,一个RGB(红色、绿色、蓝色)色彩值以及可被用来标定数据透明度的暗度变量。 多年来,许多公司致力于地学可视化应用软件的开发,取得了可喜的成果。在3D图形工作站环境支持下,各种基于数据体操作、图素提取与曲面造型、体绘制技术的应用软件相继出现,它们基本上代表了当今综合解释工作站3D可视化软件功能的发展水平(见表1)。 表1有代表性的可视化解释处理软件 公司软件 Landmark 3DVI(3D体积解释) Voxcube(3D立体动画) Geoquest GeoViz(交互3D解释) Paradigm Voxel Geo(真3D地震解释系统) DGI Earth Vision (基于3D空间地质建模) Photo3DViz(3D体可视化) 体可视化允许解释人员直接进行地层解释,识别地震相,改进油藏特征描述。它通过数据的3D 立体显示,使解释人员能够作构造、断层、地层沉积、岩性、储集参数和油气等的交互解释。解释结果在三度空间内立体显示,可以激发资料处理解释人员的科学灵感,赋予他们无限的想像空间与创造力,极大地提高了工作效率和工作质量。 1.2虚拟现实技术 虚拟现实(Virtual Reality,简写为VR)是一种 收稿日期:2001-12-31 作者简介:杨勤勇(1964-),高级工程师,1985年毕业于中国地质大学物探系,现从事情报研究。

相关文档
最新文档