热电偶特性及(2014)

热电偶特性及(2014)
热电偶特性及(2014)

热电偶的特性及其应用

一、实验简介

热电偶有着测温范围宽、灵敏度和准确度高、结构简单、不易损坏,并且可以进行动态测量和记录的许多优点,因而被应用于温度的传感、工业加热炉温的测量、金属熔点的测量、数据采集与温度控制等诸多方面。

二、实验目的

1、了解热电偶测温的基本原理和方法

2、了解热电偶定标的基本方法

3、掌握热电偶的基本规律

三、实验仪器

FB203温度传感加热装置,自组装热电偶,万用表。

四、实验原理

1821年塞贝克(T. J. Seebeck )发现,当构成回路的两种不同金属的两个连接点

温度不同时,回路中会有恒定电流产

生,如图1所示,这表示两种金属的

接触处由于温度差而产生了电动势,

叫做温差电动势,这种电路称为热电

偶,该现象称为塞贝克效应。

热电偶的温差电动势与两接头之 图1 两种不同金属构成的闭合电路 间的温度关系比较复杂,可以用下式表示:

[]2

1()()T B A T E S T S T dT =-?

S(T)表示金属的塞贝克系数,T 2为热端的温度,T 1为冷端的温度。但是在较小温差范围内可以近似的认为温差电动势E 与温度差(T 2-T 1)成正比,即: 21()E C T T =-

式中C 称为温差系数,单位为-1V μ?℃,它表示两接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即: ()()00C=/A B k Ln n n

式中k 为玻尔兹曼常量,e 为电子电量,n 0A 和n 0B 为两种金属单位体积内的自由电

子数目。

对于热电偶而言,有如下两个常见定律:

1、中间导体定律

在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。

应用:依据中间导体定律,在热电偶实际测温应用中,常采用热端焊接、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。

2、中间温度定律

热电偶回路两接点(温度为T、

T0)间的热电势,等于热电偶在温

度为T、T n时的热电势与在温度为

T n、T0时的热电势的代数和,如

图2所示。T n称中间温度。图2 中间定律连线示意图应用:由于热电偶E-T之间通常呈非线性关系,当冷端温度不为0摄氏度时,不能利用已知回路实际热电势E(T,T0)直接查表求取热端温度值;也不能利用已知回路实际热电势E(T,T0)直接查表求取的温度值,再加上冷端温度确定热端被测温度值,需按中间温度定律进行修正。

热电偶的定标

利用温差热电偶测量温度时必须进行定标,即用实验的方法测量热电偶温差电动势与测量端温度之间的关系曲线,定标方法有以下两种:

1、比较法:即用被校准热电偶与一个标准热电偶(或标准热电阻)去测同一个温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶(或标准热电阻)所测的热电势所校准,在被校准热电偶的适用范围内改变不同的温度,进行逐点校准,就可以得到被校准热电偶的一条校准曲线。这种定标方法设备简单,操作方便,但其准确程度受到标准热电偶(或标准热电阻)准确度的限制。

2、固定点法:纯金属在融化和凝固过程中,其融化和凝固温度不随环境温度改变而改变,从而利用这些纯物质的融化和凝固温度作为已知温度,测出热电偶在这些温度下对应的电动势,利用作图法或最小二乘法拟合实验曲线,求出温差系数C,从而得到热电势与温度关系曲线。这种定标方法准确度很高,已被定为国际温标复现、校标的基准。

五、实验内容

本实验定标时使用标准热电阻Pt100作为参照物。

1、测试实验室提供的热电偶的温差电动势随着热端温度变化的特性:测试时,保持冷端处于室温,热端温度从30℃到70℃之间每变化5℃记录一次温差电动势的值,升温和降温过程各测一遍。

2、验证中间导体定律:将第三种金属串联接入上述热电偶电路中,并使第三种金属的两个连接端处于相同的温度(如:同处于室温),测试该热电偶的温差电动势随着温度的变化特性(只需测试升温过程即可),并与1中所得数据进行比较,验证中间导体定律。

3、验证中间温度定律:分析1中所得数据,并与中间温度定律内容相比较,验证中间温度定律的正确性

选作:

在利用热电偶发电的技术中经常将热电偶串联使用,本次实验体会串联使用的好处。

1、将四种不同的金属按照下图所示连接,并保持热端温度相同,冷端温度相

同,测试该回路的温差电动势E随着热端温度变化的

关系,并讨论这样做的优点是什么,实验中应该注意

哪些事项?

2、尝试用其他材质的金属丝制作热电偶,测试其

温度特性变化曲线,并与纯镍-康铜热电偶比较。

七、注意事项

1、热端的加热装置温度较高,避免烫伤。

2、所用加热装置为玻璃制品,轻拿轻放,防止破损!

八、思考题

1、温差电动势产生的原理是什么?

2、如何从理论上证明中间导体定律?

热电偶特性及2018

热电偶的特性及其应用 一、实验简介 热电偶有着测温范围宽、灵敏度和准确度高、结构简单、不易损坏,并且可以进行动态测量和记录的许多优点,因而被应用于温度的传感、工业加热炉温的测量、金属熔点的测量、数据采集与温度控制等诸多方面。 二、实验目的 1、了解热电偶测温的基本原理和方法 2、了解热电偶定标的基本方法 3、掌握热电偶的基本规律 三、实验仪器 FB203温度传感加热装置,自组装热电偶,万用表。 四、实验原理 1821年塞贝克(T. J. Seebeck)发 现,当构成回路的两种不同金属的两 个连接点温度不同时,回路中会有恒 定电流产生,如图1所示,这表示两 种金属的接触处由于温度差而产生了 电动势,叫做温差电动势,这种电路称为热电偶,该现象称为塞贝克效应。 热电偶的温差电动势与两接头之 图1 两种不同金属构成的闭合电路 间的温度关系比较复杂,可以用下式表示: []2 1()()T B A T E S T S T dT =-? S(T)表示金属的塞贝克系数,T 2为热端的温度,T 1为冷端的温度。但是在较小温

差范围内可以近似的认为温差电动势E 与温度差(T 2-T 1)成正比,即: 21()E C T T =- 式中C 称为温差系数,单位为-1V μ?℃,它表示两接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即: ()()00C=/A B k e Ln n n 式中k 为玻尔兹曼常量,e 为电子电量,n 0A 和n 0B 为两种金属单位体积内的自由电子数目。 对于热电偶而言,有如下两个常见定律: 1、中间导体定律 在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。 应用:依据中间导体定律,在热电偶实际测温应用中,常采用热端焊接、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。 2、中间温度定律 热电偶回路两接点(温度为T 、 T 0)间的热电势,等于热电偶在温 度为T 、T n 时的热电势与在温度为 T n 、T 0时的热电势的代数和,如图2所示。T n 称中间温度。 图2 中间定律连线示意图 应用:由于热电偶E-T 之间通常呈非线性关系,当冷端温度不为0摄氏度时,不能利用已知回路实际热电势E(T,T 0)直接查表求取热端温度值;也不能利用已知回路实际热电势E(T,T 0)直接查表求取的温度值,再加上冷端温度确定热端被测温度值,需按中间温度定律进行修正。

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

热电偶特性及其应用研究实验报告Word版

实验报告 热电偶特性及其应用研究 姓名: 学号: 班级:

热电偶特性及其应用研究 一、实验目的 1.了解电位差计的构造、工作原理及使用方法; 2.了解温差电偶的测温原理和基本参数; 3.测量铜—康铜热电偶的温差系数。 二、实验原理 1.电位差计的补偿原理 为了能精确测得电动势的大小,可采用图2.10.2所示的线路。其中是电动势可调节的电源。调节,使检流计指针指零,这就表示回路中两电源的电动势、方向相反,大小相等。故数值上有(2.10.1) 这时我们称电路得到补偿。在补偿条件下,如果的数值已知,则即可求出。据此原理构成的测量电动势和电位差的仪器称为电位差计。 2.实际电位差计的工作原理 使用时,首先使工作电流标准化,即根据标准电池的电动势调节工作电流I。将开关K2合在S位置,调节可变电阻,使得检流计指针指零。这时工作电流I 在段的电压降等于标准电池的电动势,即(2.10.2) 再将开关K2合向X位置,调节电阻Rx,再次使检流计指针指零,此时有

这里的电流I就是前面经过标准化的工作电流。也就是说,在电流标准化的基础上,在电阻为Rx的位置上可以直接标出与对应的电动势(电压)值,这样就可以直接进行电动势(电压)的读数测量。 3. 温差电偶的测温原理 把两种不同的金属或不同成分的合金两端彼此焊接成一闭合回路,如图所示。 若两接点保持在不同的温度t和t0,则回路中产生温差电动势。温差电动势的大小除了和组成热电偶的材料有关外,唯一决定于两接点的温度函数的差。一般地讲,电动势和温差的关系可以近似地表示成 这里t是热端温度,t0是冷端温度,c称为温差系数,其大小决定于组成电偶的材料。 三、实验所用仪器及使用方法 1.仪器:UJ31型电位差计、标准电池、光点检流计、稳压电源、温差电偶、冰筒、水银温度计、烧杯、控温实验仪等。 2.使用方法 UJ31型电位差计: (1)将K2置于“断”,K0置于“×1”档(或“×10”档,视被测量值而定),分别接上标准电池、检流计、工作电源。被测电动势(或电压)接于“未知1”或“未知2”。 (2)根据温度修正公式计算出标准电池的电动势Es的值,调节Rs的示值与其相等。将K2旋至“标准”档,按下K1(粗)按钮,调节Rn1、Rn2、Rn3,使检流计指针指零,再按下K1(细)按钮,用Rn3精确调节至检流计指针指零。 (3)将K2旋至“未知1”(或“未知2”)位置,按下K1(粗)按钮,调节读数转盘Ⅰ、Ⅱ、Ⅲ,使检流计指针指零,再按K1(细)按钮,细调读数转盘III使检流计指针精确指零。此时被测电动势(或电压)Ex等于读数转盘Ⅰ、Ⅱ、Ⅲ上的示值乘以相应的倍率之和。 标准电池: 实验中使用饱和标准电池的20℃时的电动势E =1.0186V。则温度为t℃时 20 的电动势可由下式近似得到 控温实验仪: 轻按“SET”按钮开始设置温度。此时轻按“位移”按钮,改变调节焦点位置;轻按“下调”按钮,减小焦点处数字;轻按上调按钮时,增大焦点处数字。再次轻按“SET”按钮,并设置加热电流后开始加热。

K型热电偶测温实验报告

实验报告 实验课程名称传感器与自动检测技术 实验项目名称 K型热电偶测温实验 专业班测仪161班 实验班测仪161班 学生姓名袁利 学号 1600160290 小组编号第七组 实验时间: 2 0 1 8 年 10 月 8 日

实验目的及要求:了解K 型热电偶得特性与应用 实验仪器设备:智能调节仪、PT100、K 型热电偶、温度源、温度传感器实验模块 实验原理:热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝尔效应,即两种不同的导体或半导体A 或B 组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T ,另一端温度为0T ,则回路中就有电流产生,即回路中存在电动势, 该电动势被称为热电势。 当回路断开时,在断开处a,b 之间便有一电动势T E ,其极性和量 值与回路中的热电势一致,并规定在冷端,当电流由A 流向B 时,称A 为正极,B 为负极,实验表明,当T E 较小时,0=()T AB E S T T (AB S 是热电势率)。 热电偶基本定律: (1) 均质导体定律:由一种均质导体组成的闭合回路,不论导体的 截面积和长度如何,也不论各处的温度如何,都不能产生电动势。 (2) 中间导体定律:在热电偶回路中,只要中间导体C 两端温度相 同,那么接入中间导体对热电偶回路总热电势0(,)AB E T T 没有影响。 (3) 中间温度定律:热电偶的两个结点温度为12,T T 时,热电势为AB E (12,T T ),两结点温度为23,T T 时,热电势为AB E 23,T T (),那么当两结 点温度为13,T T 时的热电势则为

热电阻测温特性实验(精)

热电阻测温特性实验 一、实验目的:了解热电阻的特性与应用。 二、基本原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要 求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847 ×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对 测量的影响。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。 四、实验步骤: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基本参 数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压旋至最大。 5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测出 P t100三根线中其中短接的二根线(蓝,黑)接b端。这样R t与R3、R1、R w1、 R4组成直流电桥,是一种单臂电桥工作形式。R w1中心活动点与R6相接,见图 11-5。

热电偶的特性

一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端, 温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0), 因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示: EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。

中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t 和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB(t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理 论依据。 二、各种误差引起的原因及解决方式

热电阻测温特性实验及其数据分析

实验二热电阻测温特性实验 1 实验目的 了解热电阻的特性与应用。 2 基本原理 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻,铂电阻在0~630.74℃以内,电阻Rt与温度t的关系为Rt = R0(1 + αt + βt2),其中R0是温度为0 °C时的电阻。本实验R0 = 100 Ω,α= 3.9684×10?2°C?1,β= ?5.847×10?7°C?2,铂电阻使用三引线,其中一端接二根引线,主要为消除引线电阻对测量的影响。 3 需用器件与单元 加热源、K 型热电偶、Pt100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

4 实验步骤 4.1 差动放大器调零 将实验模板调节增益电位器RW2顺时针调节大致到中间位置,将±15V电源及地从主控箱接入模板,检查无误后,合上主控箱电源开关,进行差动放大器调零。 4.2 将K 型热电偶插入到热源孔,将自由端按极性正确接至主控板上,用于温度设定。 4.3 将Pt100铂电阻引线接入Rt端的a、b 上。Pt100三根线中,其中两根线为铂电阻的一端。采用三线制的第一对称接法将Pt100接入电桥,这样Rt、R3和Rl、RWl、R4并联组成单臂电桥,见图2.2。

4.4 在端点a 与地之间加直流源4V,合上主控箱电源开关,调RW1使Vi输出为零,即桥路输出为零(平衡)。然后将Pt100热电阻探头插入到热源孔。 4.5 按Δt = 5℃进行升温,温度稳定后,读取数显表值,将结果填入表2.1。实验结束后将温度控制器温度设定为零,关闭电源开关。 表2.1 铂电阻热电势与温度值 5 思考题 5.1 根据表2.1值计算温度测量系统的灵敏度,S =?uO/?t(?uO输出电压变化量,?t温度变化量);及其非线性误差。 5.2 如何根据测温范围和精度要求选用热电阻? 数据处理: 1、计算温度测量系统的灵敏度:其中Δt=5℃,

检测技术实验1 热电阻、热电偶测温特性实验

上海电力学院检测技术实验 题目:热电阻、热电偶测温特性实验

一、实验目的 了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理 (一)热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 (二)热电偶: 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元 加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E型、加热源。 四、实验步骤 (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和 E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压 旋至最大。 5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测

检测技术实验1 热电阻热电偶测温特征实验

上海电力学院 检测技术实验 题 目: 热电阻、热电偶测温特性实验 仅可以艺高中资料试

一、实验目的 了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理 (一)热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 (二)热电偶: 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元 加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E型、加热源。 四、实验步骤 (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热 电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为 负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势 值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压 旋至最大。

热电偶温度特性实验

实验四K热电偶温度特性实验 1、实验目的:了解热电偶测温原理及方法和应用。 2、基本原理:K型热电偶是由镍铬-镍硅或镍铝材料制成的热电偶,偶丝直径不同,测量的温度范围也不同。对于确定的热电偶,其温度测量范围和电动势随温度的变化曲线是确定的,可通过查表得到。选用确定的K型热电偶,插入温度源中,把热电偶的输出端通过差分放大,获得热电偶的电动势。记录测量电动势,通过测量热电偶输出的电动势值再查分度表得到相应的温度值。 3、需用器件与单元:主机箱、温度源、Pt100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 4、原理图如下图4.8所示 图4.8 K热电偶原理图 5、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。热电偶测温时要对参考端(冷端)进行修正

(补偿),计算公式:E(t,t0)=E(t,t0')+E(t0', t0) 式中:E(t,t0)—热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值; E(t,t0')—热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值; E(t0',t0)—热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。 例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温)t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益k=10)32.7mv,则E(t,t0')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢? 解:由附录K热电偶分度表查得: E(t0',t0)=E(20,0)=0.798mV 已测得 E(t,t0')=32.7mV/10=3.27mV 故 E(t,t0)=E(t,t0')+E(t0', t0)= 3.27mV+0.798mV=4.068mV 热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100℃。 (1)在主机箱总电源、调节仪电源、温度源电源关闭的状态下,按图4.11示意图接线。 图4.9 K型热电偶温度特性试验接线示意图 (2)调节温度传感器实验模板放大器的增益K=30倍:在图4.9中温度传感器实验模板上的放大器的二输入端引线暂时不要接入。拿出应变传感器实验模板(实验一的模板),将应变传感器实验模板上的放大器输入端相连(短接),应变传感器实验模板上的±15V电源插孔与主机箱的±15V电源相应连接,合上主机箱电源开关(调节仪电源和温度源电源关闭)后调节应变传感器实验模板上的电位器R W4(调零电位器)使放大器输出一个较大的mV信号,如20mV(可用电压表2V档测量),再将这个20mV信号(Vi)输给图30A中温度传感器实

热电偶测温实验指导书

《建筑环境测试技术》 热电偶测温系统实验实验指导书 上海工程技术大学机械工程学院 能源与环境系统工程系 2014.3

一、实验目的 通过本实验掌握热电偶测量温度的主要内容和方法,了解引起测量误差的因素,达到以下实验目的: 1、观察了解热电偶的结构、校验装置; 2、熟悉热电偶工作特性; 3、掌握热电偶测温方法,学习查阅热电偶分度表; 4、掌握数据读取和数据处理方法。 二、实验原理 两种不同成份的导体两端接合成回路,当两接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端、自由端、参考端);冷端可以是室温值也可以是经过补偿后的0℃、25℃的模拟温度场。冷端与显示仪表或配套仪表连接,可显示测得的热电势。 国际上,将热电偶的A 、B 热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表,即参考端温度为0℃时的测量端温度与热电动势的对应关系表。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃,才能利用热电偶分度表查得热电势对应的温度,而实际测量时,环境温度T 0(不为0)。对此,有如下关系式: )0,(),()0,(00T E T T E T E += 其中)0,(T E ——测量端温度为T ,参考端为0℃时的热电势 ),(0T T E ——测量端温度为T ,参考端为T 0时的热电势 )0,(0T E ——测量端温度为T 0,参考端为0℃时的热电势 热电偶校验有两种方法:定点法和比较法,后者常用于校验工业用和实验室用热电偶。

常见热电偶类型及特点

常见热电偶类型及特点 1、K 型热电偶镍铬(镍硅(镍铝)热电偶) K型热电偶是抗氧化性较强的贱金属热电偶,可测量0~1300 ℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200 ℃,长期使用温度为1000 ℃,其热电势与温度的关系近似线性,是目前用量最大的热电偶。然而, 它不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。 K型热电偶缺点: (1))热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000 ℃)往往因氧化而损坏; (2))在250 ~500 ℃范围内短期热循环稳定性不好,即在同一温度点,在升温 降温过程中,其热电势示值不一样,其差值可达2~3℃; (3))其负极在150 ~200 ℃范围内要发生磁性转变,致使在室温至230 ℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰; (4)长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。 2、S 型热电偶(铂铑10 -铂热电偶) 该热电偶的正极成份为含铑10% 的铂铑合金,负极为纯铂。 其特点是:

(1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度 可达1300 ℃,超达1400 ℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗 大而断裂; (2)精度高,在所有热电偶中准确度等级最高,通常用作标准或测量较高温度;(3)使用范围较广,均匀性及互换性好; (4)主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低, 不适宜在还原性气氛或有金属蒸汽的条件下使用。 3、E 型热电偶(镍铬-铜镍[康铜]热电偶) E型热电偶为一种较新产品,正极为镍铬合金,负极为铜镍合金(康铜)。其最 大特点是在常用的热电偶中,其热电势最大,即灵敏度最高;它的应用范围虽不及K型偶广泛,但在要求灵敏度高、热导率低、可容许大电阻的条件下,常常被 选用;使用中的限制条件与K型相同,但对于含有较高湿度气氛的腐蚀不很敏感。 4、N 型热电偶(镍铬硅-镍硅热电偶) 该热电偶的主要特点:在1300 ℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400 ~1300 ℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200 ~400 ℃)的非线性误差较大,同时,材料较硬难于加工。 5、J 型热电偶(铁-康铜热电偶) J 型热电偶:该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格 便宜,适用于真空氧化的还原或惰性气氛中,温度范围从-200 ~800℃,但常用温度只在500 ℃以下,因为超过这个温度后,铁热电极的氧化速率加快,如采用粗

实验一 K型热电偶测温实验

实验一K型热电偶测温实验 一、实验目的: 了解K型热电偶的特性与应用 二、实验仪器: 智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。 三、实验原理: 智能调节仪控制温度实验 图45-2 1.在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图45-2接线。 2.将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。 3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口

显示待设置的设定值。当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。否则提示“”表示已加锁。再按3秒以下,回到初始状态。 热电偶传感器的工作原理 热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图50-1(a),即回路中存在电动势,该电动势被称为热电势。 图50-1(a)图50-1(b)两种不同导体或半导体的组合被称为热电偶。 当回路断开时,在断开处a,b之间便有一电动势E T,其极性和量值与回路中的热电势一致,见图50-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当E T较小时,热电势E T与温度差(T-T0)成正比,即 E T=S AB(T-T0)(1) S AB为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。 热电偶的基本定律: (1)均质导体定律 由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。 (2)中间导体定律 用两种金属导体A,B组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势E AB(T,T0),而这些导体材料和热电偶导体A,B的材料往往并不相同。在这种引入了中间导体的情况下,回路中的温差电势是否发生变化呢?热电偶中间导体定律指出:在热电偶回路中,只要中间导体C两端温度相同,那么接入中间导体C对热电偶回路总热电势E AB(T,T0)没有影响。 (3)中间温度定律 如图49-2所示,热电偶的两个结点温度为T1,T2时,热电势为E AB(T1,T2);两结点温度为T2,T3时,热电势为E AB(T2,T3),那么当两结点温度为T1,T3时的热电势则为 E AB(T1,T2)+ E AB(T2,T3)=E AB(T1,T3)(2) 式(2)就是中间温度定律的表达式。譬如:T1=100℃,T2=40℃,T3=0℃,则 E AB(100,40)+E AB(40,0)=E AB(100,0)(3)

热电偶温度特性实验

实验四 K热电偶温度特性实验 1、实验目的:了解热电偶测温原理及方法和应用。 2、基本原理:K型热电偶是由镍铬-镍硅或镍铝材料制成的热电偶,偶丝直径不同,测量的温度范围也不同。对于确定的热电偶,其温度测量范围和电动势随温度的变化曲线是确定的,可通过查表得到。选用确定的K型热电偶,插入温度源中,把热电偶的输出端通过差分放大,获得热电偶的电动势。记录测量电动势,通过测量热电偶输出的电动势值再查分度表得到相应的温度值。 3、需用器件与单元:主机箱、温度源、Pt100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 4、原理图如下图所示 图 K热电偶原理图 5、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。热电偶测温时要对参考端(冷端)进行修正

(补偿),计算公式:E(t,t0)=E(t,t0')+E(t0', t0) 式中:E(t,t0)—热电偶测量端温度为t,参考端温度为t0=0℃时的热电势值; E(t,t0')—热电偶测量温度t,参考端温度为t0'不等于0℃时的热电势值; E(t0',t0)—热电偶测量端温度为t0',参考端温度为t0=0℃时的热电势值。 例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温)t0'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益k=10),则E(t,t0')=10=,那么热电偶测得温度源的温度是多少呢 解:由附录K热电偶分度表查得: E(t0',t0)=E(20,0)= 已测得 E(t,t0')=10= 故 E(t,t0)=E(t,t0')+E(t0', t0)= += 热电偶测量温度源的温度可以从分度表中查出,与所对应的温度是100℃。 (1)在主机箱总电源、调节仪电源、温度源电源关闭的状态下,按图示意图接线。 图 K型热电偶温度特性试验接线示意图 (2)调节温度传感器实验模板放大器的增益K=30倍:在图中温度传感器实验模板上的放大器的二输入端引线暂时不要接入。拿出应变传感器实验模板(实验一的模板),将应变传感器实验模板上的放大器输入端相连(短接),应变传感器实验模板上的±15V电源插孔与主机箱的±15V电源相应连接,合上主机箱电源开关(调节仪电源和温度源电源关闭)后调节应变传感器实验模板上的电位器R W4(调零电位器)使放大器输出一个较大的mV信号,如20mV(可用电压表2V档测量),再将这个20mV信号(Vi)输给图30A中温度传感器实验模板的

热电阻测温性能实验

实验三热电阻测温性能实验 1.实验目的:了解热电阻和热电偶测量温度的特性与应用。 2.基本原理: 热电阻测温原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用的热电阻有铂电阻和铜电阻。铂电阻在0-630.74℃以内测温时,电阻Rt与温度t的关系为:Rt=Ro (1+At+Bt2),其中,Ro是温度为0℃时的电阻。本实验Ro=100Ω。A=3.9684×10-2/℃,B=-5.847×10-7/℃2,铂电阻采用三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 热电偶测温原理:两种不同的导体或半导体组成闭合回路,当两接点分别置于两不同温度时,在回路中就会产生热电势,形成回路电流。这种现象就是热电效应。热电偶就是基于热电效应工作的。温度高的接点就是工作端,将其置于被测温度场配以相应电路就可间接测得被测温度值。 3.需用器件与单元: ①CSY-2000控制台上的:mV表、温度控制仪、直流稳压源+2V,+5V;②实验桌上的:温度源、热电偶(K型或E型)、Pt100热电阻、万用表、温度传感器实验模板、连接导线。 4.实验步骤及说明: (1)设置温度控制仪的各项参数并测量环境温度:用万用表欧姆档测出Pt100热电阻三根线,并将它的三个端点与主控台上的Pt100三个端点相连(一一对应)。打开主控台上的电源开关、温度开关,温度控制仪开始工作。根据附录一的说明,按下表设定温度控制仪的某些参数值,其余参数按附录一设置。参数设置完成后,PV显示的温度即为环境温度,记录到表4-1中。 注意:测量环境温度时,热电阻不要插入温度源。 (2)连接电路:关闭主控台上的温度开关、电源开关,开始连接电路。将温度源上的Pt100三个端点与主控台上的Pt100三个端点相连(一一对应),作为标准温度读数。将温度源上的风扇电源24V与主控台上风扇源的24V相连。将主控台稳压电源“+5V”与mV表的“+5V”相连,“-”与“-”相连(注意极性不要接错)。将热电偶(K型或E型)两端导线连接到主控台上的mV表输入端。用万用表欧姆档测出Pt100三根线,其中短接的二根线都接到温度传感器实验模板的b端,另一根接到a端(参见下图,R t两端的a、b),并在端点a与地之间加直流源2V这样Rt与R3、R1、Rw1、R4组成平衡电桥。 图1 铂电阻测温特性实验 (3)调整零点:打开主控台上的电源开关,若mV表不为零,则存在初始偏差,记录此时的数值到表4-1。用万用表测量上图中的△U,调RW1使电桥平衡即△U=0mV。 注意:此时,热电偶和热电阻都不要插入温度源。

Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验 一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻 测温特性与应用。 二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。 在0~500℃以内,它的电阻R t与温度t的关系为: R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构 值(本实验的铂电阻R o=100Ω)。A=3.9684×10-3/℃,B=-5.847×10-7/℃2。铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。 图30—2热电阻信号转换原理图 图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c; -V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c; △V=V1 所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。 式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t: Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。 P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。本实验由于受到温度源及安全上的限制,所做的实验温度值<160℃。

试验一热电偶与热电阻的特性试验

实验一热电偶与热电阻的特性实验 一、实验目的 1、熟悉热电偶与热电阻的结构。 2、掌握热电偶与热电阻的测温原理和方法。 3、掌握热电偶分度表与热电阻分度表的使用方法。 4、熟悉恒温器的使用方法。 二、实验设备 1、K型和E型热电偶各1支 2、Pt100和Cu50热电阻各1支 3、加热恒温装置1套 4、数字万用表1块 5、水银温度计1支 6、热电偶与热电阻分度表各1套 三、实验原理 1、热电偶测温原理 将两种不同性质导体的一端焊接起来,即构成一支热电偶。当热电偶的两端温度不同时,在热电偶回路中将产生热电势;如果冷端温度恒定,则热电势只与热端温度有关。因此测出热电势,查相应型号的热电偶分度表,即可测得热端温度。 2、热电阻测温原理 将热电阻插在测温场所,被测温度变化会引起金属电阻值变化,测出电阻值,查相应型号的热电阻分度表,便可测得温度的数值。 四、温度控制器的使用方法 图1 温度控制器操作面板示意图

操作方法:以温度控制在40℃为例,将控制器电源开关打到开的位置后,指示灯亮,开始加温,温度数字显示表的温度值应慢慢增加。当指示灯开始闪烁,表明已达到恒温的温度值。如果此时恒温温度值高于或低于40℃,则需对设定值进行调整。 由于恒温箱有一定的升温惯性,为了提高实验的效率,最好先将温度设定值定得稍低于40℃,例如37℃。当温度接近40℃恒温时,再稍微提高温度设定值。当温度稳定在40℃时,就开始测量各支热电偶的热电势以及各支热电阻的电阻值,并做好记录。 40℃档实验结束后,进行50℃、60℃档实验,操作方法相同。 五、实验步骤 1、了解恒温箱工作原理。打开恒温箱,查看恒温箱的内部结构。理解后封闭好恒温箱。 2、将两支热电偶、两支热电阻及水银温度计的测温端同时插入恒温装置相应孔内。 3、用万用表的mV档分别测出K型和E型热电偶输出的热电势值;用万用表的欧姆档分别测出Pt100和Cu50热电阻的电阻值,记录数据;读取水银温度计数值,测出当前恒温炉内温度,记为t0。 4、打开温度控制器电源,用验电笔测试控制器外壳是否带电,如带电必须处理好后方可进行实验操作。 5、设定控制温度值为36℃,然后开始恒温箱加热。等待恒温箱升温并控制恒定在40℃时,用万用表的mV档分别测出K型和E型热电偶输出的热电势值,用万用表的欧姆档分别测出Pt100和Cu50热电阻的电阻值,记录数据。 6、将控制温度依次设定在46℃和56℃,重复第3步,控制恒定在50℃及60℃,并记录数据。 7、完成后,分析结果,填写实验报告。 8、关闭加热恒温装置电源,复原实验器具,清理实验现场,整理数据并完成实验报告。

铂电阻和热电偶测温特性实验-热电偶冷端温度补偿设计

铂电阻和热电偶测温特性实验 一、实验目的 1、掌握热电阻和热电偶测量温度的原理和特性。 2、了解热电阻和热电偶的接线方式。 3、了解电加热过程的工作特性。 二、实验原理 1、热电阻测温原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用的热电阻有铂电阻和铜电阻。铂电阻在0-630.74℃以内测温时,电阻Rt与温度t的关系为:Rt=Ro (1+At+Bt2),其中,Ro是温度为0℃时的电阻。本实验Ro=100Ω。A=3.9684×10-2/℃,B=-5.847×10-7/℃2,铂电阻采用三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶测温原理:两种不同的导体或半导体组成闭合回路,当两接点分别置于两不同温度时,在回路中就会产生热电势,形成回路电流。这种现象就是热电效应。热电偶就是基于热电效应工作的。温度高的接点就是工作端,将其置于被测温度场配以相应电路就可间接测得被测温度值。 三、实验设备 CSY-2000实验台、温度源、热电偶(K型或E型)、Pt100热电阻、万用表、连接导线等。 四、实验步骤与说明 本实验的难点是对温度源(右图)温度的控制,这里采用温度控制仪进行操作。实验前需认真阅读附录一《CSY-2000A实验台上的温度控制仪使用说明》。 (1)本实验采用手动控制模式来控制温度源的温度,改变温度控制仪的输出值MV,用万用表测量输出端交流电压,观察电压变化情况。 (2)利用铂热电阻测量环境温度,并记录在表1-1。 (3)温度源(右图)内部封装了一个Pt100热电阻,在面板上有三个引出端子。将此 热电阻信号连接到温度控制仪输入端,作为温度测量的基准温度。 (4)把热电偶和热电阻插入到温度源测点上,热电偶的信号可直接用mV表测量。热 电阻的信号可用万用表电阻档直接测量。 (5)控制温度源的加热电压和加热时间,使温度源从40℃开始,每增加5℃记录一次 热电偶和热电阻的输出,填入表1-1。注意:为了保证数据准确,应在温度源稳定在温 度点上至少30秒后读数。 (6)测量完成后,关上主控台上的温度开关、电源开关,拔下连接导线。如果此时温度源温度大于30℃,则将温度源上的风扇电源24V连接到主控台上的24V稳压电源上,让风扇运转降温。

相关文档
最新文档