群体药代动力学

群体药代动力学
群体药代动力学

发布日期2007-11-01

栏目化药药物评价>>综合评价

标题群体药代动力学(译文)

作者康彩练

部门

正文内容

审评四部七室? 康彩练审校

I.前言

本指南是对药品开发过程中群体药代动力学的应用制定建议,目的是帮助确定在人群亚组中药品安全性和疗

效的差异。它概述了应当用群体药代动力学解决的科学问题和管理问题。本指南讨论了什么时候要进行群体

药代动力学研究和/或分析;讨论了如何设计和实施群体药代动力学研究;讨论了如何处理和分析群体药代动

力学数据;讨论了可以使用什么样的模型验证方法;讨论了针对计划申报给FDA的群体药代动力学报告,怎

样提供恰当的文件。虽然本行业指南中的内容是针对群体药代动力学,但是其中讨论的原则也同样适用于群

体药效学研究和群体毒代动力学研究2。

由于对药品在人群亚组中的安全性和疗效的分析是药品开发和管理中一个发展迅速的领域,所以在整个药品

开发过程中,鼓励主办者和FDA审评人员经常沟通。

制药行业科学家和FDA长期以来一直对群体药代动力学/药效学在人群亚组中药品安全性和疗效分析方面的

应用感兴趣[1]。在FDA的其他指南文件(包括“进行药品临床评价时一般要考虑的问题”(General

Considerations for the Clinical Evaluation of Drugs) (FDA 77-3040))中和在国际协调会议(ICH)指

南(包括“E4支持药品注册的剂量-效应资料”(E4 Dose-Response Information to Support Drug

Registration)和“E7支持特殊人群的研究:老年医学”(E7 St udies in Support of Special Populations:

Geriatrics))中,对这个主题制定了参考标准3。这些指南文件支持使用特殊的数据收集方法和分析方法,

例如群体药代动力学方法(群体PK方法),作为药品开发中药代动力学评价的一部分。

1本指南由药品评审和研究中心(CDER)医药政策协调委员会临床药理学部群体药代动力学工作组与食品药

品监督管理局生物制品评审和研究中心(CBER)合作编写。本指南文件反映了当前FDA对药品评价中的群体

药代动力学的考虑。它不给任何人也不代表任何人创造或赋予任何权力,也不约束FDA或公众。如果其他措

施满足适用法令、法规或两者的要求,那么也可采用其他措施。

2正在为药代动力学模型和药效学模型单独编写指南。

3正在针对儿科药代动力学研究中一般要考虑的问题编写行业指南。

II.背景

?? 群体药代动力学是关于个体之间药物浓度变异来源和相关性的研究,这些个体是指按临床上相关剂量接受所关注药物的目标患者人群[2]。患者的某些人口统计学特征、病理生理特征以及治疗方面的特征,比如体重、排泄和代谢功能、以及接受其他治疗,能够有规律地改变剂量-浓度关系。例如,主要由肾脏排除的药物在肾功能衰竭患者中的稳态浓度通常高于它们在接受同样剂量、肾功能正常患者中的稳态浓度。群体药代动力学的目的就是找出那些使剂量-浓度关系发生变化的、可测定的病理生理因素,确定剂量-浓度关系变化的程度,从而在这些变化与临床上有意义的治疗指数改变相关的情况下,能够恰当地调整剂量。

在药品开发中使用群体PK方法对获得完整的药代动力学资料提供了可能,不但能从来自研究受试者的相对稀疏的数据获取资料,而且还能从相对密集的数据或从稀疏数据和密集数据的组合获取资料。群体PK方法能够分析来自各种不均衡设计的数据,也能分析因为不能按常用的药代动力学分析方式分析而通常被排除的研究数据,比如从儿科患者和老年患者获取的浓度数据,或在评价剂量或浓度与疗效或安全性之间的关系时所获取的数据。

传统药代动力学研究的受试者通常是健康的志愿者或特别挑选的患者,一个组的平均情况(即平均血浆浓度-时间曲线)一直是关注的主要焦点。许多研究将个体之间药代动力学的变异作为一个需要降到最低的因素进行观察,通常是通过复杂的研究设计和对照方案,或通过有严格限制的入选标准/排除标准,将其降到最低。事实上,这些资料对在临床应用期间可能会出现的变异至关重要,但是却被这些限制所掩盖。而且,传统药代动力学研究关注单个变量(例如肾功能)的作法,还使其难以研究变量之间的交互作用。

与传统的药代动力学评价相反,群体PK方法有以下部分特征或全部特征[3]:

l 在患者中收集相关的药代动力学资料,这些患者是指那些要用该药治疗的目标人群的代表。

l 在药品开发和评价期间,找出并测定变异。

l 通过确定可影响药物药代动力学情况的人口统计因素、病理生理因素、环境因素或与合并用药相关的因素,解释变异。

l 定量估计患者人群中无法解释的变异的大小。

无法解释的(任何)变异的大小非常重要,因为随着无法解释的变异增大,药品的疗效与安全性可能会降低。除个体之间的变异以外,稳态药物浓度的长期平均值在个体之间的典型变化程度也至关重要。浓度可能会因为无法解释的每日或每周的动态变化,和/或因为测量浓度时出现的错误而不同。对治疗药物监测而言,估计这种变异(受试者自身的残留变异、各次之间的变异)非常重要。对不一定需要治疗药物监测的合理疗法而言,了解浓度、效应及生理之间的关系是设计给药方案的基础。

要对某个人群、亚组或个体患者制定最佳给药方案,就要解决以上所讨论的变异问题。对制定最佳给药方案重要性的认识,已使群体PK方法在新药开发和管理过程中的应用迅猛增加。最近一项对206份由FDA临床药

理和生物制剂办公室在1995和1996财政年度审评的新药申请和补充材料的调查显示,几乎有1/4(即47份)的申报材料包括群体PK报告和/或群体药效学报告。由于较早地将群体PK研究和临床研究综合在一起,所以群体PK方法为药品说明书提供了有价值的安全性资料、疗效资料和剂量优化资料,在47份申报材料中,有83%做到了这一点。在47份申请的其他17%的申请中,群体PK方法提供了与以往药代动力学发现一致的结果,虽然没有导致修改产品说明书[4]。群体药代动力学有助于药品的开发过程,应当根据情况考虑进行群体药代动力学研究。

III.群体PK分析

更为正式的群体药代动力学定义的框架可见于群体分析的群体模型。群体模型规定至少有2层水平。在第一层水平,个体中的药代动力学观测结果(比如生物液中各种药物形式的浓度)被视为来自个体概率模型,其平均值可通过药代动力学模型(如双指数模型)得出,可使用个体特异性参数量化,这些个体特异性参数可能根据随时间变化的协变量值的变化而变化。对个体药代动力学观测结果的变异(受试者自身变异),也可使用其他个体特异性药代动力学参数制作模型。群体模型要使用一些推理方法,其核心是给出发生变异的部分参数或全部参数的估计值,以及给出平均参数的估计值。在第二层水平,个体参数被视为随机变量,这些变量的概率分布(通常是均数和方差,即个体间变异)被制作为个体特异性协变量的函数模型。这些模型、它们的参数值、以及用来阐述群体药代动力学模型及其参数值的研究设计和数据分析方法的应用,即是群体药代动力学的含义。获得固定效应(均数)估计值和变异估计值的常用方法有2种:两阶段法(two-stage approach)和非线性混合效应模型法(nonlinear mixed-effects modeling approach)。两阶段法包括每个受试者的多个测定指标(数据丰富的情况),对此将在下文中简要描述。非线性混合效应模型法,可用于全部受试者或部分受试者的大量指标都不能测定的情况之下(数据匮乏的情况),将是本指南关注的核心4。4也可以用其他方法,但不做讨论,比如单纯平均数据法(naive averaged-data approach),这种方法给出平均群体药代动力学参数的估计值,但无变异估计值。

A.两阶段法

药代动力学数据分析的传统方法是两阶段法。这种方法的第一个阶段包括使用个体密集的浓度-时间数据(数据丰富的情况),通过非线性回归,估计药代动力学参数。在第一个阶段得到的个体参数的估计值作为输入数据,用于第二阶段对样品的描述性摘要统计计算,通常计算的统计量是平均参数的估计值、方差以及个体参数估计值的协方差。在第二个阶段可以包括采用经典的统计方法(线性逐步回归、协方差分析、聚类分析)进行的参数与协变量之间的依赖性分析。在适用的情况下,两阶段法能够对人群特征产生足够的估计。参数的平均估计值通常没有偏倚,但是在所有的现实情况中,都有可能对随机效应(方差和协方差)估计过高[5-8]。为了改进两阶段法,已提出了求精法(例如全面两阶段法(global two-stage approach)),根据数据的性质和大小,校正随机效应协方差的偏倚,对个体数据进行微分加权(differential weighting)[8-10]。

由于两阶段法用于新药开发和评价过程的时间已经超过20年,并且在其他地方已有描述,所以本文件中将不对其进行全面的讨论。

B.非线性混合效应模型法

如果能够正确实施,那么患者中的群体PK研究结合合适的数学分析/统计分析,比如使用非线性混合效应模型,即是一种有效的、在某些情况下是首选的大量研究的替代方法。在数据匮乏的情况下,不适合使用传统的两阶段法,因为对个体参数的估计是推理得出的,在这种情况下难以实现,所以应当使用单阶段法(single-stage approach),如非线性混合效应模型法。

在进行药品评价的背景下,非线性混合效应模型法产生于下述认识:如果要在患者中研究药代动力学和药效学,那么实际要考虑的问题就会要求应当在设计不太严格、限制较少的情况下收集数据。这种方法以群体研究样本、而不是以个体为分析单位,来估计参数的分布情况,以及它们与群体以内的协变量的关系。除来自以严格的、扩大抽样设计为特点的传统药代动力学研究的传统药代动力学数据(数据密集的情况)以外,这种方法还使用个体的药代动力学观察性(实验)数据,这些数据可能是稀疏的、不平衡的、不连续的数据;或者使用这些个体的药代动力学观察性(实验)数据来替代上述传统药代动力学数据。按照非线性混合效应模型所作分析[11]能够对群体特征做出估计,这些特征是那些说明药代动力学(和/或药效学)参数群体分布情况的特征[12]。

在混合效应模型背景中,群体特征的收集内容包括群体平均值(来自固定效应参数)及其在群体内的变异(一般情况下方差-协方差值来自随机效应参数)。因此,用来进行药代动力学数据群体分析的非线性混合效应模型法,包括对来自整组个体浓度结果的群体参数的直接估计。这维持并说明了每个受试者的特性,即使是在数据稀疏的情况下。对混合效应模型法,将作为群体PK方法进行更详细的讨论,见下文。

IV.什么时候使用群体PK方法

在药品开发过程中,使用群体PK方法有助于增加对药品摄入方式、患者特征和药物体内过程之间的定量关系的认识[12]。当希望发现影响药物特性的因素或希望解释在目标人群中的变异时,这种方法会有所帮助。非线性混合效应模型法尤其有助于某些适应性研究设计(adaptive study designs),比如剂量-范围研究(例如被称为逐渐加量的研究,或效应对照设计)。

受试者之间的动态变异说明在目标人群的某些亚组中可能需要调整给药方案这个事先预测是合理的情况下,最有可能增大群体模型的价值。可能的情况包括(1)药品目标人群非常不均一,和(2)靶浓度窗(target concentration window)被认为相对较窄。

群体PK方法可以用来估计临床药品开发的1期和2b晚期中效应面模型(response surface model)的群体参数,此时要针对药品将如何用于随后的药品开发阶段这个主题收集资料[12]。群体PK方法通过提出能提供更多信息的实验设计和分析,能够提高药品开发的效率和特异性。在1期和2b期的大部分时间(也有可能),患者被广泛抽样,此时也许不需要用复杂的数据分析方法。两阶段法可以用来分析数据,标准的回归方法可以用来制作参数对协变量依赖性模型。或者,也可以将来自1期和2b期个体研究的数据汇总起来,使用非线性混合效应模型法进行分析。

群体PK方法还可用于药品开发的2a早期和3期,来获取有关药品安全性(疗效)的资料,以及收集有关药品在特殊人群中的药代动力学的资料,比如在老年人中的资料[12-14]。这种方法也可用于上市后监测(4期)研究。在临床药品开发的3期和4期开展的研究使其能够采用完整的群体药代动力学采样研究设计(在不同

的时间点从几个受试者采集几次血样)(见V部分)。在新药评价期间、制定管理决策期间以及编写药品说明书期间,这种采样设计能够提供重要的资料。

V. 研究的设计与实施

群体PK方法可用来探讨生理情况和病理生理情况对结构完善模型参数的影响。在着手进行群体PK研究以前,对模型的定性部分应当有充分的认识。提出群体PK研究时,应当早已了解了某些初步的药代动力学资料和药物在人体内的主要排除途径。预试验应该建立基础的药物药代动力学模型,因为在群体PK研究期间收集的稀疏数据也许不能提供足够的资料来区分药代动力学模型。另外,在进行群体PK研究之前,应当有灵敏的、特异的方法(见IX部分),能够测定母体药和所有具有临床意义的代谢产物。如果能够正确实施,那么群体PK研究结合合适的数学分析/统计分析,就能够成为一种有效的、大量研究的替代方法。

由于要确定研究设计,所以从一开始就应当明确群体PK研究的目的。设计群体PK研究时,要考虑到实际的设计局限性,比如采样次数,每个受试者的标本数量,以及受试者例数。从预试验获取变异的初步资料使得通过模拟试验(见下文C部分)预测某些决定性的研究设计和确认能够提供丰富资料的研究设计成为可能。当受试者例数和/或每个受试者的标本数量方面存在极大的局限性时(比如在儿科患者或老年人中),优化采样设计就变得格外重要[15]。鼓励对群体PK研究采用能够提供丰富资料的设计[15-20]。这样的设计应当包括足够的重要亚组患者,以保证能够正确地进行精确的参数估计,保证能够检测出所有亚组差异。

A.采样设计

在进行群体药代动力学时,有3种主要方法(信息量越来越多)能够获取药代动力学变异资料:(1)单个谷浓度采样设计(single-trough sampling design)、(2)多个谷浓度采样设计(multiple-trough sampling design)、以及(3)完整的群体PK采样设计(full population PK sampling design)。

1. 单个谷浓度采样设计

单个谷采样设计中,只在药物谷浓度时或接近药物谷浓度时、在下次给药前不久从每个患者采集单个血样[21],计算患者标本中血浆浓度或血清浓度的频率分布。假设(1)样本大、(2)测定误差和抽样误差小、以及(3)给药方案和采样时间对所有患者而言都是相同的,那么谷浓度筛查的柱状图就能给出相当精确的目标人群谷浓度变异图。如果不能满足这3个条件,那么柱状图就不能精确地反映出药代动力学变异,因为数据会包括其他来源的随机变异,这些变异对所观测到的离散情况有显着贡献[22]。当与治疗转归和副作用的发生有关时,这些柱状图能够提供有关某个特定药物最佳浓度范围的资料。

可以使用简单的统计方法、比如多元线性回归,来探讨患者特征与谷浓度之间的关系。虽然简单,但是谷浓度(药代动力学)筛查能够提供表观清除率的资料,但不能提供其他所关注参数(比如表观分布容积、半减期)的资料。变异的组成(个体之间的变异和残留变异)不能被区分开来。这种方法能够定性地确定药代动力学上相关的协变量和它们在亚组之间的差异。

当进行单个谷浓度采样时,要谨记使患者和医生遵守采样方案是有困难的。虽然测定谷浓度之前只要最后2剂给药遵守了方案就已满足了这类研究的要求,但是药物的给药应当达到稳态。由于可能存在依从性和采样次数的不确定性,所以这种方法只能适当地用于按间隔不到或等于一个消除半减期给药的药物,除非能够保

证给药的时间安排和剂量水平,象在住院患者研究中那样[23]。这种研究需要有大量的受试者,因为数据会被干扰。

采用单个谷浓度采样设计时,不建议测定峰浓度指标,除非药物是通过静脉给药或是某种持续释放剂型。达到最大浓度的时间取决于所有药物处置过程的速度,在受试者之间可能不同。因此,对峰浓度的简单估计易于有较大的不确定性。采集峰浓度标本也能提供对药物而言很大程度上无关的动态过程变异的资料,这些过程的影响与稳态平均浓度有关,或者与浓度曲线下面积有关。

由于是常用设计,所以在本指南中讨论了单个谷浓度采样设计。但是,考虑到这种设计的局限性,所以除了在确实需要的情况以外,不鼓励使用这种设计。当进行单个谷浓度采样时,要谨记上述局限性。

2. 多个谷浓度采样设计

在多个谷浓度采样设计中,在接近稳态谷浓度时,从大部分患者或所有患者都采集2个或更多个血样。除了与患者特征有关的血浓度以外,现在还可以将个体之间的变异和残留变异区分开来。由于这种设计要更为详细地研究患者,所以其需要的受试者较少,能够更为精确地估计谷浓度与患者特征之间的关系。估计个体之间清除率的变异时,应当采用非线性混合效应模型。要使用药代动力学模型进行参数估计时,应当进行灵敏度分析[24],通过固定某个参数,比如吸收速率常数,来估计其他参数,确定对其余参数估计值产生最小影响时的固定参数值。此时许多单个谷浓度筛查设计的缺点也同样存在。虽然对受试者之间的变异和残留变异的估计可能有偏倚,也可能没有偏倚,但它们并不精确,除非研究的患者例数较多。

3. 完整的群体PK采样设计

完整的群体PK采样设计有时被称为实验性群体药代动力学设计(experimental population pharmacokinetic design)或完整的药代动力学筛查(full pharmacokinetic screen)。采用这种设计时,应当于给药后在不同时间(一般为1-6个时间点)从受试者采集血样[7]。这样做的目的是在切实可行的情况下,获取在不同时间每个患者的多个药物浓度,来描述群体PK特征。采用这种方法,可以通过使用非线性混合效应模型法,在研究人群中估计药物的药代动力学参数,解释变异。完整的群体PK采样设计的目的应当是探讨某个药物的药代动力学与目标人群(及其亚组)的人口统计学特征和病理生理特征之间的关系,目标人群指的是该药正被开发的使用人群。

B.多次采集个体标本的重要性

个体特异性药代动力学模型的单次个体药代动力学观测结果的变异(即个体自身的变异)在概念上可分解为2个组成部分:(1)由药代动力学模型在各次之间的变异造成的药代动力学观测结果的变异(各次之间的变异),和(2)适用于该次的个体药代动力学模型的药代动力学观测结果的变异(干扰;药代动力学模型错误)。虽然各次之间的变异有些能够用个体随时间变化协变量在各次之间的差异来解释,但是那些无法解释的变异连同干扰一起却反映了在预测时不能降低的不确定性,因此会影响药物浓度。例如,治疗指数窄、各次之间的变异大的药物,会非常难以控制。如果某项群体PK研究仅仅包括来自只做了一次研究的个体的药代动力学观测结果,那么从个体之间变异看来,各次之间的变异显然是错误的,而从个体自身变异看来,则不是错误的。这样可能导致对使用反馈机制(比如治疗药物监测或根据观察到的药物效应简单地调整剂量)将个体的

治疗控制在治疗范围以内的能力产生不恰当的乐观情绪。它还可能使探讨能够解释(夸张的不合逻辑的)个

体之间变异的个体之间的协变量的工作没有结果。通过保证在群体PK研究中至少有一个中等规模的受试者子

集提供不止一次的数据,来避免上述情况是非常重要的。多次采样有助于分开估计个体自身变异的组成部分

[25, 26]。

C.模拟试验

模拟试验是一个有用的工具,能够为提出的研究设计和分析的优点提供令人信服的客观证据[27]。模拟一项

计划好的研究能够为评价和理解不同研究设计的结果提供可能有用的工具。研究设计中的缺点会造成收集到

信息不丰富的数据。模拟试验能够揭示输入变量和假设对计划好的群体PK研究结果的影响。模拟试验使研究

设计人员能够评价所选的设计要素和制定的假设的结果。因此,模拟试验使药物计量学工作人员能够更好地

预测群体PK研究的结果,能够选出最符合研究目的的研究设计[16-19, 24, 28]。模拟试验方案应当能够进

行反复的模拟试验,能够对数据集进行恰当的分析,从而控制抽样变异对参数估计的影响。也可以模拟其他

可选的研究设计,以确定提供信息最丰富的设计。

D.研究方案

可能会被考虑的方案有2种——追加方案(add-on protocol)和独立方案(stand-alone protocol),具体

取决于要进行群体PK研究的背景情况。在任何一种方案中,方案都应当包括对群体分析目的的明确说明,应

当包括所提出的采样设计和数据收集方法的详细内容。应当预先确定要研究的具体的药代动力学参数。如果

群体PK研究是追加于一项临床试验(追加研究),就象在大多数情况下能够想象的那样,那么PK方案就应

当仔细与已有的临床方案交叉起来,以保证不会影响临床研究原来的目的。研究者要知道在临床试验中包括

一项群体PK研究的价值[29]。如果群体PK研究是独立进行的,那么就应当制定一个全面的方案。下文简要

地讨论了按追加方案进行的群体PK研究和按独立方案进行的群体PK研究。在一项群体PK研究计划评价来自

现有数据的数据和/或来自不止一项研究的数据时,还应当将群体PK研究方案写成文字。

1. 按追加方案进行的群体PK研究(Population PK Study as Add-On Protocol)

如果群体PK研究是追加于原来的一项临床研究,那么就应当明确说明该群体PK研究的目的。这些目的不能

影响原来临床研究的目的。应当明确说明对受试者的采样标准和数据分析方法(在该群体PK研究方案中进行

描述)。应当详细说明进行群体分析要用的数据,包括要用的患者和亚组及要测定的协变量。应当详细说明

采样设计,详细说明所有的亚群分层[30]。在多中心试验中,从一些中心获取大量数据、从其他中心获取稀

疏数据也许有用[3]。进行信息丰富的数据分析、避免模型误设时,可以采用这种数据收集方法,并且应当在

方案中详细说明。实时数据汇总(Real-time data assembly)(见.部分)使得能够在临床试验结束以前进

行群体PK数据分析,使得在新药申请(NDA)卷宗中包括这些结果成为可能。

备注

药代动力学(王广基)word

前言 药物代谢动力学是定量研究药物在生物体吸收、分布、排泄和代谢规律的一门学科。随着细胞生物学和分子生物学的发展,在药物体代谢物及代谢机理研究已经有了长足的发展。通过药物在体代谢产物和代谢机理研究,可以发现生物活性更高、更安全的新药。近年来,国外在创新研制过程中,药物代谢动力学研究在评价新药中与药效学、毒理学研究处于同等重要的地位。药物进入体后,经过吸收入血液,并随血流透过生物膜进入靶组织与受体结合,从而产生药理作用,作用结束后,还须从体消除。通过在实验的基础上,建立数学模型,求算相应的药物代谢动力学参数后,对可以药物在体过程进行预测。因此新药和新制剂均需要进行动物和人体试验,了解其药物代谢动力学过程。药物代谢动力学已成为临床医学的重要组成部分。中国药科大学药物代谢动力学研究中心为本科生、研究生开设《药物代谢动力学》课程教学已有二十多年历史,本书是在原《药物动力学教学讲义》基础,经多年修正、拓展而成的。全书十三章,三十余万字,重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅 速发展的药物代谢动力学体外研究模型等新容。 本书编著者均是长期在药物代谢动力学教学和研究第一线的教师。因此,本书的实践性与理论性较强,可作为高年级本科生、硕士生教材使用,也可作为从事药物代谢动力学研究及相关科研人员的参考书。编者 药物代谢动力学 主编:王广基 副主编:晓东,柳晓泉 编者(姓氏笔画为序) 王广基、晓东、西敬、劲、柳晓泉

容提要: 药物代谢动力学是定量研究药物在机体吸收、分布、排泄和代谢规律的一门学科。在创新研制过程中,药物代谢动力学研究与药效学、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究重要组成部分。本书重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅速发展的药物代谢动力学体外研究模型等新容。共十三章,分别为概述、药物体转运、药物代谢、经典的房室模型理论、非线性药物代谢动力学、统计矩理论及其应用、生物利用度及其生物等效性评价、临床药物代谢动力学、药物代谢动力学与药效动力学结合模型、生理药物代谢动力学模型及其应用实践、手性药物代谢动力学、新药临床前药物代谢动力学研究和计算机在药物代谢动力学研究中的应用。本书的实践性与理论性较强,可作为高年级本科生、研究生教材使用,也可作为从事药物代谢动力学研究及相关科研人员 的参考书. 1 目录 第一章药物代谢动力学概述 一、什么是药物代谢和动力学 二、药物代谢动力学研究与医学其它学科的关系 第二章药物体转运 第一节概述 第二节药物跨膜转运及其影响因素 一、生物膜 二、药物的跨膜转运方式 第三节药物的吸收 一、药物在胃肠道中吸收 二、药物在其它部位吸收 第四节药物的分布 一、药物的分布及其影响因素 二、血浆蛋白结合率及常用的测定方法

第四篇 儿科人群药代动力学研究技术指导原则

附件 儿科人群药代动力学研究技术指导原则 一、概述 临床药代动力学(pharmacokinetic,PK)研究旨在阐明药物在人体内的吸收(Absorption,A)、分布(Distribution,D)、代谢(Metabolism,M)和排泄(Excretion,E)的动态变化规律。药效动力学(pharmacodynamics,PD)研究药物对机体的作用、作用原理及作用规律。人体对药物的处置过程(ADME)和药物在体内作用规律的共同研究,有助于全面认识人体与药物间的相互作用,为临床制定合理的用药方案提供依据。本指导原则重点探讨药代动力学研究的相关问题,也提及部分药效动力学的相关内容。 儿科人群药代动力学研究无论是研究设计还是方法学,都遵循与成年人群的药代动力学研究一致的科学原则,但由于儿科人群在不同的发育阶段各有其特殊性,与成人的药代动力学研究又存在诸多不同之处,需要从伦理和科学性方面给予更多关注。因此,本指导原则在系统地阐述儿科人群药代动力学特点的基础上,以研究设计和方法学为重点,就如何安全、有效并且符合医学伦理地在儿科人群中进行药代动力学研究的关键技术要点进行分析和说明。其重点阐明儿科人群研究的特殊性,为计划在儿科人群中开展药代动力学研究的注册申请人和科研机构提供指导性建议,鼓励和推动针对

我国儿科人群的药物研发。 本指导原则主要适用于小分子化学药物,其他药物如生物制品可以参照其中的适用内容。本原则鼓励注册申请人针对儿科人群药代动力学研究中的技术问题与药品注册监管部门进行沟通交流。 二、儿科人群药代动力学特点 (一)总体考虑 在儿科人群开展药代动力学研究的目的在于通过给予不同年龄阶段儿科人群相应剂量的药物后,了解其体内过程,重点明确全身暴露的水平,从而尽可能地依据现有的研究数据,推导出拟用于该目标人群的用药剂量。 通常情况下,在开展儿科人群药代动力学研究之前,会有一定的成人药代动力学研究数据。因此,在设计儿科人群的药代动力学研究方案时,应充分借鉴成人研究数据,保证在儿科人群开展的研究设计的科学性和合理性。 当药物在儿科人群中拟用于已在成人经过充分研究并获得批准的适应症,其疾病进程在儿科患者与成人相似,且药物全身暴露水平与预期治疗结果具有较好的相关性时,可通过儿科人群药代动力学与成人数据的相似性来外推在儿科人群的预期有效性。因此,在儿科人群进行的PK和安全性研究可为推荐儿科人群拟用剂量提供依据。通过以上外推难以确认儿科人群体内的药物浓度-效应关系与成人的相似性时,尽管儿科患者疾病过程与成人基本一致,仍应该进行儿科患者体内的药代动力学/药效动力学(PK/PD)的相关研究。

药代动力学论文

药物代谢动力学的研究 摘要:超高效液相色谱(UPLC)和PBPK模型在药物代谢动力学研究发挥的重要的作用。UPLC是一种柱效高、发展前景好的液相色谱技术,是一种基于机制的数学模型;PBPK用于模拟化学物质在体内的分布代谢更方面对药物动力学的研究。药物代谢动力学的更深研究在药物研发中起到了重要意义及作用。 关键词:药物代谢动力学UPLC PBPK模型药物研发 Abstract: the high performance liquid chromatography (UPLC) and PBPK model in the study of the pharmacokinetic play an important role. UPLC is a column efficiency high, the prospects of the development of good performance liquid chromatography, is based on a mathematical model of the mechanism; PBPK used for simulation of the chemical substances in the body of metabolic distributed more medicine dynamics research. The pharmacokinetic deeper in drug development research has important significance and role. Keywords: Pharmacokinetic UPLC PBPK model Drug development 前言:动力学的基本理论和方法已经渗透到生物药剂学,药物治疗学,临床药理学及毒理学等多学科领域中。药物代谢动力学是应用数学处理方法,定量描述药物及其他外源性物质在体内的动态变化规律,研究机体对药物吸收、分布、代谢和排泄等的处置以及所产生的药理学和毒理学意义;并且探讨药物代谢转化途径,确证代谢产物结构,研究代谢产物的药效或毒性;提供药物效应和毒性的靶器官,阐明药效或毒性的物质基础,弄清药物疗效和毒性与药物浓度的关系[1]。 1、药物动力学的研究进展 1.1 群体药物动力学 群体药物动力学是研究药物动力学群体参数的估算,药物动力学参数群体值不仅是临床用药所必需,而且有可能成为新药评价的一个必备参数。药物动力学参数群体值的估算有两种方法,一种是传统的二步法,另一种是近年来发展的一步法。后者亦名Nonmen程序法,它把药物动力学参数在患者身上的自身变异及患者间的变异全估算在内。根据变异值的大小也可预估一些生理、病理因素对药物动力学参数的影响。因而更具优越性,在个体化给药中,Nonmen常与Bayesian反馈法结合使用。 1.2 时辰药物动力学 时辰药物动力学是指同一剂量在l天内不同时间给予时药物处置出现显著变异。如多数脂溶性药物的吸收,清晨比傍晚吸收更佳,另外象单硝酸异山梨酯在清晨服用时所导致的体位性低血压最为明显,同时达峰时间也较其他时间给药为短。一些疾病并非1天24小时机体均需要同等水平的药物,如心脏病患者在凌晨发病较多,若制成脉冲式给药,可产生预防作用;相反,如药物浓度始终维持在同一水平却容易带来耐药性,例如硝酸甘油和许多抗菌素类药物;再如只有当血浆中糖分较高时才需要较高的胰岛素。人们开始研究能够自动感知血糖水平,以调节胰岛素释放速率的智能给药装置。

群体药代动力学

群体药代动力学 PART 01 概念 一、概念 药代动力学:定量地研究药物体内代谢过程动态规律的药理学分支。即药物在体内吸收、分布、代谢和排泄的动态变化规律。 通常是概括函数关系,建立数学模型,导出算式,并确定有关参数,最后用数学语言定量、概括、简明地描述药物体内过程的动态规律。 研究目的:常常是作为开发最佳剂型、确定剂量方案、了解相互作用的基础。 群体: 是指根据研究目的所确定的研究对象的全体。由于群体中各受试对象的遗传、环境、营养以及个体特征的不同,药代动力学参数具有很大的个体间变异及个体自身变异。 群体药物动力学:PPK 研究给予标准药物剂量时,血药浓度在个体之间的变异性,确定药代动力学参数的平均值与标准差,以便能计算某一病人的药代动力学参数。 群体药代动力学即药代动力学群体分析法。是将经典的药动学基本原理和统计学模型相结合,分析药物代谢动力学特性中存在的变异性(确定性变异和随机性变异),研究药物体内过程的群体规律、药动学参数的统计分布及其影响因素。 意义: 血药浓度→安全范围小的药物→个体化用药方案 药动学个人参数在研究初期尚未测定,需要参考群体参数。病患康复,证明个体参数反映了客观规律;此时个体参数便可汇入群体、充实群体参数。 群体特性决定于个体特性,而个体特性又受群体规律的制约。因此在开展临床药代动力学研究时,虽着手于个体病例,但要着眼于群体规律。 PART 02 应用 二、群体药代动力学的应用 1.个体化给药 群体的研究方法通过分析大量病人零散的临床常规药物浓度监测数据,应用专业的软件计算群体参数,然后测定患者的1~2个血药浓度,结合患者个体的生物学资料和用药信息,利用药物的群体药代学参数混合运算后得到病人的个体药代学参数,从而达到个体化用药。 尤其适用于儿童老人孕妇等特殊人群。 根据NONMEM法估算的药代动力学群体参数以及新病例的临床常规数据如身高、体重、肾功能等,利用计算机初步推算个体化给药方案,并预测可能达到的血药浓度。然后根据实测血药浓度,对比修正个体药代动力学参数。如此反馈修正,可快速,准确地获得个体药代动力学参数,制定合理的个体化给药方案。 2.生物利用度研究 生物利用度研究可用经典的药代动力学方法,但用NONMEM法可处理稀疏数据的优点,并可提取较多

药代动力学参数

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉(肌肉注射)、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

(完整版)药物非临床药代动力学研究技术指导原则

附件5 药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过体外和动物体内的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄(Absorption, Distribution, Metabolism, Excretion, 简称ADME)的过程和特征。 非临床药代动力学研究在新药研究开发的评价过程中起着重要 作用。在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据。在药效学和毒理学评价中,药代动力学特征可进一步深入阐明药物作用机制,同时也是药效和毒理研究动物选择的依据之一;药物或活性代谢产物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据。在临床试验中,非临床药代动力学研究结果能为设计和优化临床试验给药方案提供有关参考信息。 本指导原则是供中药、天然药物和化学药物新药的非临床药代动力学研究的参考。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行药物非临床药代动力学研究的 基本原则、试验设计的总体要求、生物样品的测定方法、研究项目(血

药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性及转运体的影响)、数据处理与分析、结果与评价等,并对研究中其他一些需要关注的问题进行了分析。附录中描述了生物样品分析和放射性同位素标记技术的相关方法和要求,供研究者参考。 二、基本原则 进行非临床药代动力学研究,要遵循以下基本原则: (一)试验目的明确; (二)试验设计合理; (三)分析方法可靠; (四)所得参数全面,满足评价要求; (五)对试验结果进行综合分析与评价; (六)具体问题具体分析。 三、试验设计 (一)总体要求 1. 受试物 中药、天然药物:受试物应采用能充分代表临床试验拟用样品和/或上市样品质量和安全性的样品。应采用工艺路线及关键工艺参数确定后的工艺制备,一般应为中试或中试以上规模的样品,否则应有充分的理由。应注明受试物的名称、来源、批号、含量(或规格)、保存条件、有效期及配制方法等,并提供质量检验报告。由于中药的特殊性,建议现用现配,否则应提供数据支持配制后受试物的质量稳定性及均匀性。当给药时间较

药代动力学

生物药剂学与药物动力学复习2011/11/24 第二章 1、P12药物的吸收是指药物从给药部位进入体循环的过程。 2、P14被动转运是指存在于膜两侧的药物顺浓度梯度,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。 3、P15被动转运的特点:①药物从高浓度侧向低浓度侧的顺浓度梯度; ②不需要载体,膜对药物无特殊的选择性;③不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;④不存在转运饱和想想和同类物竞争抑制现象。 4、P16主动转运的特点:①逆浓度梯度转运;②需要消耗机体能量,能量来源主要由细胞代谢产生的ATP提供;③需要载体参与,载体物质通常对药物有高度选择性;④主动转运的速率及转运量与载体的量及其活性有关;⑤结构类似物能产生竞争性抑制作用,相似物竞争载体结合位点,影响药物的转运和吸收;⑥受代谢抑制剂影响。⑦有结构特异性和部位特异性。 5、P27 PH分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油水分配系数的学说。 6、P29 评价药物脂溶性大小的参数是油水分配系数(Ko/w)。越大说明药物脂溶性越好,吸收率也大。 7、P41 口服剂型生物利用度的高低顺序为:溶液剂>混悬剂>颗粒剂>胶囊剂>片剂>包衣片。 8、P49生物药剂学分类系统(BCS)的依据:根据药物的渗透性和溶解度分类。分为Ⅰ类(溶解度高、渗透性高);Ⅱ类(溶解度低、渗透性高);Ⅲ类(溶解度高、渗透性低);Ⅳ类(溶解度低、渗透性低)。 9、P55促进药物吸收的方法:㈠提高药物的溶出速度,①增加药物的溶解度(a、制成盐类;b、制成无定型药物;c、加入表面活性剂;d、用亲水性包合材料制成包合物);②增加药物的表面积。㈡加入口服吸收促进剂。 第三章 1、P77药物经皮渗透的主要屏障来自角质层。药物可经两种途径扩散通过角质层:①通过细胞间隙扩散;②通过细胞膜扩散。 2、P87影响肺部药物吸收的因素:㈠药物粒子在气道中的沉积(机理: ①惯性碰撞;②沉降;③扩散);㈡生理因素;㈢药物的理化性质;㈣制剂因素。 3、P90直肠部位血药循环药物经直肠吸收主要有两个途径通过直肠:一条是通过直肠上静脉,经门静脉而进入肝脏,在肝脏代谢后再转运至全身;另一条是通过直肠中、下静脉和肛管静脉进入下腔静脉绕过肝脏

群体药代动力学解读

发布日期2007-11-01 栏目化药药物评价>>综合评价 标题群体药代动力学(译文) 作者康彩练 部门 正文内容 审评四部七室康彩练审校 I.前言 本指南是对药品开发过程中群体药代动力学的应用制定建议,目的是帮助确定在人群亚组中药品安全性和疗 效的差异。它概述了应当用群体药代动力学解决的科学问题和管理问题。本指南讨论了什么时候要进行群体 药代动力学研究和/或分析;讨论了如何设计和实施群体药代动力学研究;讨论了如何处理和分析群体药代动 力学数据;讨论了可以使用什么样的模型验证方法;讨论了针对计划申报给FDA的群体药代动力学报告,怎 样提供恰当的文件。虽然本行业指南中的内容是针对群体药代动力学,但是其中讨论的原则也同样适用于群 体药效学研究和群体毒代动力学研究2。 由于对药品在人群亚组中的安全性和疗效的分析是药品开发和管理中一个发展迅速的领域,所以在整个药品 开发过程中,鼓励主办者和FDA审评人员经常沟通。 制药行业科学家和FDA长期以来一直对群体药代动力学/药效学在人群亚组中药品安全性和疗效分析方面的 应用感兴趣[1]。在FDA的其他指南文件(包括“进行药品临床评价时一般要考虑的问题”(General Considerations for the Clinical Evaluation of Drugs) (FDA 77-3040))中和在国际协调会议(ICH)指南(包 括“E4支持药品注册的剂量-效应资料”(E4 Dose-Response Information to Support Drug Registration)和“E7 支持特殊人群的研究:老年医学”(E7 St udies in Support of Special Populations: Geriatrics))中,对这个主 题制定了参考标准3。这些指南文件支持使用特殊的数据收集方法和分析方法,例如群体药代动力学方法(群 体PK方法),作为药品开发中药代动力学评价的一部分。 1本指南由药品评审和研究中心(CDER)医药政策协调委员会临床药理学部群体药代动力学工作组与食品 药品监督管理局生物制品评审和研究中心(CBER)合作编写。本指南文件反映了当前FDA对药品评价中的 群体药代动力学的考虑。它不给任何人也不代表任何人创造或赋予任何权力,也不约束FDA或公众。如果其 他措施满足适用法令、法规或两者的要求,那么也可采用其他措施。

药代动力学参数

药代动力学参数 This model paper was revised by the Standardization Office on December 10, 2020

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉()、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

群体药物代谢与动力学(population pharmacokinetics, pop PK)简介

群体药物代谢与动力学(population pharmacokinetics, pop PK)简介 实际用药过程中,同剂量下不同个体的药物浓度可能存在显著的差异,其变异性可能源于患者内在个体差异(如肝肾功能差别,代谢酶遗传多态性等)和非患者相关的外在因素(如饮食,同服其他药物等)。在内在和外在因素的共同作用下,造成的药物浓度变化可能引起临床变化(如治疗失败或安全性风险)。在临床前或数据整齐的条件下,仅需用常规的PK分析方法计算关键PK 参数即可。而面对高变异性的临床数据常规的PK分析方法可能比较局限,如何从大量数据中找到化合物的基础PK性质,如何确定哪些因素影响了剂量-浓度关系,此时便需要pop PK分析,进而根据分析结果决策对特定条件的人群是否需要剂量调整。因此,将传统PK分析结合统计模型采用pop PK分析合理准确地量化和解释这类PK变异性,可有效的辅助药物开发与应用,有效地实施个性化治疗。 上述PK变异性的影响因素常会在临床研究中单独进行试验,如食物效应、肝肾功能不全患者试验、DDI研究等。然而,往往这些研究均为单因素研究,有可能单因素不一定造成较大的影响,而多个因素的共同作用可能造成较大的影响;亦有可能单因素造成较大的影响,在其他因素的反向作用下抵消。由此pop PK分析方法的出现,可以有效地整合了所有内在和外在因素,从整体角度准确地进行各类因素对暴露量的综合影响,并找到关键影响因素。 1 Pop PK分析一般过程1.1 数据清洗

任何群体分析均需要对观测数据进行筛查,主要采用图表和统计的方法对因变量和人口数据进行汇总分析,将有助于基础结构模型与统计模型的初步确定,找到可能的协变量因素。由于样品定量分析条件的限制,会出现低于定量下限(BLQ)数据,当BLQ数据数据量低于总量10%时,一般定义为缺失值即可,在进行敏感性分析注意即可;当BLQ数据比例较大时,需保留。 1.2 模型构建 模型的构建基本过程包括基础结构模型选择(一房室模型或二房室模型等),协变量结构模型选择(定义体重、年龄、肌苷酸清除率等可能的协变量对PK参数的影响方式)和残差统计模型的选择。 1.3 模型验证 主要为了考察模型时候足够描述观测数据和可靠性。通常采用多种验证方法结合使用,如拟合优度(GOF)主要用于模型对数据的描述情况的考察,以展示因变量VS个体预测值,因变量VS群体预测值,随机效应的正态性,随机效应之间的相关性和参数估计的精确度等。 2 Pop PK分析的应用2.1 制定临床试验给药方案 Pop PK分析在确定了影响PK变异性的协变量,在后续试验设计中可以针对其特点设计给药方案以降低患者治疗过程中的变异性。如,发现化合物的暴露量与体重关系密切,即可将剂量方案调整为按体重给药。同时,还可以结合临床前的PK/PD/TOX分析结果PK的变异造成治疗失败或安全性风险的高低,辅助决策试验方案的优化。此外,pop PK自身亦可以作为预测模型预估未知剂量或给药间隔下的PK特征,辅助有效剂量或安全剂量范围的摸索。

老年人药物代谢动力学特点概论

老年人药物代谢动力学特点概论 老年人药物代谢动力学特点概论 随着科学的发展,人民生活水平的提高和卫生保健事业的不断完善,我国人均寿命明显延长,老年人所占人口比例不断增加。人口结构老龄化已成为当备受关注的世界性问题。我国现在有1亿多的人年龄超过60岁,在2000年已占到全国人口的10.81%,老年人不仅患病率高,而且往往同时患有多疾病,治疗时应用药物的品种也较多,约有25%的老年患者可能同时使用4~6种药物。因此,老年人的医疗健康问题日益受到社会的关注和重视。在老年人群中进行药物研究具有重要意义。药物与年龄相关的差异可由药代动力学差异和药效学差异引起。已知,多数老年人和年轻人之间重要的差异来自于药代动力学差异。因此,进行详细的试验评价老年人药代动力学改变对药物作用的影响,将为药物研发和评价提供重要信息,并为指导基层临床合理用药提供依据。 1 吸收 同青年人相比,老年人的胃肠道血流量和许多转运系统的作用都比较低。但是研究证明不是所有口服药都随年龄增长而吸收下降,而是随着运转方式不同而有差别。以主动转运方式吸收的药物如铁、糖、钙和维生素B1的吸收减少,是吸收载体减少之故。而以简单扩散(被动)方式吸收的药物如阿司匹林、磺胺类等药物的吸收则无影响。 老年人胃肠蠕动减弱,胃排空速度减慢;胃肠道血流量减少等,易致便秘,常服油性润便药或口服液体石蜡,可使脂溶性维生素溶于其中而排出。再加上乳化脂肪的胆汁分泌减少,造成脂溶性维生素A、D、E、K的缺乏。VitA的缺乏易致夜盲证,VitD的缺乏能引起骨质疏松,VitE的缺乏易出现老年斑,VitK的缺乏则可引起凝血障碍。 2 分布与蛋白结合 老年人血浆中白蛋白的浓度,随年龄增而减低,因为老年人肝脏合成白蛋白的量要比青年人少18%~20%,70岁以上的老年人血浆的浓度约为 3.5g/100ml,而年青人则为4~4.5g/100ml之间。许多药物进入机体后,都与血浆白蛋白结合成为无活性的贮存型,仅小部分游离而具有药物作用。游离药物被机体消除后,再由贮存型药物游离而加以补充,这是一种动态平衡。由于老年人血浆白蛋白的数量下降,很多药物贮存型减少,游离型增多,药物就会增加,如度冷丁、保泰松、苯妥英钠等都有这种情况。如给一个年轻人和一个老年人分别按每公斤体重1.5mg的用量肌注度冷丁,则老年人的药效明显升高,呼吸抑制的可能性也增大,苯妥英钠的游离型增加则疗效增加,毒性也增加,清除加快,维持时间变短。除上述药物外,老年人使用D860、心得安、洋地黄毒苷、地高辛、安定等,由于它们分布减少,代谢减慢,所以要注意减量或延长间隔给药。 3 药物的肝代谢 肝脏是药物代谢的主要器官。随年龄增长,肝脏重量减轻、功能性肝细胞数量减少、肝微粒体酶活性下降等因素使某些药物代谢和清除减慢,半衰期延长、药物作用和不良反应增加。即是肝脏正常的老年人,某些能损害肝脏的药物,如呋喃妥因、四环素、红霉素、异烟肼、利福平、氯丙嗪等,也都会很容易引起胆汁郁积和肝细胞损害。 除肝脏酶系统的变化外,肝的血流量对药物的代谢和消除也有重要意义。据研究表明,60岁以上的老年人,每增加1岁,则其肝脏血流量减少至25岁时的40%~50%。因此,老年人在使用首过效应比较明显的药物时,半衰期明显延长,作用和毒性大大加剧。如阿司匹林、心得安、度冷丁、苯巴比妥等,这就说明了肝脏对药物转化能力可随年龄增长而下降的概念。老年人在药物代谢方面变异性较大,且存在低治疗指数,即治疗量与中毒量之间存在较小差异。如心得安,肝脏功能低下的老年人,分解心得安的能力下降,血浆蛋白减少与心 1/ 2

常用的药物代谢动力学参数包括那些

常用的药物代谢动力学参 数包括那些 Prepared on 24 November 2020

常用的药物代谢动力学参数包括那些. (1).表观分布容积 表示体内药量与血药浓度之间相互关系的一个比列常数。即体内药量按血浆中同样浓度分布时,所需体液的总容积。其数值反映了药物在体内的分布程度。表观分布容积是一个假设的容积,是假定药物在体内均匀分布情况下求得的药物分布容积,其意义在于:可计算出达到期望血浆药物浓度时的给药剂量;可以推测药物在体内的分布程度和组织中摄取程度。 (2).血浆药物浓度 指药物吸收后在血浆内的总浓度,包括与血浆蛋白结合的或在血浆游离的药物,有时也可泛指药物在全血中的浓度。药物作用的强度与药物在血浆中的浓度成正比,同时药物在血浆中的浓度也随时间变化。 (3).血药浓度—时间曲线 指给药后,以血浆(或尿液)药物浓度为纵坐标,时间为横坐标,绘制的曲线,简称药—时曲线,如图:

(4).血浆药物峰度浓度 简称峰浓度,指药—时曲线上的最高血浆药物浓度值,即用药后所能达到的最高血浆药物浓度,常以符号C max表示,单位以 ug/mL或者mg/L来表示。药物血浆浓度与药物的有效性与安全性直接相关。一般来说,峰浓度达到有效浓度才能显效,浓度越高效果越强,但超出安全范围则可出现毒性反应。另外,峰浓度还是衡量制剂吸收的一个重要指标。 (5).血浆药物浓度达峰时间 简称达峰时间,指在给药后人体血浆药物浓度曲线上达到最高浓度(峰浓度)所需时间,常以符号t max表示,单位一小时或分钟表示。达峰时间短,表示药物吸收快、起效迅速,但同时消除也快;而达峰时间长,则表示药物吸收和起效较慢,药物作用持续的时间也越长。达峰时间是应用药物和研究自己的一个重要指标。(6).血浆生物半衰期

临床药代动力学试验的常见设计类型与统计分析

发布日期 20140327 化药药物评价 >> 临床安全性和有效性评价 临床药代动力学试验的常见设计类型与统计分析 张学辉,卓宏,王骏 化药临床二部 一、临床药代动力学试验的统计分析问题现状 临床药代动力学试验在新药上市注册申请中占有重要地位。 与大样本量的 临床试验相比,这类试验样本数少、 观测指标少,其统计分析问题要简单很多, 未引起申请人或研究者的重视,一般较少邀请统计专业人员参与。甚至一些人 认为这类试验是描述性试验,不需要进行专业的统计分析。其实正是因为这类 试验的样本数少,才要更加重视其试验设计和统计分析的规范性,才能得出相 对可靠的专业结论。从目前申报资料看,存在较多问题: 1 )研究设计时未充 分考虑三要素”(受试者、试验因素、观察指标),无法满足研究目标的专业 需要;2)研究设计不符合 四原则”(随机、对照、重复和均衡),不采用常见 的设计类型,设计出一些不同寻常的异型试验; 3)资料整理和统计分析方法 选用不当,与研究设计类型不匹配,尤其是滥用 t 检验和单因素多水平设计资 料的方差分析方法。 临床药代动力学试验的一般要求参见技术指导原则 ⑴。本文拟介绍这类试 验的常见研栏目 标题 作者 部门 正文内容

究设计类型与统计分析方法,供大家参考。 二、创新药物临床药代动力学试验 这里的创新药物是指新化学实体。这类药物通常在健康受试者中进行多项 的临床药代动力学试验,包括单次给药、多次给药、食物影响、药代动力学相互作用等药代动力学试验。后续还要进行目标适应症患者和特殊人群的药代动力学试验。 2.1创新药物单次给药药代动力学试验 创新药物的健康受试者单次给药药代动力学试验通常在I期耐受性试验结 束后进行。受试者例数一般要求每个剂量组8?12例,男女各半。药物剂量, 一般选用低、中、高三种剂量,有时会选用更多剂量。剂量的确定主要根据I 期临床耐受性试验的结果,并参考动物药效学、药代动力学及毒理学试验的结果,以及经讨论后确定的拟在∏期临床试验时采用的治疗剂量推算。高剂量组剂量必须接近或等于人最大耐受的剂量。 由于该类药物初上人体试验,出于安全性和伦理的考虑,每位受试者只给药一次,最常采用多剂量组平行设计。一般设计为在健康受试者(男女各半)中、随机、开放、多剂量组平行、单次给药的药代动力学试验。整理这类试验的药代动力学参数时,可以归类为两因素(剂量、性别)析因设计。各剂量组内性别间差异无统计学意义或者不考虑性别因素时,可以将该试验简化为单因素(剂量)的平行组设计。 安全性好的药物,在伦理允许情况下,也可采用多剂量组、多周期的交叉设计。交叉设计的优点是节省样本量、自身对照、减少个体间变异,缺点是多周期时间长、重复测量次数多、受试者依从性差易脱落、统计分析方法复杂。 当选用低、中、高三个剂量组时,通常采用随机、开放、单次给药、三剂量组

药代动力学离线作业

浙江大学远程教育学院 《药代动力学》课程作业(必做) 姓名:学号: 年级:学习中心:————————————————————————————— 第一章生物药剂学概述 一、名词解释 1.生物药剂学;2.剂型因素;3.生物因素;4.药物及剂型的体内过程 二、问答题 1.生物药剂学的研究工作主要涉及哪些内容? 2.简述生物药剂学研究对于新药开发的作用。 第二章口服药物的吸收 一、名词解释 1.细胞通道转运;2.被动转运;3.溶出速率;4.载体媒介转运; 5.促进扩散;6.ATP驱动泵;7.多药耐药;8.生物药剂学分类系统; 9.药物外排转运器;10.多晶型 二、问答题 1.简述促进扩散的特点,并与被动转运比较两者的异同。 2.简述主动转运的分类及特点。 3.简述生物药剂学中讨论的生理因素对药物吸收的影响。 4.已知某药物普通口服固体剂型生物利用度只有5%,与食物同服生物利用度可 提高近一倍。试分析影响该药物口服生物利用度的因素可能有哪些,拟采用哪些方法 改善之。 5.药物的溶出速率对吸收有何意义?影响其溶出速率的因素有哪些? 6.影响Ⅱ型药物口服吸收的理化因素有哪些?如何改善该类药物的口服生物利 用度? 第三章非口服药物的吸收 一、填空题 1.药物经肌内注射有吸收过程,一般____药物通过毛细血管壁直接扩散,水溶 性药物中分子量______的可以穿过毛细血管内皮细胞膜上的孔隙快速扩散进入毛细血管,分子量____的药物主要通过淋巴系统吸收。 2.体外评价药物经皮吸收速率可采用______或______扩散池。 3.为达到理想的肺部沉积效率,应控制药物粒子的大小,其空气动力学粒径范围一 般为______.

利奈唑胺群体药代_药效动力学研究进展

随着抗菌药物的广泛使用,多重耐药革兰阳性菌感染已成为临床棘手问题[1]。糖肽类抗生素曾被认为是治疗革兰阳性菌的最后一道防线,然而由于其严重的耳肾毒性和较差的组织穿透率,再加上近年来其对部分球菌的敏感性有所降低,使糖肽类的使用受到限制。口恶唑烷酮类新药利奈唑胺(linezolid)安全性高,不良反应较糖肽类轻微,主要作用于翻译的起始阶段,与细菌核糖体50S亚单位结合,阻止70S复合物的形成,从而抑制细菌蛋白的合成。由于作用机理不同,利奈唑胺不易与其他抗菌药物发生交叉耐药性。体内外研究证实该药对葡萄球菌属、链球菌属、肠球菌属等革兰阳性菌,包括多重耐药菌如耐甲氧西林金黄色葡萄球菌(MRSA)、多重耐药肺炎链球菌(DRSP)和耐万古霉素肠球菌(VRE)具有很强的抗菌活性,与糖肽类作用相仿或更优[2]。近年还发现利奈唑胺对多耐药的结核分枝杆菌也有良好的抗菌活性[3]。本文主要对利奈唑胺的群体药代/药效动力学(population pharmacokinetics/pharmacodynamics, PPK/ PPD)研究方法及结论进行综述。 1 PPK/PPD基本概念和原理 1.1 PPK/PPD 传统药动学(pharmacokinetics, PK)和药效学(pharmacodynamics, PD)的研究对象常为相对均一的健康受试者。然而,临床患者在年龄、体重、肝肾功能、基础疾病及合并用药等方面均存在很大差别,其PK、PD值均可能有较大变异,给药方案常需个体化,不能仅根据传统PK参数制定。PPK/PPD是将经典PK、PD或PK/PD链式模型和统计学模型相结合,分析PK/PD特性中存在的变异性,研究药物体内过程的群体规律、PK/PD参数的统计分布及其影响因素。PPK/PPD只需零散的血药浓度数据,易于被患者接受,是新药研究和治疗药物监测(TDM)的有力工具。美国食品药品监督管理局(FDA)在药物开发指南中明确提出,2000年以后的新药申请必须报告PPK 参数。PPK/PPD研究的目的是建立数学模型以预测不同个体的PK/PD参数,从而实现个体化给药,研究的关键是实验设计,包括数据收集(准确性和完整性)和样本采集(病例数和采样点)等。研究总病例数一般不应少于100例,达50例时可进行初步分析,考查的固定效应参数越多,所需病例数越大,个体取样点多则病例数可相应减少。 1.2 群体典型值 指描述药物在典型病人身上的处置情况,具有代表性,能表征群体或某一亚群特性的药物代谢动力学参数,常以参数的平均值(也叫群体值)表示。 1.3 固定效应 又称确定性变异,指年龄、体重、身高、体表面 利奈唑胺群体药代/药效动力学研究进展 张 雷,刘又宁 (解放军总医院呼吸内科,北京 100853) [摘要] 利奈唑胺属于新型口恶唑烷酮类药物,对于耐药革兰阳性球菌引起的社区、院内感染均有良好的临床疗效和安全性。本文综述了非线性混合效应模型法在群体药代/药效动力学研究中的作用及其在利奈唑胺研究的应用进展。 [关键词] 利奈唑胺;革兰阳性球菌;群体药代动力学 [中图分类号]R978.1[文献标识码]A[文章编号]1672–8157(2011)05–0315–04 Advance of population pharmacokinetics/pharmacodynamics on linezolid research ZHANG Lei, LIU You-ning ( Department of Respiratory Diseases, PLA General Hospital, Beijing 100853, China ) [ABSTRACT] Linezolid, a new drug of oxazolidinone, has satisfying clinical efficacy and safety on community-acquired or hospital-acquired infection resulting from gram-positive cocci. We reviewed the priority of nonlinear mixed-effects modeling for analysis of population pharmacokinetics/ pharmacodynamics, and the present advances of population pharmacokinetics/ pharmacodynamics on linezolid research. [KEY WORDS] Linezolid; Gram-positive cocci; Population pharmacokinetics [作者简介] 张雷,男,主治医师,研究方向:肺部感染及抗生素耐 药。 E-mail:sunray168@https://www.360docs.net/doc/7a7447970.html,

临床药代动力学基础

临床药代动力学基础总结 一、被动转运 1、简单扩散:属于脂溶性扩散。 一、(1)特点:1、从浓度高的一侧转运向浓度低的一侧顺着浓度梯度差通过生物膜。 2、转运过程不消耗能量,不需要载体,各药物之间没有竞争抑制现象,没有饱和性。 3、当生物膜两侧药物浓度达到平衡状态时,转运即停止。 一、影响简单扩散的因素 1、膜两侧的浓度差2药物的脂溶性3药物的解离度:取决于解离常数(Ka)和环境的PH 值 (2)影响简单扩散的因素-Handersoh-hasselbalch公式:-弱酸性药物: 结论:1、酸性药物在酸性环境中,解离少容易跨膜转运达到平衡时,主要分布在碱侧。2、碱性药物在碱性环境中解离少,容易跨膜转运,达到扩散平衡,主要分布在酸侧。 2、膜孔扩散1、滤过或水溶性扩散2、分子量小,分子直径膜孔的水溶性极性或非极性物 质(水、乙醇、尿素、乳酸)借助膜两侧的液体和渗透压差,被水带到低压一侧的过程。 影响因素:膜两侧浓度差。 3、易化扩散分类1经载体的易化扩散2经通道的易化扩散 4、特殊转运 药物体内吸收过程 1吸收:药物从用药部位向血液循环中转运的过程。多数药物的吸收属于被动转运。 影响药物最主要的因素:1、给药途径:经肠给药口服:舌下、直肠、 2、非经肠给药:肌肉注射、皮下注射、静脉注射 吸入、皮肤 一、消化道给药 1、口服给药吸收途径:肠道内吸收-通过毛细血管-肝门静脉-体循环 2、影响因素首关效应:首过效应、第一关卡效应药物在肠粘膜上皮细胞内,肝脏内通过时, 被某些酶灭火代谢,进入体内循环的药物量减少,这一过程成为首关效应或首过消除。 3、药物方面:药物性质、剂型、溶出度在消化道稳定性。 胃肠功能:胃肠道蠕动速度、血流量。 其他:胃内容物、胃肠内PH值,肠道细菌对药物的代谢。 2舌下药:舌下含服,直接吸入体循环,不经过肝门静脉因此无首过消除效应。 3吸入给药:吸入途径:肺泡-肺部毛细血管-体循环 4皮肤给药 二、分布 药物随血液循环进入器官,组织甚至细胞内的过程。 影响因素1药物与血浆蛋白的结合2器官血流量与组织亲和力3体内屏障4体液PH值和药物溶解度 结合性药物分子量变大不易通过生物膜。 药物与血浆蛋白的结合特点:1可逆性2饱和性3竞争性4常用血浆蛋白结婚率来表现 一、体内屏障1血脑屏障分类:1血液-脑脊液2血液-脑组织3脑脊液-脑组织 特点:致密、通透性差2胎盘屏障 药物转化(代谢)过程 三催化转化的酶种类1专一性酶特点:具有专一性(选择性)如乙酰胆碱酯酶-单胺氧化酶2非专一性酶:即肝脏微粒体混合功能酶系统。 存在于肝脏的微粒内,参与多种化合物的转化,与药物的代谢密切相关,因此又称为肝药酶,

相关文档
最新文档