航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理
航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理

航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。(一)活塞式发动机的主要组成

主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、

14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关

zbc6e 通用航空 https://www.360docs.net/doc/7a8575523.html,

闭。

(二)活塞式发动机的原理

活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀

冲程和排气冲程。发动机开始时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是1比15即燃烧一公斤的汽油需要15公斤的空气。

zbc6e 通用航空 https://www.360docs.net/doc/7a8575523.html,

进气冲程完毕后,开始了第二冲程,即“压缩冲程”。这时曲轴靠惯性作用继续旋转,把活塞由下死点向上推动。这时进气门也同排气门一样严密关闭。气缸内容积逐渐减少,混合气体受到活塞的强烈压缩。当活塞运动到上死点时,混合气体被压缩在上死点和气缸头之间的小空间内。这个小空间叫作“燃烧室”。这时混合气体的压强加到十个大气压。温度也增加到摄氏4OO度左右。压缩是为了更

好地利用汽油燃烧时产生的热量,使限制在燃烧室这个小小空间里的混合气体的压强大大提高,以便增加它燃烧后的做功能力。当活塞处于下死点时,气缸内的容积最大,在上死点时容积最小(后者也是燃烧室的容积)。混合气体被压缩的程度,可以用这两个容积的比值来衡量。这个比值叫“压缩比”。活塞航空发动机的压缩比大约是5到8,压缩比越大,气体被压缩得越厉害,发动机产生的功率也就

zbc6e 通用航空 https://www.360docs.net/doc/7a8575523.html,

越大。压缩冲程之后是“冲程”,也是第三个冲程。在压缩冲程快结束,活塞接近上死点时,气缸头上的火花塞通过高压电产生了电火花,将混合气体点燃,燃烧时间很短,大约0.015秒;但是速度很快,大约达到每秒30米。气体猛烈膨胀,压强急剧增高,可达6O到75个大气压,燃烧气体的温度到摄氏2000到250O度。燃烧时,局部温度可能达到三、四千度,燃气加到活塞上的冲击力可达15吨。活塞

在燃气的强大压力作用下,向下死点迅速运动,推动连杆也门下跑,连杆便带动曲轴转起来了。

这个冲程是使发动机能够而获得动力的唯一冲程。其余三个冲程都是为这个冲程作准备的。第四个冲程是“排气冲程”。冲程结束后,由于惯性,曲轴继续旋转,使活塞由下死点向上运动。这时进气门仍旧关闭,而排气门大开,燃烧后的废气便通

zbc6e 通用航空 https://www.360docs.net/doc/7a8575523.html,

过排气门向外排出。当活塞到达上死点时,绝大部分的废气已被排出。然后排气门关闭,进气门打开,活塞又由上死点下行,开始了新的一次循环。从进气冲程吸入新鲜混合气体起,到排气冲程排出废气止,汽油的热能通过燃烧转化为推动活塞运动的机械能,带动螺旋桨旋转而作功,这一总的过程叫做一个“循环”。这是一种周而复始的运动。由于其中包含着热能到机械能的转化,所以又叫做“热循

环”。活塞航空发动机要完成四冲程,除了上述气缸、活塞、联杆、曲轴等构件外,还需要一些其他必要的装置和构件。(三)活塞式航空发动机的辅助系统

发动机除主要部件外,还须有若干辅助系统与之配合才能。主要有进气系统(为了改善高空性能,在进气系统内常装有增压器,其功用是增大进气压

zbc6e 通用航空 https://www.360docs.net/doc/7a8575523.html,

力)、燃油系统、点火系统(主要包括高电压磁电机、输电线、火花塞)、起动系统(一般为电动起动机)、散热系统和润滑系统等。

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。(一)活塞式发动机的主要组成

主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、

14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关

闭。 (二)活塞式发动机的原理 活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀

冲程和排气冲程。发动机开始时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是1比15即燃烧一公斤的汽油需要15公斤的空气。

航空发动机原理

航空发动机主要有三种类型:活塞式航空发动机,燃气涡轮发动机和冲压发动机。 航空发动机的发展经历了活塞发动机,喷气时代的活塞发动机,燃气涡轮发动机,涡轮喷气发动机/涡轮风扇发动机,涡轮螺旋桨发动机/涡轮轴发动机。本文主要利用动态图来说明航空发动机的工作原理。 星型活塞发动机(常见于旧飞机,例如B-36,yun-5等): 星型活塞发动机的原理与汽车发动机的原理相同。燃料在汽缸中爆炸并燃烧以推动活塞工作,但汽缸装置为星形。汽车上的活塞发动机通常以V或w的形式布置。活塞式航空发动机由于效率低,噪音大,燃油消耗大而已基本取消。 涡轮喷气发动机:(J-7,MiG-25等) 涡轮喷气发动机是涡轮发动机的一种。取决于气流产生推力。它通常用于为高速飞机提供动力,但其燃油消耗高于涡轮风扇发动机。著名的MiG-25和SR-71黑鸟侦察机均配备了涡轮喷气发动机,其最大速度可突破3马赫。由于油耗高,逐渐被涡轮风扇发动机取代。 涡轮螺旋桨发动机:(Y-8,C-130,a-400m等) 涡轮喷气发动机的本质类似于带有减速器和外部螺旋桨的涡轮喷气发动机。涡轮螺旋桨发动机的推力主要由螺旋桨产生,而喷气机产生的推力很小,仅为螺旋桨的十分之一。涡轮螺旋桨发动机的优点是速度低,效率高,适用于运输机,海上巡逻机等。由于螺旋桨旋转的面积较大,因此在高速飞行时会有很多阻力,因此涡轮螺旋桨发动

机不适合高速飞行。 涡轮风扇发动机:(涡轮风扇10,AL-31F,f-135等,cmf56)涡轮风扇发动机是从涡轮喷气发动机发展而来的。与涡轮喷气发动机相比,涡轮风扇发动机的主要特点是第一级压缩机的面积要大得多。目前,大多数先进的飞机都使用涡扇发动机。涡扇发动机相当于涡轮螺旋桨发动机和涡轮喷气发动机性能的折衷产品,适用于以400-1000 km / h的速度飞行。 优点:高推力,高推进效率,低噪音,低油耗,飞行距离长。 缺点:风扇直径大,迎风面大,阻力大,发动机结构复杂,设计困难。 螺旋桨风扇发动机:(ge-36) 螺旋桨式风扇发动机不仅可以被视为具有先进高速螺旋桨的涡轮螺旋桨发动机,而且除了外部管道外,还可以被视为超高旁通比涡轮风扇发动机。它具有涡轮螺旋桨发动机低油耗率和涡轮风扇发动机高飞行速度的优点。实验中的Ge36显示出非常低的燃料消耗,但是由于噪音,它并未在任何飞机上使用。

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) %% % D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形 B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形 10.气流流过亚音速进气道时,(D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加 11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器 12.轴流式压气机的一级由(C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的(C )。 A相对速度增加, 压力下降 B绝对速度增加, 压力下降 C相对速度下降, 压力增加 D绝对速度下降, 压力增加 14.空气流过压气机整流环时, 气流的( C )。 A速度增加, 压力下降 B速度增加, 压力增加 C速度下降, 压力增加 D速度下降, 压力下降 15.压气机出口处的总压与压气机进口处的总压之比称为(A )。 A发动机的增压比 B发动机的压力比 C发动机的压缩比 D发动机的容积比

活塞式航空发动机

空 发 动 机 组成: 活塞式航空发动机是一种往复式内燃机, 连杆、曲轴、进气活门和排气活门等组成。 工作原理: 胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油和空气的混 合气体 被下行的活塞吸入气缸内。在压缩 冲程,活塞从下死点运动到上死点,进气 活门和排气活门都关闭,混合气体在气缸 内被压缩,在上死点附近,由装在气缸头 部的火花塞点火。在做功(膨胀)冲程, 混合气体点燃后,具有高温高压的燃气开 始膨胀,推动活塞从上死点向下死点运动。 在此行程,燃烧气体所蕴含的内能转变为 活塞运动的机械能,并有连杆传给曲轴, 成为带动螺旋桨转动的动力。在排气冲程, 活塞从下死点运动到上死 点,排气活门开 放,燃烧后的废气被活塞排出缸外。当活塞到达上死点 后,排气活门关闭,此时就完成了四个冲程的循 环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转 动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲 轴运动的协调,不能在运动中互相牵制。 通过带动螺旋桨高速转动而产生推力。 主要由气缸、活塞、 活塞式航空发动机一般用汽油作为燃料, 每一循环包括四个冲程, 即进气冲程、压缩冲程、做功(膨 啟功冲程 排競冲程 四申陛洁塞塩动或MfE 原理 排气口若谨這口开喷抽嘴

活塞式发动机的运

转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高, 因此必须配备冷却系统 平对置早活塞发动机上采用液体冷却, 在发缸机外壳布置散热套,具有 定压力的冷却液在套内循环流动带走热量。 液体冷却系统因包括水箱、水泵、散热器和相 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器, 汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花, 将气缸内的混合气体 点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能 外,还有很大一部分传给了气缸壁和其他有关机件。 冷却系统的作用就是将这些热量散发出 去,以保证发动机正常工作。 启动系统:将发动机发动起来, 需要借助外来动力,通常用电动机带动曲轴转动使发动机启 动。 定时系统:定时系统是由曲轴带动凸轮盘推动连杆和摇臂, 定时将进气活门和排气活门开启 和关闭的系统。 主要性能指标: 活塞式发动机的主要要求是重量轻、 功率大、尺寸小和耗油省等,因此活塞式发动机的 主要性能指标有以下几个: 发动机功率: 发动机可用于驱动螺旋桨的功率称为有效功率。 功率重量比: 发动机提供的功率和发动机重量之比。 功率重量比越大,越有利于改善飞机的飞行性能。 燃料消耗率: 燃料消耗率(耗油率)是衡量发动机经济性的一项指标。 一般定义为产生1KW 功率在每 小时所消耗的燃料的质量。 活塞发动机的发展在二战期间达到了顶峰,飞机喷气化以后用得越来越少。在 1000m 高度上,816km/h 的飞行速度已是活塞发动机的极限飞行速度。由于活塞发动机功率小,重 量大,外形阻力大,螺旋桨高速旋转时效率低, 且桨尖易产生激波,因此战后随着涡轮喷气、 涡轮螺桨和涡轮风扇发动机的发展,它逐渐退出了大中型飞机领域。 尽管活塞式发动机有如上致命弱点。 但是对低速飞机而言, 它具有喷气式发动机无可比 拟的优点,即效率高、耗油率低和价格低廉等。另外,由于燃烧较完全,对环境的污染相对 较小,噪音也比 应的管路系 复杂而笨 来采用气体 气冷式发动 曲轴为中 形,气缸外 散热片,飞 的高速气流 的热量散 却目的。 辅助系 统等,结构 重,因此后 冷却系统。 机气缸以 心,排成星 面有很多 行时产生 将气缸壁 去,达到冷 统:

航空发动机知识大全

航空发动机知识大全 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。 飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示: 吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

[整理]《航空发动机结构分析》思考题答案.

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2

2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子?

飞行学院《航空发动机原理与构造》复习.

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷?涡扇?涡桨?涡轴发动机中,耗油率或当量耗油率的关系是(A)? A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 2.发动机转子卸荷措施的目的是(B)。 A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 C.减少发动机转子负荷,提高发动机推力 D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 3.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系 是(D)。 A.M涡轮>-M压气机B.M涡轮<-M压气机 C.M涡轮=M压气机D.M涡轮=-M压气机 4.压气机转子结构中,加强盘式转子是为了(B)。 A.加强转子强度,提高转子可靠性 B.加强转子刚度,提高转子运行稳定性 C.加强转子冷却效果,降低温度应力 D.加强转子流通能力,提高压气机效率 5.压气机转子结构中(B)。 A.鼓式转子的强度>盘式转子的强度 B.鼓式转子的强度<盘式转子的强度 C.鼓式转子的强度=盘式转子的强度 D.鼓式转子与盘式转子强度比较关系不确定 6.压气机转子结构中的刚度(A) A.盘鼓混合式转子>盘式转子 B.盘鼓混合式转子<盘式转子 C.盘鼓混合式转子=盘式转子 D.盘鼓混合式与盘式转子刚度大小关系不确定 7.压气机静子机匣上放气机构的放气窗口通常位于(A) A.静子叶片处B.转子叶片处 C.静子叶片与转子叶片之间D.转子叶片与静子叶片之间 8.压气机转子工作叶片的榫头结构承载能力(D) A.燕尾形>枞树形>销钉式B.燕尾形>销钉式>枞树形

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

活塞式航空发动机.docx

谢谢欣赏 活塞式航空发动机+ 组成: 活塞式航空发动机是一种往复式内燃机,通过带动螺旋桨高速转动而产生推力。主要由气缸、活塞、连杆、曲轴、进气活门和排气活门等组成。 工作原理: 活塞式航空发动机一般用汽油作为燃料,每一循环包括四个冲程,即进气冲程、压缩冲程、做功(膨胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油和空气的 混合气体被下行的活塞吸入气缸内。在 压缩冲程,活塞从下死点运动到上死点, 进气活门和排气活门都关闭,混合气体 在气缸内被压缩,在上死点附近,由装 在气缸头部的火花塞点火。在做功(膨 胀)冲程,混合气体点燃后,具有高温 高压的燃气开始膨胀,推动活塞从上死 点向下死点运动。在此行程,燃烧气体 所蕴含的内能转变为活塞运动的机械能, 并有连杆传给曲轴,成为带动螺旋桨转 动的动力。在排气冲程,活塞从下死点 运动到上死点,排气活门开放,燃烧后的废气被活塞排出缸外。当活塞到达上死点后,排气活门关闭,此时就完成了四个冲程的循环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲轴运动的协调,不能在运动中互相牵制。 谢谢欣赏

谢谢欣赏 谢谢欣赏 活 塞 式发动机的运 转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高, 因此必须配备冷却系统。最早活塞发动机上采用液体冷却,在发动机外壳内有散热套,具有 一定压力的冷却液在套内循环流动带走热量。液体冷却系统因包括水箱、水泵、散热器和相应的管路系统等,结构复杂而笨重,因此后来采用气体冷却系统。气冷式发动机气缸以曲轴为中心,排成星形,气缸外面有很多散热片,飞行时产生的高速气流将气缸壁的热量散去,达到冷却目的。 辅助系统: 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器,汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花,将气缸内的混合气体点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能外,还有很大一部分传给了气缸壁和其他有关机件。冷却系统的作用就是将这些热量散发出去,以保证发动机正常工作。 启动系统:将发动机发动起来,需要借助外来动力,通常用电动机带动曲轴转动使发动机启动。 定时系统:定时系统是由曲轴带动凸轮盘推动连杆和摇臂,定时将进气活门和排气活门开启和关闭的系统。 主要性能指标: 活塞式发动机的主要要求是重量轻、功率大、尺寸小和耗油省等,因此活塞式发动机的主要性能指标有以下几个: 发动机功率: 发动机可用于驱动螺旋桨的功率称为有效功率。 功率重量比: 4缸水平对置 6缸V 形布置 2缸水平对置

航空发动机原理与构造

航空发动机原理、构造与系统 (Aviation Engine Principle,Structure and Systems) 教学大纲 本课程与其它课程的联系: 主要先修课程:航空概论、大学物理 主要后续课程:航空发动机维修 一、课程的性质 本课程是航空机电设备维修专业的一门主要专业课。 二、课程的地位、作用和任务 本课程旨在帮助学生掌握航空燃气涡轮发动机的基本工作原理和特性,掌握航空燃气涡轮发动机的基本结构,了解各主要工作系统的组成、工作原理。为学生将来从事航空维修打下必要的理论基础。 三、课程教学的基本要求 1.理解工程热力学、气体动力学的基本概念及在航空发动机上的应用。 2.掌握涡喷发动机各主要部件的工作原理、基本结构和工作特性 3.理解常用发动机(涡扇发动机)的工作特点、主要系统工作原理。 4.掌握航空发动机的维修和使用的基本知识。 四、课程教学内容 1.航空燃气涡轮发动机热工气动基础 1.1工程热力学部分 1.2气体动力学部分 重点:热力学第一定律,焓形式的能量方程式,机械能形式的能量方程式。 难点:机械能形式的能量方程式 思考题:10个 2.燃气涡轮发动机基本工作原理 2.1工作循环 2.2产生推力的原理 2.3主要性能参数 重点:燃气涡轮发动机的理想循环; 难点:主要性能参数。 思考题:5个,计算题:2个 3.涡喷发动机主要部件

3.1进气道 3.2压气机 3.3燃烧室 3.4涡轮 3.5尾喷管 重点:压气机增压原理,涡轮工作原理;收敛喷管的工作状态。 难点:压气机流量特性 思考题:20个,计算题:4个, 4.燃气涡轮发动机共同工作 4.1稳态共同工作 4.2过渡态共同工作 4.3单转子涡喷发动机特性 4.4双转子涡喷发动机特性 4.5涡轮螺旋桨发动机 4.6涡轮风扇发动机 4.7涡轮轴发动机 重点:稳态工作,转速特性,涡桨发动机特性,双转子涡扇发动机组成和工作原理,涡轴发动机部件的特点, 难点:高度特性,速度特性,涡扇发动机特性 思考题:15个 5.发动机总体结构 5.1转子支承机构 5.2联轴器 5.3支承结构 重点:各种类型发动机的转子结构,轴承,典型封严装置 难点:多转子发动机转子支承结构 思考题:5个 6.发动机工作系统 6.1燃油控制系统 6.2滑油系统 6.3起动系统; 6.4点火系统 6.5指示系统 6.6操纵系统 6.7排气系统 重点:各工作系统的组成、功用和典型系统 思考题:15个 7.辅助动力装置 7.1概述 7.2APU工作系统 7.3典型辅助动力装置 重点:结构和典型机型 思考题:2个 8.发动机使用维修

活塞式航空发动机

活塞式航空发动机 + 组成: 活塞式航空发动机是一种往复式内燃机,通过带动螺旋桨高速转动而产生推力。主要由气缸、活塞、连杆、曲轴、进气活门和排气活门等组成。 工作原理: 活塞式航空发动机一般用汽油作为燃料,每一循环包括四个冲程,即进气冲程、压缩冲程、做功(膨胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油 和空气的混合气体被下行的活 塞吸入气缸内。在压缩冲程, 活塞从下死点运动到上死点, 进气活门和排气活门都关闭, 混合气体在气缸内被压缩,在 上死点附近,由装在气缸头部 的火花塞点火。在做功(膨胀) 冲程,混合气体点燃后,具有 高温高压的燃气开始膨胀,推 动活塞从上死点向下死点运 动。在此行程,燃烧气体所蕴含的内能转变为活塞运动的机械能,并有连杆传给曲轴,成为带动螺旋桨转动的动力。在排气冲程,活塞从下死点运动到上死点,排气活门开放,燃烧后的废气被活塞排出缸外。当活塞到达上死点后,排气活门关闭,此时就完成了四个冲程的循环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲轴运动的协调,不能在运动中互相牵制。

活塞式发动机的运转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高,因此必须配备冷却系统。最早活塞发动机上采用液体冷却,在发动机外壳内有散热套,具有一定压力的冷却液在套内循环流动带走热量。液体冷却系统因包括水箱、水泵、散热器和相应的管路系统等,结构复杂而笨重,因此后来采用气体冷却系统。气冷式发动机气缸以曲轴为中心,排成星形,气缸外面有很多散热片,飞行时产生的高速气流将气缸壁的热量散去,达到冷却目的。 辅助系统: 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器,汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花,将气缸内的混合气体点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能外,还有很大一部分传给了气缸壁和其他有关机件。冷却系统的作用就是将这些热量散发出去,以保证发动机正常工作。 启动系统:将发动机发动起来,需要借助外来动力,通常用电动机带动曲轴转动使发动机启动。 4缸水平对置 6缸V 形布置 2缸水平对置

航空发动机原理

2简单叙述燃气涡轮喷气发动机的组成以及工作原理:燃气涡轮发动机由进气道、压气机、燃烧室、涡轮、尾喷管组成。工作原理:以空气为工作介质。进气道将所需的外界空气以最小的流动损失顺利地引入发动机,压气机通过高速旋转的叶片对空气做功压缩空气,提高空气的压力,高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压的燃气,高温高压的燃气首先在涡轮内膨胀,将燃气的部分焓转变为机械能,推动涡轮旋转,去带动压气机然后燃气在喷管内继续膨胀,加速燃气,提高燃气速度,使燃气以较高的速度喷出,产生推力。 3燃气涡轮发动机分为哪几种?它们在结构以及工作原理上有什么明显区别 燃气涡轮发动机分为涡喷、涡扇、涡桨、涡轴四种。 涡轮螺旋桨发动机由燃气轮机和螺旋桨组成,他们之间还安排了一个减速器。工作原理:空气通过排气管进入压气机;压气机以高速旋转的叶片对空气做功压缩空气,提高空气压力;高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压燃气;高温高压燃气在涡轮内膨胀,推动涡轮旋转输出功去带动压气机和螺旋桨,大量空气流过旋转的螺旋桨,其速度有一定的增加,使螺旋桨产生相当大的拉力;气体流过发动机,产生反作用力。 如果燃气发生器后的燃气可用能全部用于驱动动力涡轮而不产生推力,则燃气涡轮发动机成为涡轮轴发动机,动力涡轮轴上的功率可以用来带动直升机的旋翼。 涡轮风扇发动机是由进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管组成。 4什么是EGT ,为什么它是一个非常重要的监控参数:EGT 是发动机排气温度。 原因:1、 EGT 的高低反映了发动机中最重要、最关键的参数涡轮前总温 的高低,EGT 高,则 就 高:EGT 超限,则 超限。2、EGT 的变化反映了发动机性能的变化;3、EGT 的变化反 应发动机的故障。 8进气道的功用以及分类:功用:(1)在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机并在压气机进口形成均匀的流场以避免压气机叶片的振动和压气机失速;(2)当压气机进口处气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力。 分类:(1)亚音速进气道:主要用于民用航空发动机,而且为单状态飞机,大多采用扩张形、几何不可调的亚音速进气道。(2)超音速进气道:分为内压式、外压式和混合式三种 。 11. 离心式压气机由哪些部件组成,各部件是如何工作的? 答:离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的 使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能, 速度下降, 压力和温度都上升 。导气管 :使气流变为轴向, 将空气引入燃烧室 。 12. 离心式压气机是如何实现增压的:叶轮中的扩散增压和离心增压,扩压器增压。气体增压主要靠离心增压: 气体流过叶轮,气体随叶轮作圆周运动,气体微团受惯性离心力作用,气体微团所在位置半径越大,圆周速度越大,气体微团所受离心力也越大,因此,叶轮外径处的压力远比内径处的压力高。 13. 离心式压气机的优缺点:离心式压气机的主要优点:单级增压比高:一级的增压比可达4:1-5:1, 甚至更高;同时离心式压气机稳定的工作范围宽;结构简单可靠;重量轻, 所需要的起动功率小。 *3T *3T *3T

航空发动机原理与构造教学大纲70学时

航空发动机原理与构造 (Aviation Engine Principle and Structure) 教学大纲 本课程与其它课程的联系: 主要先修课程:航空概论、气体动力学、工程热力学 主要后续课程:发动机故障诊断、航空发动机机型 一、课程的性质 本课程是飞行器动力工程专业航空动力工程专业方向的一门限定选修课。 二、课程的地位、作用和任务 本课程旨在帮助学生掌握航空燃气涡轮发动机的基本工作原理和特性,掌握航空燃气涡轮发动机的基本结构,了解各主要工作系统的组成、工作原理。为学生将来从事航空维修工程打下必要的理论基础。 三、课程教学的基本要求 1.了解燃气涡轮发动机主要附件系统的组成和工作原理。 2.理解涡扇和涡桨发动机的工作特点、主要性能参数和特性。 3.掌握涡喷发动机各主要部件的工作原理、基本结构。 4.掌握涡喷发动机的特性。 四、课程教学内容 1.航空燃气涡轮发动机热工气动基础 1.1工程热力学部分 1.2气体动力学部分 重点:热力学第一定律,焓形式的能量方程式,机械能形式的能量方程式。 难点:机械能形式的能量方程式 思考题:3个 2.燃气涡轮发动机基本工作原理 2.1工作循环 2.2产生推力的原理 2.3主要性能参数 重点:燃气涡轮发动机的理想循环; 难点:主要性能参数。 思考题:3个,计算题:1个

3.涡喷发动机主要部件 3.1进气道 3.2压气机 3.3燃烧室 3.4涡轮 3.5尾喷管 重点:压气机增压原理,涡轮工作原理;收敛喷管的工作状态。 难点:压气机流量特性 思考题:5个 4.压气机和涡轮的共同工作 4.1稳态共同工作 4.2过渡态共同工作 4.3涡喷发动机特性 重点:稳态工作,转速特性 难点:高度特性,速度特性。 思考题:2个 5.涡桨发动机 5.1涡桨发动机的组成及工作特点 5.2涡桨发动机特性。 重点:涡桨发动机特性。 思考题:1个 6.涡扇发动机 6.1涡扇发动机的组成及工作特点 6.2涡扇发动机特性 重点:双转子涡扇发动机组成和工作原理; 难点:涡扇发动机特性; 思考题:3个 7.涡轴发动机 7.1涡轴发动机的性能参数 7.2涡轴发动机部件的特点 重点:涡轴发动机部件的特点。 思考题:2个,计算题1个。 8.附件传动装置 8.1附件传动装置 8.2恒速传动装置 重点:恒速传动装置的工作原理。 难点:附件传动装置 思考题:2个 9.发动机控制系统 9.1控制原理简介;典型的燃油控制系统 重点:控制方案 思考题:1个 10.滑油系统 10.1滑油系统的组成;典型的滑油系统

相关文档
最新文档