测量误差分析和实验数据处理.

测量误差分析和实验数据处理.
测量误差分析和实验数据处理.

《力学实验原理与技术》复习提纲(参考)

第二章测量误差分析和实验数据处理

本章內容:

1. 测量误差基本概念

2. 随机误差

3. 系统误差

4. 间接误差

5. 测量结果的表示和不确定度

6. 实验数据处理

2.1 测量误差基本概念

1. 测量——比较

?测量的方式:

(1)直接测量:米尺量桌子可直接知道桌子长度。

(2)间接测量:由直接测量的数据,通过一定的函数关系,计算求得结果的测量方法? 静态测量与动态测量:按照被测量在测量过程中的状态是否随时间变化判断静态/

动态,常规、稳态/过程、瞬态

2. 误差——测量的质量

?真值:在一定时空条件下,某物理量的理想值,表达为A 。真值仅为理想概念。真

值可以用修正过的测量值的算术平均值代替。? 误差的表达方法:

绝对误差: 测量值与被测量物理量的真值的差示值相对误差: 绝对误差与真值的百分比测量值相对误差:绝对误差与测量值x 的百分比

[例1] 仪表的精度用额定相对误差(满度误差)表示。额定相对误差:绝对误差与仪器满度值 A0的百分比。

A0——表盘上的最大值(满度值)。仪器工作在满度值2/3以上区域。

思考题2:用万用表测电池电压1.5V ,选2V 档?200V 档?允许误差更小?

3. 误差分类

?系统误差——多次测量同一被测量量过程中,误差的数值在一定条件下保持恒定

或以可预知方式变化的测量误差的分量。

来源于测量仪器本身精度、操作流程、操作方式、环境条件。

?随机误差——多次测量同一被测量量过程中,绝对值和符号以不可预知方式变化

着的测量误差的分量。

具有随机变量特点,一定条件下服从统计规率的误差。

来源于测量中的随机因素:实验装置操作上的变动性、观测者本人的判断和估计读数上的变动性等。

2.2 随机误差

1.随机误差的特点

随机变量——依赖随机因素,以一定概率取值的变量,如:交通事故随机误差——随机变量的一种具体形式, 2. 随机误差的正态分布

(1)随机误差分布特点:

等精度条件下,对一物理现象测量N 次,得x1……xN个值(i=1, N )。把xi 按大小顺序分q 组,每组宽度。N 个测量值落在xi + 区间的次数(频率)为

p*1……p*q

增加组数,缩小了,直方图的顶点趋于一光滑曲线。纵坐标趋于概率

密度

,表示随机变量x (测量值)的分布曲线;如果用ξ = x - A 代替x 值(ξ 绝

对误差),则上述方法得到p (ξ ,即随机误

差ξ的分布曲线。此时原点挪至A 。

随机误差正态误差分布规律的四条公理:

(ⅰ)绝对误差小出现机会多,绝对误差大出现机会少;(ⅱ)对称性。N 足够大,ξ 相等;

(ⅲ)有界性。绝对值极大的误差出现机会极少;

(ⅳ)抵偿性, N 趋于无穷,随机误差的平均值的极限趋于0

(2 高斯正态分布

等精度条件下测量N 次,x1….xN,误差ξ1….ξN

测量误差的均方值:

标准误差——测量误差的均方根值

随机误差分布规律f(ξ 若符合高斯分布为:

称精密度,s 越小则h 越大,曲线越尖,ξ的离散性越小。落到ξ和ξ + ? ξ之间的随机误差的概率

(3)正态分布的应用

对服从正态分布的误差,误差介于s 的概率为:

1lim ( 0N

i N i 1N ξ→∞==∑

, 0N →∞→11N

i

i x x N ==∑2

21

1N i i N σξ==∑σ2

22

2( h f ξ

ξ

σξ--=h =( ( p f d ξξξ={}( 0.6827

p f d σσ

ξσξξ-?==?

(

*j p x p x →x ?x

?x ?±

误差介于2 s和3 s的概率为

极限误差。 3 算术平均值

最小二乘法指出:对等精度的多个测量值,最佳值(可信赖值)是使各测量值的误差的平方和为最小时所求的值。

推导:绝对误差:

概率:

误差同时出现的概率是各个概率的乘积:

p 最大则最小

结论:足够次数的等精度测量的算术平均值是测量最佳值 4 标准误差σ

定义:误差的均方根值 (1 贝塞尔公式法求

推导:方差的基本预算法则

用残差 vi 代替绝对误差ξ 时,标准误差σ与σv 在N 趋于无穷时才相等。

(2 最大残差法求

残差:真值A 用算术平均值代替时的误差由正态分布,获得不同N 次测量下的最大残差ni 的平均值,则任一次测量

可查表(已知),由正态分布理论给出。

(3 标准误差σ与平均误差δ的关系

{

}{}

p 20.954530.9973

p ξσξσ?=?=A x i i -=ξ ~1(N i

=2

2

1... i h N

N p p p e

ξ-∑==2i 1

N

i Q ξ==∑22

11

( N N i i i i Q x A ξ====-∑∑1d 2( 0d N i i Q x A A ==-=∑11N i i A x x N ===

∑v σ==i i x x ν-=i i x A

ξ-111111=N N N i i i i i i i N x x x x N N N νξξξ--=-=-=∑∑∑2

211

1N

N i i

N v N ξ-=∑

σ=

v σ==i i x x

ν-11max , N N

i i i i i k v v x x N σ='==-∑N k '1

1N

i

i N

δξ

==

?平均误差δ——误差绝对值的算术平均值

?平均误差δ与标准误差σ的关系:

本节小结

? 随机误差特点

? A 怎么求?最小二乘法? 标准误差σ及表示方法

2.3 系统误差

不易发现但有一定规律,与随机误差同时存在。仪器误差、装置误差、操作误差、方法误差 1. 发现和检验

观察残差:发现测量中含有有规律累进性系差的同号(累进性)、交替(同

时性)

对实验原理、方法、步骤、仪器一一分析。

2. 消除或减弱系统误差的方法

改进仪表的精度;

改进测量方式:实验进行的步骤、测量点的顺序

2.4 间接误差

直接测量不方便或不可能用间接方法。

带入误差的机会:测尺寸,密度参数,体积计算等

1. 线性函数误差传递的一般法则

直接测量量:z1, …, zm 直接测量量的误差:间接测量量y 为z 的线性函数:y 的绝对误差:

相对误差:

标准误差

2. 非线性函数误差传递

将y 在?y 附近做Taylor 展开,且取一次近似

则绝对误差或

σ

δ5

4~, , 1m z z ??0

i i z z z ?=-1y m i i i a z ==∑1 y m

i i

i a z =?=?

∑y ?

y

y ?

y σ1(, , m y f z z =1N

i

i i f

y y y z z =?+?=+??∑

1m i

i

f y z z =??=??∑

y ?=y

y

?=

相对误差

标准误差其中

本节小结

系统误差及来源,消除方法;间接误差的推导

2.5 测量结果的表示和不确定度

1. 直接测量结果的表示和总不确定度

不确定度——由于测量误差的存在而对被测量值不能肯定的程度。表征被测量量的真值所处的量值范围的评定。?A ——统计方法算出的误差分量

?B ——非统计方法算出的误差分量,与系统误差有关。

2. 间接测量结果的表示和不确定度的合成

误差表达式仍为:统计方法算出的误差分量?A 表达方式相同;非统计方法的误差分量?B =

??, ??是间接误差。

2.6 实验数据的处理

1.

有效数字

定义:仪器可读准的数字+1 位欠准数字(可疑数字)=有效数字

?记录测量数值,只保留一位欠准数字

?当测量误差已知时,测量结果的有效数字位数应与该误差位数一致。若仪器误差±

0.1Pa ,测量结果表达57.5±0.1Pa ,5是估计值。

有效数字表示

?普通记数法:6371±10km

?科学计数法 ×10±n, 6.371×103 ±10km

2. 实验结果的数据处理

按实验先后顺序排列数据

求算术平均值

计算残差:

理论上

计算标准误差(用贝塞尔公式)实验不确定度?=σ +?B , 实验结果的最后表达式

y σi

z f

??x x =±?

A B ?=?+??=?A +?B

1

1N

i i x x

N ==∑i i v x x =-10N

i i v ==∑σ=x x =

±?

3. 实验曲线绘制实验结果的表达:表格、曲线绘制曲线,坐标选择,误差带,曲线拟合 坐标系 直角坐标/对数坐标 自变量:x 轴,因变量:y 轴 坐标分度与实验数据有效数字位数 多参数 三维(x,y,t) 实验点 所有各组次的实验点直接给 平均值+误差带(判断随机误差和系统误差?) 拟合曲线 选择函数 最小二乘法计算拟合度 软件选择(Excel、Origin、Matlab、SAS、SPSS 等)

4. 图像处理的精度 SEM,TEM,光学显微镜…… x±D 本节

实验曲线:小结? 实验数据表达 x x A B A ? ?

误差带、拟合曲线选择实验结果分析本章小结 1. 误差:随机误差 A(算术平均

实验结值、标准偏差),系统误差 B(仪表精度、间接误差 A B 2.

果的表达: x x 曲线

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

“测量误差、不确定度和数据处理”作业参考答案

“测量误差、不确定度和数据处理”作业参考答案(总分:40分) 1.(3分) 1 5 8 9 2 3 2. (3分) (1) 5位 1.08 (2) 5位 0.862 (3) 5位 27.0 (4) 6位 3.14 (5) 4位 0.00200 (6) 5位 4.52?103 3. (2分) A 正确,其他结果的平均值和不确定度的最后一位没有对齐; 4.(2分) (3) 5. (4分) (1) A=(1.70±0.01)?104km, P=95%; (2) B=(1.7±0.5)?10-3m, P=95%; (3) C=(1.08±0.02)?10cm, P=95%; (4) D=(9.95±0.02)?10?C, P=95%; 6. (4分) (1) 216.5-1.32=215.2 (2) 0.0221?0.0221=0.000488 (3) 55100.60.11000.66.1160.121500400?=?=-? (4) 15cm=1.5?102mm=1.5?105μm 7. (5分) (1) 98.754+1.3=100.0 (2) 107.50–2.5=105.0 (3) 27.6÷0.012=2.3?103 (4) 121×10= 1.2×103 (5) 00.20.3800.760.200.4000.76==- (6) 0.100 .11000.200.50)001.000.1)(0.3103()3.1630.18(00.50=??=+--? (7) ()()23101.20.11010 0.11000.10.110000.100.10.100.1000.110000.100.7700.78412.46.50.100?=+??=+??=+?-+? (8) 27.30 .47915680.4790.9436250.4790.943252==+=+ (9) 6630.148030.1410080.030.141005 .20.230.141005.23.213.23=-=-?=-?=-?- 8. (9分) 解:n=6,一般取置信概率P=95%,查表知t p =2.45 ()mm D D i i 836.9836.9837.9834.9838.9836.9835.96 16161=++++++==∑= ()()()()()mm mm D D t U i i p B A D 3366225 2估2 仪22222估2仪6122 2 10510241017108200010004030 101452166000100020002000010452166-----=?≈?≈?+?=++??=?+?+-++-+++-?=?+?+--=?+?=∑.......... 因此 ()mm D 005.0836.9±=, (P =95%) 9. (8分) 解: 3322485478520 9534214225444cm g cm g h D m .....==???==ππρ 3 3661022 222222222222222210510097410181106151062020901053420050414225400204-----?≈?≈?+?+?=+?+=++=?? ? ????+??? ????+??? ????==..........ln ln ln h U D U m U U h U D U m U E h D m h D m ρρρρρρ 32310252100974485cm g E U --?≈??==...ρρρ 因此()303.048.5cm g ±=ρ, (P =95%)或()302304785cm g ..±=ρ, (P =95%) 分析: 相对不确定度大的直接测量量D 对间接测量量ρ的不确定度贡献最大; 相对不确定度小的直接测量量m 对间接测量量ρ的不确定度贡献最小; 这是乘除表达式构成的间接测量量共同的规律。

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

实验误差及数据处理习题

误差理论与数据处理 学号: ____________ 姓名: __________ 专业: _____________ 评分: _______ 上课时间: 第____周星期____上午[ ]下午[ ]晚上[ ] 请将1-24小题的答案对应地填在下表中 一、单选题(每小题3分,共36分)。 1.采用“四舍六入五单双”法,将下列各数据取为2位有效数字(修约间隔为0.1),其 结果正确的是: A. 2.750→2.7 B. 2.650→2.6 C. 2.65001→2.6 D. 2.6499→2.7 2.自然数6的有效数字位数为: A. 1位 B. 2位 C. 3位 D. 无穷位 3.L=0.1010m的有效数字位数为: A. 2位 B. 3位 C. 4位 D. 5位 4.V=2.90×103m/s的有效数字位数为: A. 3位 B. 5位 C. 6位 D. 7位 5.下列单位换算正确的是: A. 0.06m=60mm B. 1.38m=1380mm C. 4cm=40mm D. 5.0mm=0.50cm 6.用有效数字运算法则计算123.98-40.456+ 7.8,其结果正确的是: A. 91.324 B. 91.3 C. 91.32 D. 91 7.用有效数字运算法则计算271.3÷0.1和3.6×4.1,其结果正确的是: A. 3×103和14.8 B. 3×103和15 C. 2712和14.76 D. 2712和15 8.用有效数字运算法则计算 4.0345 +38.1 9.0121-9.011 ,其结果正确的是: A. 3705.827 B. 370.8273 C. 3705.8 D. 4×103

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

物理实验-误差分析与数据处理

目录 实验误差分析与数据处理 (2) 1 测量与误差 (2) 2 误差的处理 (6) 3 不确定度与测量结果的表示 (10) 4 实验中的错误与错误数据的剔除 (13) 5 有效数字及其运算规则 (15) 6 实验数据的处理方法 (17) 习题 (25)

实验误差分析与数据处理 1 测量与误差 1.1 测量及测量的分类 物理实验是以测量为基础的。在实验中,研究物理现象、物质特性、验证物理原理都需要进行测量。所谓测量,就是将待测的物理量与一个选来作为标准的同类量进行比较,得出..................................它们的倍数关系的过程.......... 。选来作为标准的同类量称之为单位,倍数称为测量数值。一个物理量的测量值等于测量数值与单位的乘积。 在人类的发展历史上,不同时期,不同的国家,乃至不同的地区,同一种物理量有着许多不同的计量单位。如长度单位就分别有码、英尺、市尺和米等。为了便于国际交流,国际计量大会于1990年确定了国际单位制(SI ),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。 1.直接测量与间接测量 测量可分为两类。一类是直接测量,是指直接将待测物理量与选定的同类物理量的标准单位相比较直接得到测量值的一种测量。它无须进行任何函数关系的辅助运算。如用尺测量长度、以秒表计时间、天平称质量、安培表测电流等。另一类是间接测量,是指被测量与直接测量的量之间需要通过一定的函数关系的辅助运算,才能得到被测量物理量的量值的测 量。如单摆测量重力加速度时,需先直接测量单摆长l 和单摆的周期T ,再应用公式224T l g π=,求得重力加速度g 。物理量的测量中,绝大部分是间接测量。但直接测量是一切测量的基础。不论是直接测量,还是间接测量,都需要满足一定的实验条件,按照严格的方法及正确地使用仪器,才能得出应有的结果。因此实验过程中,一定要充分了解实验目的,正确使用仪器,细心地进行操作读数和记录,才能达到巩固理论知识和加强实验技能训练的目的。 2.等精度测量与不等精度测量 同一个人,用同样的方法,使用同样的仪器,在相同的条件下对同一物理量进行多次测量,尽管各次测量并不完全相同,但我们没有任何充足的理由来判断某一次测量更为精确,只能认为它们测量的精确程度是完全相同的。我们把这种具有同样精确程度的测量称之为等精度测量。在所有的测量条件中,只要有一个发生变化,这时所进行的测量即为不等精度测量。在物理实验中,凡是要求多次测量均指等精度测量,应尽可能保持等精度测量的条件不变。严格地说,在实验过程中保持测量条件不变是很困难的。但当某一条件的变化对测量结果的影响不大时,乃可视为等精度测量。在本书中,除了特别指明外,都作为等精度测量。 1.2 误差及误差的表现形式 1.误差 物理量在客观上有着确定的数值,称为真值。测量的最终目的都是要获得物理量的真值。但由于测量仪器精度的局限性、测量方法或理论公式的不完善性和实验条件的不理想,测量

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

《误差理论与数据处理》答案..

《误差理论与数据处理》 第一章绪论 1-1.研究误差的意义是什么?简述误差理论的主要内容。 答:研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结 果。 误差理论的主要内容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件 的真实长度为多少? 解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=, 测件的真实长度L0=L-△L=50-=(mm) 1-7.用二等标准活塞压力计测量某压力得,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少? 解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。 故二等标准活塞压力计测量值的误差=测得值-实际值, 即: -=-( Pa) 1-8在测量某一长度时,读数值为,其最大绝对误差为20m μ,试求其最大相对误差。 1-9、解: 由 2 12 2 4() h h g T π+ =,得 对 2 12 2 4() h h g T π+ =进行全微分,令 12 h h h =+,并令g V,h V,T V代替dg,dh,dT得 2 180 20 00 180'' = -'' 'o o % 000031 .0 1 0000030864 .0 64800 2 06 60 180 2 180 2 ≈ = '' '' '' ? ? '' = '' = o

第四章误差与实验数据的处理-答案

第四章误差与实验数据的处理练习题参考答案 1. 下列各项定义中不正确的是( D) (A)绝对误差是测定值和真值之差 (B)相对误差是绝对误差在真值中所占的百分率 (C)偏差是指测定值与平均值之差 (D)总体平均值就是真值 2. 准确度是(分析结果)与(真值)的相符程度。准确度通常用(误差)来表示,(误差)越小,表明分析结果的准确度越高。精密度表示数次测定值(相互接近)的程度。精密度常用(偏差)来表示。(偏差)越小,说明分析结果的精密度越高。 3. 误差根据其产生的原因及其性质分为系统误差和(随机误差)两类。系统误差具有(重复性)、(单向性)和(可测性)等特点。 4. 对照试验用于检验和消除(方法)误差。如果经对照试验表明有系统误差存在,则应设法找出其产生的原因并加以消除,通常采用以下方法:(空白试验),(校准仪器和量器),( 校正方法)。 5. 对一个w(Cr)=%的标样,测定结果为%,%,%。则测定结果的绝对误差为(-%),相对 误差为(-%)。 6. 标准偏差可以使大偏差能更显著地反映出来。(√) 7. 比较两组测定结果的精密度(B) 甲组:%,%,%,%,% 乙组:%,%,%,%,% (A)甲、乙两组相同(B)甲组比乙组高(C)乙组比甲组高(D)无法判别 8. 对于高含量组分(>10%)的测定结果应保留(四)位有效数字;对于中含量组分(1%~10%) 的测定结果应保留(三)位有效数字;对于微量组分(<1%)的测定结果应保留(两)位有效数字。 9. 测定的精密度好,但准确度不一定好,消除了系统误差后,精密度好的,结果准确度就好。(√) 10. 定量分析中,精密度与准确度之间的关系是( C) (A)精密度高,准确度必然高(B)准确度高,精密度也就高 (C)精密度是保证准确度的前提(D)准确度是保证精密度的前提 11. 误差按性质可分为(系统)误差和(随机)误差。 12. 下列叙述中错误的是( C)

误差理论与数据处理实验报告要点

误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1n i i l =∑

物理实验中的测量误差与数据处理方法总结

物理实验中的测量误差与数据处理方法总结

物理实验中的测量误差与数据处理方法总结 作者:石皓昆李珩 指导教师:邓靖武 2014年4月17日

摘要:在学习物理的过程中,学习进行物理实验是不可忽略的一步。在笔者参加学校在北京大学物理实验教学中心学习的过程中,发现在实验结果处理中,应用了许多高中没有出现的方法。我们在这里对我们使用过、遇到过的方法进行总结。 关键词:基础物理实验误差分析不确定度数据处理 目录 一、引言 二、正文 1、测量误差与测量结果的不确定度 2、测量结果的书写规则 3、对测量数据进行处理的几种方法 三、结尾

一、引言:本文着重总结了测量误差与数据处理的几种方法,其中测量误差理论是重中之重。笔者认为进行一项物理实验始终与误差理论有密切的关系,不断减小测量误差即使我们进行试验时不断需要考虑的问题,亦可以帮助我们正确、有效地设计实验方案、进行实验操作、正确处理数据。 二、正文 1、测量误差与测量结果的不确定度 ①测量误差的定义 首先,需要明确测量误差的定义。当我们进行测量时,由于理论的近似性、实验仪器的局限性等,测量结果总不可能绝对准确。待测物理量的真值同我们的测量值之间总会存在某种差异。我们将测量误差定义为 测量误差=测量值-真值 ②测量误差的分类 其次,按照习惯的分类方法,根据误差的性质,误差又分为系统误差和随机误差。 ③系统误差 我们在这里讨论系统误差。系统误差指的是在相同条件下,多次测量同一物理量时,测量值对真值的偏离总是相同的误差。其造成原因大概分为三类:(1)、实验理论、计算公式的局限性(例:测量单摆周期中使用在摆角趋于0 的情况下的周期公式) (2)、仪器的使用问题 (3)、测量者的生理心理因素的影响 (4)、未定系统误差(例如仪器的允差) ④随机误差 与系统误差相对应,随机误差是由于偶然的、不确定的因素造成每一次测量值的无规律的涨落,这类误差我们称作随机误差。 随机误差的特点在于它的随机性。即如果在相同宏观条件下,对某一物理量进行多次测量,每次的测量结果都不相同。但当测量次数足够多时,我们一般认为大多数的随机误差近似符合正态分布。 不妨记随机误差为连续型随机变量x,其概率密度函数为(x) ρ。由“概率论”中对于随机变量的数字特征的定义 数学期望 ()() E x x x dx ρ +∞ -∞ =? 方差 2 D()[()]() x x E x x dx ρ +∞ -∞ =- ? 正态分布的概率密度函数 2 2 2 (x) x σ ρ- =(1.1)

(完整版)误差理论与数据处理简答题及答案

基本概念题 1.误差的定义是什么?它有什么性质?为什么测量误差不可避免? 答:误差=测得值-真值。 误差的性质有: (1)误差永远不等于零; (2)误差具有随机性; (3)误差具有不确定性; (4)误差是未知的。 由于实验方法和实验设备的不完善,周围环境的影响,受人们认识能力所限,测量或实 验所得数据和被测量真值之间不可避免地存在差异,因此误差是不可避免的。 2.什么叫真值?什么叫修正值?修正后能否得到真值?为什么? 答:真值:在观测一个量时,该量本身所具有的真实大小。 修正值:为消除系统误差用代数法加到测量结果上的值,它等于负的误差值。 修正后一般情况下难以得到真值。因为修正值本身也有误差,修正后只能得到较测得值更为准确的结果。 3.测量误差有几种常见的表示方法?它们各用于何种场合? 答:绝对误差、相对误差、引用误差 绝对误差——对于相同的被测量,用绝对误差评定其测量精度的高低。 相对误差——对于不同的被测俩量以及不同的物理量,采用相对误差来评定其测量精度的高低。 引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。4.测量误差分哪几类?它们各有什么特点? 答:随机误差、系统误差、粗大误差 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差。 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差。 粗大误差:超出在规定条件下预期的误差。误差值较大,明显歪曲测量结果。 5.准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么? 答:准确度:反映测量结果中系统误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 精确度:反映测量结果中系统误差和随机误差综合的影响程度。 准确度反映测量结果中系统误差的影响程度。精密度反映测量结果中随机误差的影响程度。精确度反映测量结果中系统误差和随机误差综合的影响程度。

实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

误差理论及数据处理-复习题及答案

《误差理论与数据处理》 一、填空题(每空1分,共20分) 1 ?测量误差按性质分为________ 差、_________ 差和 _______ 差,相应的处理手段为 _____ 、 ____ 和_____ 。 答案:系统,粗大,随机,消除或减小,剔除,统计的手段 2 .随机误差的统计特性为____________ 、_________ _________ 和________ 。 答案:对称性、单峰性、有界性、抵偿性 3.用测角仪测得某矩形的四个角内角和为360 °0 04 〃,贝U测量的绝对误差为________ ,相对误差__________ 答案:04 ",3.1*10-5 4 ?在实际测量中通常以被测量的 作为约定真值。 答案:高一等级精度的标准给出值、最佳估计值、参考值 5 ?测量结果的重复性条件包括:、 测量人员,测量仪器、测量方法、测量材料、测量环境 6. 一个标称值为5g的砝码,经高一等标准砝码检定,知其误差为0.1mg,问该砝码的实际质量是__________ 。 5g-0.1mg 7 ?置信度是表征测量数据或结果可信赖程度的一个参数,可用_________和

来表示。 标准差极限误差 8 ?指针式仪表的准确度等级是根据 _____________ 差划分的。 引用 9 ?对某电阻进行无系差等精度重复测量,所得测量列的平均值为100.2 Q,标准偏差为0.2 Q,测量次数15次,则平均值的标准差为__________________ ,当置信因子K 二3时,测量结果的置信区间为____________________ 0.2/sqrt(15),3*0.2/sqrt(15) 10 ?在等精度重复测量中,测量列的最佳可信赖值是___________________ < 平均值 11 ?替代法的作用是_____________ 特点是___________ 。 _ 消除恒定系统误差,不改变测量条件 12.对某电压做无系统误差等精度独立测量,测量值服从正态分布。已知被测电 压的真值U 0 = 79.83 V,标准差c(U)= 0.02V,按99% (置信因子k = 2.58 ) 可能性估计测量值出现的范围: ________________________________________________________________________ 。 79.83 ±0.02 V*2.58 13 . R 1 = 150 - - R 1 = ±0.75 二;R 2 = 100 门,丄R 2 =二0.4 二,则两电阻并联后总电阻的绝对误差为 R R;1002 R1(R R2)2 (150 100)2 R R;1502 R2(R R2)2(150 100)20.16 0.36 R=R1*R2/(R1+R2), 二R=』R R1R R2 0.16* 0.75 0.36* 0.4 R2 0.264

物理实验误差分析与数据处理

物理实验误差分析与数 据处理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

目录 实验误差分析与数据处理 (2) 1 测量与误差 (2) 2 误差的处理 (6) 3 不确定度与测量结果的表示 (10) 4 实验中的错误与错误数据的剔除 (13) 5 有效数字及其运算规则 (15) 6 实验数据的处理方法 (17) 习题 (25)

实验误差分析与数据处理 1 测量与误差 测量及测量的分类 物理实验是以测量为基础的。在实验中,研究物理现象、物质特性、验证 物理原理都需要进行测量。所谓测量,就是将待测的物理量与一个选来作为标...................... 准的同类量进行比较,得出它们的倍数关系的过程...................... 。选来作为标准的同类量称之为单位,倍数称为测量数值。一个物理量的测量值等于测量数值与单位的乘积。 在人类的发展历史上,不同时期,不同的国家,乃至不同的地区,同一种物理量有着许多不同的计量单位。如长度单位就分别有码、英尺、市尺和米等。为了便于国际交流,国际计量大会于1990年确定了国际单位制(SI ),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。 1.直接测量与间接测量 测量可分为两类。一类是直接测量,是指直接将待测物理量与选定的同类物理量的标准单位相比较直接得到测量值的一种测量。它无须进行任何函数关系的辅助运算。如用尺测量长度、以秒表计时间、天平称质量、安培表测电流等。另一类是间接测量,是指被测量与直接测量的量之间需要通过一定的函数关系的辅助运算,才能得到被测量物理量的量值的测量。如单摆测量重力加速 度时,需先直接测量单摆长l 和单摆的周期T ,再应用公式224T l g π=,求得重力 加速度g 。物理量的测量中,绝大部分是间接测量。但直接测量是一切测量的基础。不论是直接测量,还是间接测量,都需要满足一定的实验条件,按照严格的方法及正确地使用仪器,才能得出应有的结果。因此实验过程中,一定要充分了解实验目的,正确使用仪器,细心地进行操作读数和记录,才能达到巩固理论知识和加强实验技能训练的目的。 2.等精度测量与不等精度测量 同一个人,用同样的方法,使用同样的仪器,在相同的条件下对同一物理量进行多次测量,尽管各次测量并不完全相同,但我们没有任何充足的理由来判断某一次测量更为精确,只能认为它们测量的精确程度是完全相同的。我们把这种具有同样精确程度的测量称之为等精度测量。在所有的测量条件中,只要有一个发生变化,这时所进行的测量即为不等精度测量。在物理实验中,凡是要求多次测量均指等精度测量,应尽可能保持等精度测量的条件不变。严格地说,在实验过程中保持测量条件不变是很困难的。但当某一条件的变化对测量结果的影响不大时,乃可视为等精度测量。在本书中,除了特别指明外,都作为等精度测量。

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

相关文档
最新文档